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1 Survey of Quantitative Methods

The bread and butter of quantitative consulting is the ability to apply quantitative methods to
business problems in order to obtain actionable insight. Clearly, it is impossible (and perhaps
inadvisable, in a more general sense) for any given individual to have expertise in every field of
mathematics, statistics, and computer science.

We believe that the best consulting framework is reached when a small team of consultants
possesses expertise in 2 or 3 areas, as well as a decent understanding of related disciplines, and
a passing knowledge in a variety of other domains: this includes keeping up with trends, im-
plementing knowledge redundancies on the team, being conversant in non-expertise areas, and
knowing where to find detailed information (online, in books, or through external resources).

In this section, we present an introduction for 9 “domains” of quantitative analysis:

survey sampling and data collection;
data processing;
data visualisation;
statistical methods;
queueing models;
data science and machine learning;
simulations;
optimisation, and
trend extraction and forecasting;

Strictly speaking, the domains are not free of overlaps. Large swaths of data science and time
series analysis methods are quite simply statistical in nature, and it’s not unusual to view opti-
misation methods and queueing models as sub-disciplines of operations research. Other topics
could also have been included (such as Bayesian data analysis or signal processing, to name but
two), and might find their way into a second edition of this book.

Our treatment of these topics, by design, is brief and incomplete. Each module is directed at
students who have a background in other quantitative methods, but not necessarily in the topic
under consideration. Our goal is to provide a quick “reference map” of the field, together with
a general idea of its challenges and common traps, in order to highlight opportunities for appli-
cation in a consulting context. These subsections are emphatically NOT meant as comprehensive
surveys: they focus on the basics and talking points; perhaps more importantly, a copious number
of references are also provided.

We will start by introducing a number of motivating problems, which, for the most part, we
have encountered in our own practices. Some of these examples are reported on in more details
in subsequent sections, accompanied with (partial) deliverables in the form of charts, case study
write-ups, report extract, etc.).

As a final note, we would like to stress the following: it is IMPERATIVE that quantitative consul-
tants remember that acceptable business solutions are not always optimal theoretical solutions.
Rigour, while encouraged, often must take a backseat to applicability. This lesson can be difficult
to accept, and has been the downfall of many a promising candidate.
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1.2 Data Preparation

Data Validation

Martin Kerdaniel: Data is messy, Alison.
Alison MacIntosh: Even when it’s been cleaned?
Martin Kerdaniel: Especially when it’s been cleaned.

– P. Boily, I. Kiewiet, The Great Balancing Act.

Once the raw data has been collected and stored in a dataset that is accessible to the quantita-
tive consultants, the focus should shift to data cleaning and processing. This requires testing for
soundness and fixing errors, designing and implementing strategies to deal with missing values
and outlying/influential observations, as well as low-level exploratory data analysis and vi-
sualisation to determine what data transformations and dimension reduction approaches will
be needed in the final analysis. Consultants should be prepared to spend up to 80% of their time
processing and cleaning the data.

The following remarks must be taken to heart during this stage:

Processing should NEVER be done on the original dataset – make copies along the way.
ALL cleaning steps and procedures need to be documented.
If too much of the data requires cleaning up, the data collection procedure might need to
be revisited.
An entire record should only be discarded as a last resort.

Another thing to keep in mind is that cleaning and processing may need to take place more than
once depending on the type of data collection (one pass, batch, continuously).

Finally, note that we are assuming that the datasets of interest contain only numerical and/or
categorical observations. Additional steps must be taken when dealing with unstructured data,
such as text or images.

1.2.1 General Principles

Data Validation

Dilbert: I didn’t have any accurate numbers, so I just made up this one. Studies have
shown that accurate numbers aren’t any more useful that the ones you make up.
Pointy-Haired Boss: How many studies showed that?
Dilbert: [beat] Eighty-seven.

– Scott Adams, Dilbert, 8 May 2008

Approaches to Data Cleaning There are two main philosophical approaches to data cleaning
and validation, which we call

methodical, and
narrative.
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The methodical approach consists in running through a check list of potential issues and flagging
those that apply to the data. The narrative approach, on the other hand, consists in exploring
the dataset while searching for unlikely or irregular patterns. Which approach the consultant opts
to follow depends on a number of factors, not least of which is the client’s needs and views on the
matter – consultants have a responsibility to discuss this point with the clients.

Pros and Cons The methodical approach focuses on syntax; the check-list is typically context-
independent, which means that it (or a subset) can be reused from one project to another, which
makes data analysis pipelines easy to implement and automate. In the same vein, common
errors are easily identified. On the flip side, the check list may be quite extensive and the entire
process may prove time-consuming. The biggest disadvantage of this approach is that it makes
it difficult to identify new types of errors.

