
DATA SCIENCE REPORT SERIES – ALGORITHMS

Artificial Neural Networks
Shintaro Hagiwara, Patrick Boily [shintaro.hagiwara@cqads.carleton.ca]

Centre for Quantitative Analysis and Decision Support, Carleton University, Ottawa, Ontario, Canada

1 Introduction
What do you feel like eating for dinner tonight? Do you feel like pizza, pasta, or perhaps something
Asian like sushi? When you are asked such a question, you would have (some sort of) answer
right away. But how do you come to that decision? Is it based on what you ate earlier today, or is
it due to chemicals and nutrients your body is deprived of? Our brain can make many complex
decisions in a split second, but we do not fully understand how (some of) these decisions are
made.

Artificial Neural Networks (ANN) are models from a statistical technique that tries to mimic
how our brain makes decision, or at least how neurons work. To many of us, they feel like a
black-box methodo (like Figure 1, where you get some stimuli (input), and then an action (output)
is taken, but it’s not entirely clear what happens in between). In this article, we will investigate
what goes on behind the scenes of this black-box technique.

2 ANN in a Nutshell
Mathematically, ANN simply performs a chain of multivariate non-linear regression functions. A
trained ANN is a function that maps inputs to outputs in a useful way by:

1. receiving input(s);
2. computing values, and
3. providing output(s).

Figure 1. Artificial Neural Networks – a black-box technique?

© Shintaro Hagiwara, Patrick Boily, 2018

mailto:shintaro.hagiwara@cqads.carleton.ca?subject=Artificial%20Neural%20Networks%20

ARTIFICIAL NEURAL NETWORKS – S. HAGIWARA, P. BOILY

We can think of an ANN as a Swiss army knife approach to problems (i.e., there are plenty of
options, but it is not always clear which one should be used). The good news is, the user does not
need to decide much about the function or know much about the problem space in advance –
algorithms allow ANNs to learn (i.e., generate the function and its internal values) automatically.

ANNs have many potential uses, including:

1. supervised learning;
2. unsupervised learning, and
3. reinforcement learning.

From a technical perspective, the only requirement is the ability to minimize a cost function (i.e.,
optimization).

3 NetworkTopology, Terminology, and ForwardPropagation -How
Do We Compute the Outputs?

Here, we will describe what is called a vanilla neural net, which is also known as single hidden-layer
back propagation network.

Suppose that we want to build a model that classifies red wines that come from two different
regions of Italy, based on two attributes: their colour intensity, and their total amounts of phenols.

In Figure 2, colour intensity and amount of total phenols are the inputs, represented by nodes
A and B, while the probability of it coming from a region is the output, denoted by node E. The
nodes C and D in the hidden layer add complexity (and flexibility) to the model by allowing for
non-linear functions to be applied.

In ANN, each node is connected to the nodes in the adjacent layers. This connection, called
the edge, applies a weight to a signal that passes through it. The receiving node then collects all

Figure 2. A simple network – illustration

DATA VISUALISATION – 2

ARTIFICIAL NEURAL NETWORKS – S. HAGIWARA, P. BOILY

weighted inputs and sum them, apply an activation function, and send its signal to nodes in the
subsequent layer. In matrix notation, each component of the above process is summarized as
follows:

where bC , bD , and bE in the activation functions are biases, which serve as intercepts forZ. Hence,
this vanilla neural net can be expressed as

ŷ = a(3) = g[Z(3)] = g[a(2)W (2)] = g[g(XW (1))W (2)]

In short, at each node, the neural net:
1. computes a weighted sum of inputs;
2. applies activation function, and
3. sends a signal,

until the signal reaches the final output node. The process of computing the output is called
forward propagation.

DATA VISUALISATION – 3

ARTIFICIAL NEURAL NETWORKS – S. HAGIWARA, P. BOILY

4 Back Propagation - How Do We Train Our Model?
For a given signal (i.e., data), an ANN can produce an output as long as the weights are specified.
However, if we want to use it for supervised learning tasks, assigning arbitrary weights is a failing
proposition. To have a useful model, we need a method to optimize the choice of the weights
against an error function using backpropagation. In regression problems (i.e., when the output is
a continuous variable), the sum of squared errors (SSE) is often used as the error function.