The narrative approach focuses on semantics; even false starts may simultaneously produce
data understanding prior to switching to a more mechanical approach. It is easy, however, to
miss important sources of errors and invalid observations when the datasets have a large number
of features. There is an additional downside: domain expertise, coupled with the narrative
approach, may bias the process by neglecting “uninteresting” areas of the dataset.

Tools and Methods An non-exhaustive list of common data issues can be found in the Data
Cleaning Bingo Card (see Table 1); there are obviously other possibilities. Other methods include

visualisations – see Section ??;
data summaries – # of missing observations; 5-pt summary, mean, standard deviation,
skew, kurtosis, for numerical variables; distributioni tables for categorical variables;
n-way tables – counts for joint distributions of categorical variables;
small multiples – tables/visualisations indexed along categorical variables, and
preliminary data analyses – which may provide “huh, that’s odd...” realisations.

IMPORTANT NOTE: there is nothing wrong with running a number of analyses to flush out data
issues, but remember to label your initial forays as preliminary analyses. From the client’s per-
spective, repeated analyses may create a sense of unease and distrust, even if they form a crucial
part of the analytical process (doing so will also facilitate invoicing).

In our (admittedly biased and incomplete) experience, computer scientists and programmers
tend to naturally favour the methodical approach, while mathematicians and statisticians tend
to naturally favour the narrative approach (although we have met plenty of individuals with un-
expected backgrounds in both camps). Quantitative consultants should be comfortable with both
approaches.

The narrative approach is akin to working out a crossword puzzle with a pen and putting down
potentially erroneous answers once in a while to try to open up the grid, so to speak. The me-
chanical approach, on the other hand, is similar to working out the puzzle with a pencil and a
dictionary, only putting down answers when their correctness is guaranteed. More puzzles get
solved when using the first approach, but mistakes tend to be spectacular. Not as many puzzles
get solved the second way, but the trade-off is that that it leads to fewer mistakes.
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Table 1: Data cleaning bingo card.
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1.2.2 Data Quality

The Importance of Validation

Calvin’s Dad: OK Calvin. Let’s check over your math homework.
Calvin: Let’s not and say we did.
Calvin’s Dad: Your teacher says you need to spend more time on it. Have a seat.
Calvin: More time?! I already spent 10 whole minutes on it! 10 minutes shot! Wasted!
Down the drain!
Calvin’s Dad: You’ve written here 8+ 4= 7. Now you know that’s not right.
Calvin: So I was off a little bit. Sue me.
Calvin’s Dad: You can’t add things and come with less than you started with!
Calvin: I can do that! It’s a free country! I’ve got my rights!

– Bill Watterson, Calvin and Hobbes, 15 September 1990.

The quality of the data has an important effect of the quality of the results: as the old computer
science saying goes: “garbage in, garbage out.”

Data is said to be sound when it has as few issues as possible with

validity – are observations sensible, given data type, range, mandatory response, unique-
ness, value, regular expressions, etc. (e.g. a value that is expected to be text value is a
number, a value that is expected to be positive is negative, etc.)?;
completeness – are there missing observations (more on this in a subsequent section)?;
accuracy and precision – are there measurement and/or data entry errors (e.g. an indi-
vidual has −2 children, etc., see the target diagrams of Figure 1, linking accuracy to bias
and precision to the standard error)?;
consistency – are there conflicting observations (e.g. an individual has no children, but the
age of one kid is recorded, etc.)?, and
uniformity – are units used uniformly throughout (e.g. an individual is 6ft tall, whereas
another one is 145cm tall)?

Finding an issue with data quality after the analyses are completed is a surefire way of losing the
client’s trust – check early and often!

Common Sources of Error If the analysts have some control over the data collection and initial
processing, regular data validation tests are easier to set-up. When the analysts are dealing with
legacy, inherited, or combined datasets, it can be difficult to recognise errors arising (among
others) from

missing data being given a code;
‘NA‘/‘blank’ entries being given a code;
data entry errors;
coding errors;
measurement errors;
duplicate entries, and
heaping (see Figure 2 for an example).
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Figure 1: Accuracy as bias, precision as standard errror.

Figure 2: An illustration of heaping: self-reported time spent working in a day (personal file). Note the
rounding off at various multiples of 5 minutes.

Detecting Invalid Entries Potentially invalid entries can be detected with the help of a number
of methods:

univariate descriptive statistics – count, range, z−score, mean, median, standard devia-
tion, logic check, etc.;
multivariate descriptive statistics – n−way tables and logic check, and
data visualisation – scatterplot, histogram, joint histogram, etc.

We will briefly discuss these methods in Sections ?? and ??. For now, we simply point out that
univariate tests do not always tell the whole story.

Consider, for instance, a medical dataset consisting of 38 patients’ records, containing, among
others, fields for the sex and the pregnancy status of the patients. A summary of the data of
interest is afforded by the frequency counts (1-way tables) shown in Table 2a.

The analyst can quickly notice that some values are missing (in green) and that an entry has
been miscoded as 99 (in yellow). Using only these univariate summaries, however, it is impossible
to decide what to do with these invalid entries.
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(a) 1-way tables (b) 2-way table

Table 2: Summary data for an (artificial) medical dataset.

The 2-way frequency counts of Table 2b shed some light on the situation, and uncover other po-
tential issues with the data. One of the green entries is actually blank along the two variables;
depending on the other information, this entry could be a candidate for imputation or outright
deletion (more on these concepts in the next section). Three other observations are missing a
value along exactly one variable, but the information provided by the other variables may be
complete enough to warrant imputation. Of course, if more information is available about the
patients, the analyst may be able to determine why the values were missing in the first place,
although privacy concerns at the collection stage might muddy the waters. The miscoded infor-
mation on the pregnancy status is linked to a male client, and as such re-coding it as ‘No’ is likely
to be a reasonable decision (although not necessarily the correct one). A similar reasoning process
might make the analyst question the validity of the entry shaded in red – the entry might very
well be correct, but it is important to at the very least inquire about this data point, as this could
lead to an eventual re-framing of the definitions and questions used at the collection stage.

In general, there is no universal or one-size-fits-all approach – a lot depends on the nature of the
data. As always, domain expertise can help. Remember that a failure to detect invalid entries
is not a guarantee that there are in fact no invalid entries in the dataset. It is important not to
oversell this step to the client. When only a small number of invalid entries are detected, the
general recommendation is to treat these values as missing, which we discuss presently.

1.2.3 Missing Values

Easier Said Than Done

Obviously, the best way to treat missing data is not to have any.

– T. Orchard, M. Woodbury, A Missing Information Principle: Theory and Applications, 1972

Why does it matter that some values may be missing? On top of potentially introducing bias
into the analysis, most analytical methods can not easily accommodate missing observations.
Consequently, when faced with missing observations, analysts have two options: they can either
discard the missing observation (which is not typically recommended, unless the data is missing
completely randomly), or they can create a replacement value for the missing observation (the
imputation strategy has drawbacks since we can never be certain that the replacement value is
the true value, but is often the best available option; information in this section is taken partly
from [2–5]).
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Blank fields come in 4 flavours:

nonresponse – an observation was expected but none was entered;
data entry issues – an observation was recorded but was not entered in the dataset;
invalid entries – an observation was recorded but was considered invalid and has been
removed, and
expected blanks – a field has been left blank, but not unexpectedly so.

Too many missing values of the first three types can be indicative of issues with the data col-
lection process, while too many missing values of the fourth type can be indicative of poor
questionnaire design (see Section ?? for a brief discussion on these topics). Either way, missing
values cannot simply be ignored.

Missing Value Mechanisms The relevance of an imputation method is dependent on the un-
derlying missing value mechanism; values may be

missing completely at random (MCAR) – the item absence is independent of its value or
of the unit’s auxiliary variables (e.g., an electrical surge randomly deletes an observation in
the dataset);
missing at random (MAR) – the item absence is not completely random, and could, in the-
ory, be accounted by the unit’s complete auxiliary information, if available (e.g., if women
are less likely to tell you their age than men for societal reasons, but not because of the age
values themselves), and
not missing at random (NMAR) – the reason for nonresponse is related to the item value
(e.g., if illicit drug users are less likely to admit to drug use than teetotalers).

The consultant’s main challenge in that regard is that the missing mechanism cannot typically be
determined with any degree of certainty.

Imputation Methods There are numerous statistical imputation methods. They each have their
strengths and weaknesses; consequently, consultants should take care to select a method which
is appropriate for the situation at hand. They work best under MCAR or MAR, but they all tend
to produce biased estimates.

In list-wise deletion, all units with at least one missing value are removed from the dataset.
This straightforward imputation strategy assumes MCAR, but it can introduce bias if MCAR
does not hold, and it leads to a reduction in the sample size and an increase in standard
errors.
In mean or most frequent imputation, the missing values are substituted by the average
or most frequent value in the unit’s subpopulation group (stratum). This approach also as-
sumes MCAR is commonly used, but it can creates distortions in the underlying distributions
(such as a spike at the mean) and create spurious relationships among variables.
In regression or correlation imputation, the missing values are substituted using a regres-
sion on the other variables. This model assumes MAR and trains the regression on units with
complete information, in order to take full advantage of the auxiliary information when it
is available. However, it artificially reduces data variability and produces over-estimates of
correlations.
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Figure 3: Dr. Vanderwhede’s original Advanced Retroencabulation dataset; mid-term grades on the x−axis,
final exam grades on the y−axis.