R(W) =
n∑

i=1

K∑
k=1

(ŷik(W)− yik)
2

and if our problem is classification, then cross-entropy may be used instead:

R(W) = −
n∑

i=1

K∑
k=1

yik ln [ŷik(W)]

Either way, our goal is to minimize R(W) with respect to W . One way to achieve this is through
the use of gradient descent. Using the chain rule, for each weight and bias term we have

W
(1)
j,m; j = 1, · · · , p andm = 1, · · · ,M

W
(2)
m,k;m = 1, · · · ,M and k = 1, · · · , K

b(1)m and b(2)k ;m = 1, · · · ,M and k = 1, · · · , K

We update these weights and biases by

W
(1),[t+1]
j,m = W

(1),[t]
j,m − α[t]

n∑
i=1

∂Ri

∂W
(1),[t]
j,m

W
(2),[t+1]
m,k = W

(2),[t]
m,k − α[t]

n∑
i=1

∂Ri

∂W
(2),[t]
m,k

b(1),[t+1]
m = b(1),[t]m − α[t]

n∑
i=1

∂Ri

∂b
(1),[t]
m

b
(2),[t+1]
k = b

(1),[t]
k − α[t]

n∑
i=1

∂Ri

∂b
(2),[t]
k

where α[t] is called the learning rate, which controls how much adjustment we want to make at
each update. It is important to note that if we set α[t] to be too small, the rate of convergence may
be very slow, while having α[t] too large may overshoot at each update and miss the local minima
completely. Also, as the subscript [t] suggests, the learning rate could be defined to decay over
time, or stays a constant.

DATA VISUALISATION – 4

ARTIFICIAL NEURAL NETWORKS – S. HAGIWARA, P. BOILY

In essence, backpropagation:

1. computes current error function R(W);
2. updates weights W using gradient descent, and
3. recomputes error function and repeat steps 1 and 2 until convergence (or maximum iteration

is reached).

5 Pros, Cons, and Other Things to Consider
There certainly is a good reason why many people use ANN to solve problems. Simply said, ANNs
can be quite accurate when making predictions, often better than other algorithms with a proper
set up. Real life data can be ugly and messy, and ANNs often work even when:

the relationship between attributes is complex;
there are a lot of dependencies/non-linear relationships;
inputs are highly connected (e.g., images, texts, and speeches), and
problem is non-linear classification.

On top of these, ANNs are relatively easy to set up using available packages such as neuralnet in R.

Of course, ANNs are not without their drawbacks. One of their major weakness is the lack
of interpretation (unlike decision trees or logistic regression, say). Sometimes, understanding
the underlying relationship is as important as making good predictions. While ANNs often pro-
vides good predictions, the underlying complexity prevents us from understanding how change in
input(s) really affect the output.

Overfitting may become an issue with ANNs as well. Remember that we don’t want a perfect
fit to our data, because such a model will be overly complex and will have poor predictive power.
This is especially true when we have too many weights. Weight decay is a method that can be
used to counter overfitting.

The choice of activation function is another thing the user should think about. We illustrated it
previously using the logistic function; however, there are a number of other choices. We could
use a a linear function, a threshold function, a hinge function, or even a sine function! While using
monotonic functions may seem like an intuitive option, what effects does the choice of activation
function have, if any? Users should also be aware that ANNs are sensitive to initial values. Thus,
they must be run multiple times to ensure that the method has reached consistent convergence.

Last but not least, what about the number of hidden layers and nodes? Figures 4 and 5 showmany
different network structures. While we cannot say which architecture works best for a particular
problem, we can’t tell that just because a structure worked in one situation, it will work in all other
situations. What we should remember is that, like any other modeling techniques, we want a
model that explains the data well, while keeping it as simple as possible. We will investigate the
effect of changing the number of layers and nodes in next section.

DATA VISUALISATION – 5

ARTIFICIAL NEURAL NETWORKS – S. HAGIWARA, P. BOILY

Figure 3. https://en.wikipedia.org/wiki/Activation function

6 Example: Classification of Wine Using ANN
To illustrate the effect of changing the number of nodes in each hidden layer, let us take a look at
the wine dataset. Our goal is to build a “good” ANN model that can correctly identify wines that
come from three different regions of Italy. The original data contains 178 observations with 13
explanatory variables (alcohol level and amount of malic acid etc.). We use 140 observations to
build models, and compare their performance using remaining 38 observations.

Now, let us apply principal component analysis to the standardized data with variable flavanoids
removed. Figure 6 shows the data projected onto the first two principal components. To our
eyes, the classification seem fairly straightforward: red and blue wines can be well separated by a
vertical line around 0, while green ones typically have lower PC2 values.

We use following eight ANN models for comparison:

no hidden layers
1 hidden layer with 2 nodes
1 hidden layer with 6 nodes
1 hidden layer with 10 nodes

2 hidden layers with 2 nodes each
2 hidden layers with 6 nodes each
2 hidden layers with 10 nodes each
3 hidden layers with 10 nodes each

and the resulting prediction regions are given in Figures 7 and 8. Interestingly, the two simplest
models (i.e., model without hidden layers and model with one hidden layer with two nodes)
performed the best, while the prediction regions from more complicated models are clearly
overfitted to the training data. Thus, it is recommended to have a simple initial ANN model, and
then add complexity as required.

DATA VISUALISATION – 6

https://en.wikipedia.org/wiki/Activation_function
https://archive.ics.uci.edu/ml/datasets/wine

ARTIFICIAL NEURAL NETWORKS – S. HAGIWARA, P. BOILY

Figure 4. Fjodor van Veen, Asimov Institute, 2016

References
[1] Hastie, J., Tibshirani, R., Friedman, J., [2009], The Elements of Statistical Learning, 2nd ed.,

Springer.

[2] Zulkifli, H., Towards Data Science

[3] Wikipedia, https://en.wikipedia.org/wiki/Activation function.

[4] van Veen, F., [2016], Asimov Institute

DATA VISUALISATION – 7

http://www.asimovinstitute.org/neural-network-zoo/?imm_mid=0e8927&cmp=em-data-na-na-newsltr_ai_20160926
https://towardsdatascience.com/understanding-learning-rates-and-how-it-improves-performance-in-deep-learning-d0d4059c1c10
https://en.wikipedia.org/wiki/Activation_function
http://www.asimovinstitute.org/neural-network-zoo/?imm_mid=0e8927&cmp=em-data-na-na-newsltr_ai_20160926

ARTIFICIAL NEURAL NETWORKS – S. HAGIWARA, P. BOILY

Figure 5. Fjodor van Veen, Asimov Institute, 2016

7 Appendix A: R Code

Implementing libraries

library(mda)

library(nnet) # required for function class.ind()

library(neuralnet)

library(repr)

Setting up the data

wine=read.csv("wine.csv", header=TRUE)

wine=as.data.frame(wine)

#str(wine)

n=dim(wine)[1] # Number of instances

DATA VISUALISATION – 8

http://www.asimovinstitute.org/neural-network-zoo/?imm_mid=0e8927&cmp=em-data-na-na-newsltr_ai_20160926

ARTIFICIAL NEURAL NETWORKS – S. HAGIWARA, P. BOILY

Y=wine$Class # Dependent variable - classes

X=wine[,-1] # Independent variables (full)

X.std=scale(X) # Standardized independent variables (full)

C1.loc=which(Y==1) # Indecies for class=1

C2.loc=which(Y==2) # Indecies for class=2

C3.loc=which(Y==3) # Indecies for class=3

Remove flavanoid

X=X[,-7]

X.std=X.std[,-7]

Performing principal component analysis on standardized data

pca.std=prcomp(X.std)

Transforming X.std into principal coordinates

PC=X.std%*%pca.std$rotation
PCnames=c("PC1","PC2","PC3","PC4","PC5","PC6","PC7","PC8","PC9","PC10","PC11","PC12")

colnames(PC) <- PCnames

Splitting dataset into training and testing sets

set.seed(1111)

C1.train.loc=sort(sample(C1.loc, size=46))

C2.train.loc=sort(sample(C2.loc, size=56))

C3.train.loc=sort(sample(C3.loc, size=38))

train.loc=c(C1.train.loc, C2.train.loc, C3.train.loc)

test.loc=which(!(1:length(Y) %in% train.loc))

Forming training data

PC.train=PC[train.loc,]

Y.train=Y[train.loc]

dat.train=as.data.frame(cbind(class.ind(Y.train), PC.train))

colnames(dat.train)[1:3]=c("C1", "C2", "C3")

Forming testing data

PC.test=PC[test.loc,]

Y.test=Y[test.loc]

dat.test=as.data.frame(cbind(class.ind(Y.test), PC.test))

colnames(dat.test)[1:3]=c("C1", "C2", "C3")