In stochastic regression imputation, the regression estimates are augmented with with
random error terms added. Just as in the previous case, the model assumes MAR; an added
benefit is that it tends to produce estimates that “look” more realistic than regression im-
putation, but it comes with an increased risk of type I error (false positives) due to small
standard errors.
Last observation carried forward (LOCF) and its cousin next observation carried back-
ward (NOCB) are useful for longitudinal data; a missing value can simply be substituted
by the previous or next value. LOCF and NOCB can be used when the values do not vary
greatly from one observation to the next, and when values are MCAR. Their main drawback
is that they may be too “generous”, depending on the nature of study.
Finally, in k-nearest-neighbour imputation, a missing entry in a MAR scenario is substi-
tuted by the average (or median, or mode) value from the subgroup of the k most similar
complete respondents. This requires a notion of similarity between units (which is not al-
ways easy to define reasonably). The choice of k is somewhat arbitrary and can affect the
imputation, potentially distorting the data structure when it is too large.

What would imputation look like in practice? Consider the following scenario (which is somewhat
embarrassingly based on a real event). After marking the final exams of the 100 students who did
not drop her course in Advanced Retroencabulation at State University, Dr. Helga Vanderwhede
plots the final exam grades (y) against the mid-term exam grades (x) as in Figure 3.

She takes a quick look at the data and sees that high final exam grades are correlated with
high mid-term exam grades, and vice-versa. She also sees that there is a fair amount of variability
in the data: the noise is not very tight around the line of best fit. Furthermore, she realises
that the final exam was harder than the students expected; she suspects that they just did not
prepare for the exam seriously (and not that she made the exam too difficult, no matter what her
ratings on RateMyProfessor.com suggest), as most of them could not match their mid-term
exam performance.
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Figure 4: Imputed values for Dr. Vanderwhede’s dataset.

As Dr. Vanderwhede comes to term with her disappointment, she decides to take a deeper look at
the numbers, at some point sorting the dataset according to the mid-term exam grades. It looks
like good old Mary Sue performed better on the final than on the mid-term (where performance
was already superlative), scoring the only perfect score. What a fantastic student Mary Sue is!
And such a good person – in spite of her superior intellect, she is adored by all of her classmates,
thanks to her sunny disposition and willingness to help at all times. If only all students were like
Mary Sue... She continues to toy with the spreadsheet, and the phone rings. After a long and
exhausting conversation with Dean Bitterman about teaching loads and University’s reputation,
Dr. Vanderwhede returns to the spreadsheet and notices in horror that she has accidentally deleted
the final exam grades of all students with a mid-term grade greater than 92. What is she to do?

A technically-savvy consultant would advise her to either undo her changes or to close the
file without saving the changes (or better yet, to re-enter the final grades by comparing with the
physical papers), but let’s assume for the time being that, in full panic mode, the only solution
that comes to her mind is to impute the missing values. She knows that the missing final grades
are MAR (and not MCAR since she remembers sorting the data along the x values); she produces
the imputations shown in Figure 4. She remembers what the data looked like originally, and
concludes that the best imputation method is the stochastic regression model.
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But this only applies to this specific example. In general, that might not be the case, however,
due to various No Free Lunch results (we will discuss this important technical results and its ram-
ifications in Section ??). The principal take-away from this example is that various imputation
strategies lead to different outcomes, and perhaps more importantly, that even though the imputed
data might “look” like the true data, we have no way to measure its departure from reality. Any
single imputed value is likely to be completely off. Mathematically, this might not be problematic,
as the average departure might be relatively small, but in a business or personal context, this
might create gigantic problems – how is Mary Sue likely to feel about Dr. Vanderwhede’s solution
in the previous example? How is Dean Bitterman likely to react, if he finds out about the impu-
tation scenario from irrate students? Even though such questions are not quantitative in nature,
they will have an effect on actionable solutions.

Multiple Imputation Another drawback of imputation is that it tends to increase the noise in
the data, because the imputed data is treated as the actual data. In multiple imputation, the
impact of that noise can be reduced by consolidating the analysis outcome from multiple imputed
datasets. Once an imputation strategy has been selected on the basis of the (assumed) missing
value mechanism,

1. the imputation process is repeated m times to produce m versions of the dataset;
2. each of these datasets is analyzed, yielding m outcomes, and
3. the m outcomes are pooled into a single result for which the mean, variance, and confidence

intervals are known.

On the plus side, multiple imputation is easy to implement, flexible, as it can be used in a most
situations (MCAR, MAR, even NMAR in certain cases), and it accounts for uncertainty in the
imputed values. However, m may need to be quite large when the values are missing in large
quantities from many of the dataset’s features, which can substantially slow down the analyses.
There may also be additional technical challenges when the output of the analyses is not a single
value but some more complicated object.

1.2.4 Anomalous Observations

The Good Doctor’s Take

The most exciting phrase to hear [...], the one that heralds the most discoveries, is not
“Eureka!” but “That’s funny...”.

– Isaac Asimov (attributed)

Outlying observations are data points which are atypical in comparison to the unit’s remaining
features (within-unit), or in comparison to the measurements for other units (between-units), or
as part of a collective subset of observations. Outliers are thus observations which are dissimilar
to other cases or which contradict known dependencies or rules. Outlying observations may be
anomalous along any of the individual variables, or in combination (information in this section is
taken partly from [11,18,19,25]).
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Consider, for instance, an adult male who is 6-foot tall. Such a man would fall in the 86th per-
centile in Canada [26], which, while on the tall side is not unusual; but in Bolivia, he would fall
in the 99.9th percentile [26], which would mark him as extremely tall and quite dissimilar to the
rest of the population. (Why is there such a large discrepancy in the two populations?)

The most common mistake that analysts make when dealing with outlying observations is to re-
move them from the dataset without careful studying whether there are good reasons to retain
them.

Influential data points, meanwhile, are observations whose absence leads to markedly different
analysis results. When influential observations are identified, remedial measures (such as data
transformation strategies) may need to be applied to minimize any undue effect. Note that out-
liers may be influential, and influential data points may be outliers, but the conditions are neither
necessary nor sufficient.

Detecting Anomalies Anomalies are by definition infrequent, and typically shrouded in un-
certainty due to small (relative) sample sizes, which makes differentiating them from noise or
data entry errors difficult. It could also be the case that the boundaries between a normal unit
and a deviating unit is fuzzy; with the advent of e-shops, a purchase made at 3am local time
does not necessarily ring alarm bells anymore. It is hard enough as it is to try to identify “honest”
anomalies; when anomalies are associated with malicious activities, they are typically disguised
to look like a normal observation, which muddies the picture even more.

Numerous methods exist to identify anomalous observations; none of them are foolproof and
judgement must be used. Methods that employ graphical aids (such as box-plots, scatterplots,
scatterplot matrices, and 2D tours, for outliers, say ??) are particularly easy to implement and
interpret, especially in a low-dimensional setting. Analytical methods also exist (using Cooke’s or
Mahalanobis’ distances, say), but in general some additional level of analysis must be performed,
especially when trying to identify influential points (cf. leverage).

We do not recommend the general use of automated detection/removal – as tempting as this
might get when the dataset is large. This stems partly from the fact that that once the “anoma-
lous” observations have been removed from the data set, previously “regular” observations can
become anomalous in turn in the smaller dataset; it is not clear when the runaway train will stop.

In the early stages, simple data analyses (such as descriptive statistics, 1- and 2-way tables,
and traditional visualisations) may be performed to help identify anomalous observations, or to
obtain insights about the data, which could eventually lead to modifications of the analysis plan.

Outlier Tests So how do we actually detect outliers? Most methods come in one of two flavours:
supervised and unsupervised (we will discuss those concepts – and others – in Section ??).

Supervised methods use a historical record of labeled (that is to say, previously identified) anoma-
lous observations to build a predictive classification or regression model which estimates the
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Figure 5: Tukey’s boxplot test; suspected outliers are marked by white disks, outliers by black disks.

probability that a unit is anomalous; domain expertise is required to tag the data. Since anomalies
are typically infrequent, these models often have to accommodate the rare occurrence problem
(more on this in Section ??). Unsupervised methods, on the other hand, use no previous informa-
tion or data; the following traditional methods and tests of outlier detection fall into this category
(note that normality of the underlying data is an assumption for most tests; how robust these
tests are against departures from this assumption depends on the situation).

Perhaps the most commonly known such test is Tukey’s boxplot test: for normally distributed
data, regular observations typically lie between the inner fences

Q1 − 1.5(Q3 −Q1) and Q3 + 1.5(Q3 −Q1).

Suspected outliers lie between the inner fences and the outer fences

Q1 − 1.5(Q3 −Q1) and Q3 + 1.5(Q3 −Q1).

Points beyond the outer fences are identified as outliers (Q1 and Q3 represent the data’s 1st and
3rd quartile, respectively; see Figure 5). The Grubbs test is another univariate test, which takes
into consideration the number of observations in the dataset. Let x i be the value of feature X
for the ith unit, 1 ≤ i ≤ N , (x , sx) be the mean and standard deviation of feature X , α be the
significance level, and T (α, N) be the critical value of the Student t-distribution at significance
α/2N . Then, the ith unit is an outlier along feature X if

|x i − x | ≥ sx(N − 1)p
N

√√ T 2(α, N)
N − 2+ T 2(α, N)

.

Other common tests include:

the Dixon Q test, which is used in the experimental sciences to find outliers in (extremely)
small datasets – it is of dubious validity;
the Mahalanobis distance, which is linked to the leverage of an observation (a measure of
influence), can also be used to find multi-dimensional outliers, when all relationships are
linear (or nearly linear);
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the Tietjen-Moore test, which is used to find a specific number of outliers;
the generalized extreme studentized deviate, if the number of outliers is unknown;
the chi-square test, when outliers affect the foodneess-of-fit, as well as
DBSCAN and other unsupervised outlier detection methods.