Plotting both training (cicles) and testing data (triangles) on PC1 and PC2

plot.title="Training and Testing data"

xlimit=c(-4,4); ylimit=c(-3,3)

plot(dat.train$PC1, dat.train$PC2, cex=1.2, col=Y.train+1, main=plot.title, xlab="PC1",

ylab="PC2", xlim=xlimit, ylim=ylimit)

points(dat.test$PC1, dat.test$PC2, pch=17, cex=1.5, col=Y.test+1)

DATA VISUALISATION – 9

ARTIFICIAL NEURAL NETWORKS – S. HAGIWARA, P. BOILY

legend.main=c("Training Data", "Testing Data")

legend("bottomright", pch=c(1, 17), legend=legend.main)

#--#

Artificial Neural Network with neuralnet (part 1)

#--#

set.seed(1234)

Form a grid to colour prediction regions

predict.region.PC1=seq(-5,5, length.out=100)

predict.region.PC2=seq(-4,4, length.out=100)

predict.region=expand.grid(x=predict.region.PC1, y=predict.region.PC2)

Using function neuralnet() from library(neuralnet)

The number of hidden nodes in each hidden layer

model.structure=0

Fit an ANN using first 2 principal components only

model1 <- neuralnet(C1+C2+C3~PC1+PC2, data=dat.train, hidden=model.structure, err.fct="

ce", linear.output=FALSE)

prob.model1 <- compute(model1, PC.train[,1:2])

predict.model1=max.col(prob.model1$net.result)
conf.train=confusion(predict.model1, Y.train)

prob.model1.test <- compute(model1, PC.test[,1:2])

predict.model1.test=max.col(prob.model1.test$net.result)

Calculate the prediction region based on a particular model (for model1):

prob.model1.region <- compute(model1, predict.region[,1:2])

predict.model1.region=max.col(prob.model1.region$net.result)

and plot it

options(repr.plot.width=12, repr.plot.height=12)

par(mfrow=c(2,2))

plot.title=paste("Prediction region for", "\n", "ANN with structure = ", list(model.

structure)[1], sep="")

plot(predict.region[,1], predict.region[,2], main=plot.title, xlim=xlimit, ylim=ylimit,

xlab="PC1", ylab="PC2", col=predict.model1.region+1, pch="+", cex=0.4)

points(dat.train$PC1, dat.train$PC2, cex=1.2, col=Y.train+1)

points(dat.test$PC1, dat.test$PC2, pch=17, cex=1.5, col=Y.test+1)

The number of hidden nodes in each hidden layer

model.structure=2

DATA VISUALISATION – 10

ARTIFICIAL NEURAL NETWORKS – S. HAGIWARA, P. BOILY

Fit an ANN using first 2 principal components only

model1 <- neuralnet(C1+C2+C3~PC1+PC2, data=dat.train, hidden=model.structure, err.fct="

ce", linear.output=FALSE)

prob.model1 <- compute(model1, PC.train[,1:2])

predict.model1=max.col(prob.model1$net.result)
conf.train=confusion(predict.model1, Y.train)

prob.model1.test <- compute(model1, PC.test[,1:2])

predict.model1.test=max.col(prob.model1.test$net.result)

Calculate the prediction region based on a particular model (for model1):

prob.model1.region <- compute(model1, predict.region[,1:2])

predict.model1.region=max.col(prob.model1.region$net.result)

and plot it

plot.title=paste("Prediction region for", "\n", "ANN with structure = ", list(model.

structure)[1], sep="")

plot(predict.region[,1], predict.region[,2], main=plot.title, xlim=xlimit, ylim=ylimit,

xlab="PC1", ylab="PC2", col=predict.model1.region+1, pch="+", cex=0.4)

points(dat.train$PC1, dat.train$PC2, cex=1.2, col=Y.train+1)

points(dat.test$PC1, dat.test$PC2, pch=17, cex=1.5, col=Y.test+1)

The number of hidden nodes in each hidden layer

model.structure=6

Fit an ANN using first 2 principal components only

model1 <- neuralnet(C1+C2+C3~PC1+PC2, data=dat.train, hidden=model.structure, err.fct="

ce", linear.output=FALSE)

prob.model1 <- compute(model1, PC.train[,1:2])

predict.model1=max.col(prob.model1$net.result)
conf.train=confusion(predict.model1, Y.train)

prob.model1.test <- compute(model1, PC.test[,1:2])

predict.model1.test=max.col(prob.model1.test$net.result)

Calculate the prediction region based on a particular model (for model1):

prob.model1.region <- compute(model1, predict.region[,1:2])

predict.model1.region=max.col(prob.model1.region$net.result)

and plot it

plot.title=paste("Prediction region for", "\n", "ANN with structure = ", list(model.

structure)[1], sep="")

plot(predict.region[,1], predict.region[,2], main=plot.title, xlim=xlimit, ylim=ylimit,

xlab="PC1", ylab="PC2", col=predict.model1.region+1, pch="+", cex=0.4)

points(dat.train$PC1, dat.train$PC2, cex=1.2, col=Y.train+1)

points(dat.test$PC1, dat.test$PC2, pch=17, cex=1.5, col=Y.test+1)

The number of hidden nodes in each hidden layer

DATA VISUALISATION – 11

ARTIFICIAL NEURAL NETWORKS – S. HAGIWARA, P. BOILY

model.structure=10

Fit an ANN using first 2 principal components only

model1 <- neuralnet(C1+C2+C3~PC1+PC2, data=dat.train, hidden=model.structure, err.fct="

ce", linear.output=FALSE)

prob.model1 <- compute(model1, PC.train[,1:2])

predict.model1=max.col(prob.model1$net.result)
conf.train=confusion(predict.model1, Y.train)

prob.model1.test <- compute(model1, PC.test[,1:2])

predict.model1.test=max.col(prob.model1.test$net.result)

Calculate the prediction region based on a particular model (for model1):

prob.model1.region <- compute(model1, predict.region[,1:2])

predict.model1.region=max.col(prob.model1.region$net.result)

and plot it

plot.title=paste("Prediction region for", "\n", "ANN with structure = ", list(model.

structure)[1], sep="")

plot(predict.region[,1], predict.region[,2], main=plot.title, xlim=xlimit, ylim=ylimit,

xlab="PC1", ylab="PC2", col=predict.model1.region+1, pch="+", cex=0.4)

points(dat.train$PC1, dat.train$PC2, cex=1.2, col=Y.train+1)

points(dat.test$PC1, dat.test$PC2, pch=17, cex=1.5, col=Y.test+1)

#---#

Artificial Neural Network with neuralnet (part 2)

#---#

set.seed(1234)

Form a grid to colour prediction regions

predict.region.PC1=seq(-5,5, length.out=100)

predict.region.PC2=seq(-4,4, length.out=100)

predict.region=expand.grid(x=predict.region.PC1, y=predict.region.PC2)

Using function neuralnet() from library(neuralnet)

The number of hidden nodes in each hidden layer

model.structure=c(2,2)

Fit an ANN using first 2 principal components only

model1 <- neuralnet(C1+C2+C3~PC1+PC2, data=dat.train, hidden=model.structure, err.fct="

ce", linear.output=FALSE)

prob.model1 <- compute(model1, PC.train[,1:2])

predict.model1=max.col(prob.model1$net.result)
conf.train=confusion(predict.model1, Y.train)

prob.model1.test <- compute(model1, PC.test[,1:2])

predict.model1.test=max.col(prob.model1.test$net.result)

DATA VISUALISATION – 12

ARTIFICIAL NEURAL NETWORKS – S. HAGIWARA, P. BOILY

Calculate the prediction region based on a particular model

For model1:

prob.model1.region <- compute(model1, predict.region[,1:2])

predict.model1.region=max.col(prob.model1.region$net.result)

and plot it

options(repr.plot.width=12, repr.plot.height=12)

par(mfrow=c(2,2))

plot.title=paste("Prediction region for", "\n", "ANN with structure = ", list(model.

structure)[1], sep="")

plot(predict.region[,1], predict.region[,2], main=plot.title, xlim=xlimit, ylim=ylimit,

xlab="PC1", ylab="PC2", col=predict.model1.region+1, pch="+", cex=0.4)

points(dat.train$PC1, dat.train$PC2, cex=1.2, col=Y.train+1)

points(dat.test$PC1, dat.test$PC2, pch=17, cex=1.5, col=Y.test+1)

The number of hidden nodes in each hidden layer

model.structure=c(6,6)

Fit an ANN using first 2 principal components only

model1 <- neuralnet(C1+C2+C3~PC1+PC2, data=dat.train, hidden=model.structure, err.fct="

ce", linear.output=FALSE)

prob.model1 <- compute(model1, PC.train[,1:2])

predict.model1=max.col(prob.model1$net.result)
conf.train=confusion(predict.model1, Y.train)

prob.model1.test <- compute(model1, PC.test[,1:2])

predict.model1.test=max.col(prob.model1.test$net.result)