What do we do when the data is not normally distributed? We will discuss one possible approach
after we present three more examples illustrating the basics of visual outlier and anomaly detec-
tion.

On a specific day, the height of several plants in a nursery are measured. The records also show
each plant’s age (the number of days since the seed has been planted). Histograms of the data
are shown in Figures 6a and 6b. Very little can be said about the data at that stage: the age of the
plants (controlled by the nursery staff) seems to be somewhat haphazard, as does the response
variable (height). A scatter plot of the data (see Figure 6c), however, reveals that growth is
strongly correlated with age during the early days of a plant’s life for the observations in the
dataset; most points clutter around a linear trend. But one point (in yellow) is easily identified
as an outlier. There are at least two possibilities: either that measurement was botched or mis-
entered in the database (representing an invalid entry), or that one specimen has experienced
unusual growth (outlier). Either way, the analyst has to investigate further.

A government department has 11 service points in a jurisdiction. Service statistics are recorded:
in particular, the monthly average arrival rates per teller and monthly average service rates per
teller for each service point are available. A scatter plot of the service rate per teller (y axis)
against the arrival rate per teller (x axis), with linear regression trend, is shown in Figure 7a. The
trend is seen to inch upwards with increasing x values. A similar graph, but with the left-most
point removed from consideration, is shown in Figure 7b. The trend still slopes upward, but the fit
is significantly improved suggesting that the removed observation is unduly influential – a better
understanding of the relationship between arrivals and services is afforded if it is set aside. Any
attempt to fit that data point into the model must take that information into consideration. Note,
however, that influential observations depend on the analysis that is ultimately being conducted
– a point may be influential for one analysis, but not for another.

Measurements of the length of the appendage of a certain species of insect have been made on
71 individuals. Descriptive statistics have been computed; the results are shown in Figure 3a.
Analysts who are well-versed in statistical methods would recognise the tell-tale signs that the dis-
tribution of appendage lengths is likely to be asymmetrical (since the skewness is non-negligible)
and to have a “fat” tail (due to the kurtosis being commensurate with the mean and the standard
deviation, the range being so much larger than the interquartile range, and the maximum value
being so much larger than the third quartile). The mode, minimum, and first quartile values
belong to individuals without appendages, so there would appear to be two sub-groups in the
population (perhaps split along the lines of juveniles/adults, or males/females). The maximum
value has already been seen to be quite large compared to the rest of the observations, which at
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(a) Age distribution (b) Height distribution (c) Height vs age, with trend

Figure 6: Summary visualisations for an (artificial) plant dataset.

(a) Trend for 11 service points (b) Trend for 10 service points (c) Influential observation

Figure 7: Visualisations for an (artificial) service point dataset.

first suggests that it might belong to an outlier or invalid entry. The histogram of the measure-
ments, however, shows that there are 3 individuals with very long appendages (see Figure 3b):
it now becomes plausible for these anomalous entries to belong to individuals from a different
species altogether who were erroneously added to the dataset. This does not, of course, consti-
tute a proof of such an error, but it raises the possibility, which is often the best that a consultant
can do for a client.

1.2.5 Data Transformation

It’s Also True of Data

History is the transformation of tumultuous conquerors into silent footnotes.

– Paul Eldridge, American educator

This crucial last step is often neglected or omitted altogether when consultants embark on com-
plex data analysis projects. Various transformation methods are available, depending on the an-
alysts’ needs and data types, including:

standardization and unit conversion, which put the dataset’s variables on an equal footing
– a requirement for basic comparison tasks and more complicated problems of clustering
and similarity matching;
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(a) Descriptive statistics (b) Appendage length distribution

Table 3: Summary and visualisation for an (artificial) appendage length dataset.

normalization, which attempts to force a variable into a normal distribution – an assump-
tion which must be met in order to use a number of traditional analysis methods, such as
regression analysis or ANOVA, and
smoothing methods, which help remove unwanted noise from the data, but at a price –
perhps removing natural variance in the data.

Another type of data transformation is pre-occupied with the concept of dimensionality reduc-
tion. There are many advantages to working with low-dimensional data:

visualisation methods of all kinds are available to extract and present insights out of such
data (see Section ??);
high-dimensional datasets are subject to the so-called curse of dimensionality, which as-
serts (among other things) that multi-dimensional spaces are vast, and when the number of
features in a model increases, the number of observations required to maintain predictive
power also increases, but at a substantially higher rate (see Figure 8);
another consequence of the curse is that in high-dimension sets, all observations are roughly
dissimilar to one another – observations tend to be nearer the dataset’s boundaries than
they are to one another.

Dimension reduction techniques such as the ubiqituous principal component analysis, indepen-
dent component analysis, and factor analysis (for numerical data), or multiple correspon-
dence analysis (for categorical data) project multi-dimensional datasets onto low-dimensional
but high-information spaces (the so-called Manifold Hypothesis). Some information is necessar-
ily lost in the process, but in many instances the drain can be kept under control and the gains
made by working with smaller datasets can offset the losses of completeness. We will touch on
this topic briefly in Section ??.

Common Transformations Models often require that certain data assumptions be met. For
instance, ordinary least square regression assumes:

that the response variable is a linear combination of the predictors;
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Figure 8: Illustration of the curse of dimensionality; N = 100 observations are uniformly distributed on the
unit hypercube [0, 1]d , d = 1,2, 3. The red regions represent the smaller hypercubes [0,0.5]d , d = 1,2, 3.
The percentage of captured datapoints is seen to decrease with an increase in d [28].

constant error variance;
uncorrelated residuals, which may or may not be statistically independent;
etc.

In reality, it is rare that raw data meets the requirements, but that does not necessarily mean that
we need to abandon the model – an invertible sequence of data transformations may produce a
derived data set which does meet the requirements, allowing the consultant to draw conclusions
about the original data.

In the regression context, invertibility is guaranteed by monotonic transformations: identity,
logarithmic, square root, inverse (all members of the power transformations), exponential, etc.
(illustrations are provided in Figure 9). There are rules of thumb and best practices to transform
data, but consultants should not discount the importance of explore the data visually before mak-
ing a choice.

Transformations on the predictors X may be used to achieve the linearity assumption, but they
usually come at a price – correlations are not preserved by such transformations, for instance.
Transformations on the target Y can help with non-normality of residuals and non-constant
variance of error terms. Note that transformations can be applied both to the target variable or
the predictors: as an example, if the linear relationship between two variables X and Y is ex-
pressed as Y = a + bX , then a unit increase in X is associated with an average of b units in Y .
But a better fit might be afforded by either of

log Y = a+ bX , Y = a+ b log X , or log Y = a+ b log X ,

for which:

a unit increase in X is associated with an average b% increase in Y ;
a 1% increase in X is associated with an average 0.01b unit increase in Y , and
a 1% increase in X is associated with a b% increase in Y , respectively.

Box-Cox Transformation The choice of transformation is often as much of an art as it is a
science. There is a common framework, however, that provides the optimal transformation, in a
sense. Consider the task of predicting the target Y with the help of the predictors X j, j = 1, . . . , p.

(DRAFT) 18



P Boily, J Schellinck, S Hagiwara (DRAFT) 1.2 DATA PREPARATION

Figure 9: Examples of data transformations, for a subset of the BUPA liver dataset [27]. From left to right,
top to bottom: original data, Y ′ = log Y , Y ′ =

p
Y , Y ′ = 1

Y , Y ′ = Y 2, and Box-Cox best choice (≈ log).

The usual model takes the form

yi =
p∑

j=1

β jX x ,i + εi, i = 1, . . . , n.

Perhaps the residuals are skewed, or their variance is not constant, or the trend itself does not
appear to be linear. A power transformation might be preferable, but if so, which one?

The Box-Cox transformation yi 7→ y ′i (λ), yi > 0 is defined by

y ′i (λ) =

¨
(y1 . . . yn)1/n ln yi, if λ= 0
yλi −1
λ (y1 . . . yn)

1−λ
n , if λ 6= 0

;

variants allow for the inclusion of a shit parameter α > 0, which extends the transformation to
yi > −α. The suggested choice of λ is the value that maximises the log-likelihood

L = −n
2

log
�

2πσ̂2

(y1 . . . yn)2(λ−1)/n
+ 1
�

.

19 (DRAFT)



INTRODUCTION TO QUANTITATIVE CONSULTING P Boily, J Schellinck, S Hagiwara (DRAFT)

There might be theoretical rationales which favour a particular choice of λ – these are not to be
ignored. It is also important to produce a residual analysis, as the best Box-Cox choice does not
necessarily meet all the least squares assumptions. Finally, it is important to remember that the
resulting parameters have the least squares property only with respect to the transformed data
points.

Scaling Numeric variables may have different scales (weights and heights, for instance). Since
the variance of a large-range variable is typically greater than that of a small-range variable,
leaving the data unscaled may introduce biases, especially when using unsupervised methods. It
could also be the case that it is the relative positions/rankings which is of importance, in which
case it could become important to look at relative distances between levels:

standardisation creates a variable with mean 0 and standard deviations 1:

Yi =
X i − X

sX
;

normalization creates a new variable in the range [0,1]:

Yi =
X i −min X

max X −min X
.

These are not the only options. Different schemes canlead to different outputs.