Calculate the prediction region based on a particular model

For model1:

prob.model1.region <- compute(model1, predict.region[,1:2])

predict.model1.region=max.col(prob.model1.region$net.result)

and plot it

plot.title=paste("Prediction region for", "\n", "ANN with structure = ", list(model.

structure)[1], sep="")

plot(predict.region[,1], predict.region[,2], main=plot.title, xlim=xlimit, ylim=ylimit,

xlab="PC1", ylab="PC2", col=predict.model1.region+1, pch="+", cex=0.4)

points(dat.train$PC1, dat.train$PC2, cex=1.2, col=Y.train+1)

points(dat.test$PC1, dat.test$PC2, pch=17, cex=1.5, col=Y.test+1)

The number of hidden nodes in each hidden layer

model.structure=c(10,10)

Fit an ANN using first 2 principal components only

DATA VISUALISATION – 13

ARTIFICIAL NEURAL NETWORKS – S. HAGIWARA, P. BOILY

model1 <- neuralnet(C1+C2+C3~PC1+PC2, data=dat.train, hidden=model.structure, err.fct="

ce", linear.output=FALSE)

prob.model1 <- compute(model1, PC.train[,1:2])

predict.model1=max.col(prob.model1$net.result)
conf.train=confusion(predict.model1, Y.train)

prob.model1.test <- compute(model1, PC.test[,1:2])

predict.model1.test=max.col(prob.model1.test$net.result)

Calculate the prediction region based on a particular model

For model1:

prob.model1.region <- compute(model1, predict.region[,1:2])

predict.model1.region=max.col(prob.model1.region$net.result)

and plot it

plot.title=paste("Prediction region for", "\n", "ANN with structure = ", list(model.

structure)[1], sep="")

plot(predict.region[,1], predict.region[,2], main=plot.title, xlim=xlimit, ylim=ylimit,

xlab="PC1", ylab="PC2", col=predict.model1.region+1, pch="+", cex=0.4)

points(dat.train$PC1, dat.train$PC2, cex=1.2, col=Y.train+1)

points(dat.test$PC1, dat.test$PC2, pch=17, cex=1.5, col=Y.test+1)

The number of hidden nodes in each hidden layer

model.structure=c(10,10,10)

Fit an ANN using first 2 principal components only

model1 <- neuralnet(C1+C2+C3~PC1+PC2, data=dat.train, hidden=model.structure, err.fct="

ce", linear.output=FALSE)

prob.model1 <- compute(model1, PC.train[,1:2])

predict.model1=max.col(prob.model1$net.result)
conf.train=confusion(predict.model1, Y.train)

prob.model1.test <- compute(model1, PC.test[,1:2])

predict.model1.test=max.col(prob.model1.test$net.result)

Calculate the prediction region based on a particular model

For model1:

prob.model1.region <- compute(model1, predict.region[,1:2])

predict.model1.region=max.col(prob.model1.region$net.result)

and plot it

plot.title=paste("Prediction region for", "\n", "ANN with structure = ", list(model.

structure)[1], sep="")

plot(predict.region[,1], predict.region[,2], main=plot.title, xlim=xlimit, ylim=ylimit,

xlab="PC1", ylab="PC2", col=predict.model1.region+1, pch="+", cex=0.4)

points(dat.train$PC1, dat.train$PC2, cex=1.2, col=Y.train+1)

points(dat.test$PC1, dat.test$PC2, pch=17, cex=1.5, col=Y.test+1)

DATA VISUALISATION – 14

ARTIFICIAL NEURAL NETWORKS – S. HAGIWARA, P. BOILY

Figure 6. Wine dataset

DATA VISUALISATION – 15

ARTIFICIAL NEURAL NETWORKS – S. HAGIWARA, P. BOILY

Figure 7. Prediction regions based on different ANNs

DATA VISUALISATION – 16

ARTIFICIAL NEURAL NETWORKS – S. HAGIWARA, P. BOILY

Figure 8. Prediction regions based on different ANNs (continued)

DATA VISUALISATION – 17

	Introduction
	ANN in a Nutshell
	Network Topology, Terminology, and Forward Propagation - How Do We Compute the Outputs?
	Back Propagation - How Do We Train Our Model?
	Pros, Cons, and Other Things to Consider
	Example: Classification of Wine Using ANN
	Appendix A: R Code