Discretising To reduce computational complexity, a numeric variable may need to be replaced
with an ordinal variable (height values could be replaced by the qualitative “short”, “average”,
and “tall”, for instance. Of course, what these terms represent depend on the context: Canadian
short and Bolivian tall may be fairly commensurate. It is far from obvious how to determine the
bins’ limits – domain expertise can help, but it could introduce unconscious bias to the analyses.
In the absence of such expertise, limits can be set so that either

the bins each contain the same number of observations;
the bins each have the same width, or
the performance of some modeling tool is maximised.

Again, various choices may lead to different outputs.

Creating Variables Finally, it is possible that new variables may need to be introduced (in con-
trast with dimensionality reduction). These new variables may arise

as functional relationships of some subset of available features (introducing powers of a
feature, or principal components, say);
because modeling tool may require independence of observations or independence of
features (in order to remove multicolinearity, for instance), or
to simplify the analysis by looking at aggregated summaries (often used in text analysis).

There is no limit to the number of new variables that can be added to a dataset – but consultants
should strive for relevant additions.
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1.2.6 Case Study: Imputation of Blood Alcohol Content Levels

When fatal collisions occur, it is frequently the case that at least one of the drivers (or one of the
pedestrians/cyclists, as the case may be) involved in the collision was affected by alcohol. Since
breathalyzer tests cannot be conducted on deceased individuals, the presence of alcohol in the
blood cannot be confirmed until the coroner’s report becomes available.

In large jurisdictions, distances to the coroner’s office may take a while to traverse. A large volume
of such fatalities may also slow down the process. For these (and other) reasons, it can take up
to a year for the missing blood alcohol concentration (BAC) levels to make their way to various
interested parties (policy makers, analysts, etc.). This can cause delays in policy implementation
and could possibly lead to otherwise preventable deaths, data analysts often resort to imputation
methods in order to make an informed guess as to the BAC level in fatal collisions. This predic-
tion is made on the basis of a number of auxiliary variables, such as the age of the driver. Once
the imputed values are supplanted by the coroner’s values, BAC-dependent preliminary analyses
with the imputed values can easily be re-conducted with the actual values to obtain up-to-date
results.

In 2007, Ministry of Transportation of Ontario (MTO) faced such a situation: using a small number
of features (many of which have missing values themselves), is it possible to

1. predict whether alcohol was involved, and if so,
2. predict the BAC level?

The problem is easily stated, but the existence of an actionable solution is not clear. There may
simply be no link between the available features and the BAC level. For instance, how strong can
the connection between the deceased’s handedness and their BAC level (assuming we even have
access to that information).

Another issue, which we have broached in Section ??, is the question of the data’s representa-
tiveness: is it possible that whatever link might have existed in 2007 is simply not going to be
present in the future, perhaps as a result of implemented policies? If that is the case, how useful
would a general model prove to be?

The paper that describes the two-stage multiple imputation model used by Transport Canada to
solve the MTO’s problem is presented after the references – note how the flow is broken when the
tables are not labeled.
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Abstract
Alcohol is often a factor in fatal collisions, but the presence of alcohol in the blood cannot always be
confirmed until an autopsy is performed. In this report, we present a two-stage multiple imputation
algorithm that imputes the blood alcohol content levels of drivers involved in fatal collisions, based on
a number of descriptive collision variables. We then provide an artificial example that illustrates the
algorithm, as well as the result of the imputation for Ontario in 2007.
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Introduction

When fatal collisions occur, it is frequently the case that at
least one of the drivers (or one of the pedestrians/cyclists,
as the case may be) involved in the collision was affected
by alcohol [5, 6]. Since breathalyzer tests cannot be con-
ducted on deceased individuals, the presence of alcohol in
the blood cannot be confirmed until the coroner’s report
becomes available. For various reasons, this report is not
always immediately available: in certain cases, it can take
up to a year before the Blood Alcohol Concentration (BAC)
level makes its way to the collision databases [1]. Rather
than waiting for this process to take place, data analysts
often resort to imputation methods in order to make an
informed guess as to the value of the BAC in fatal collisions.
Once the imputed values are supplanted by the coroner’s
values, BAC-dependent preliminary analyses with the im-
puted values can easily be re-conducted with the actual
values to obtain up-to-date results.

Policy makers require fast and reliable analysis results.
If the method used to impute the BAC level is based on
sound statistical techniques, the preliminary analysis using
imputed values is likely to give results that are comparable
to the eventual results obtained using the true data, saving
precious time in the quest for road safety improvements.

In this article, we present the algorithm used by the
Evaluation & Data Systems Division of the Road Safety and
Motor Vehicle Directorate at Transport Canada. It imputes
the BAC level in fatal collisions based on a number of de-
scriptive (or explanatory) variables linked to the collisions.
Details are provided in the sections on Data Preparation
and Methodology, together with an artificial example that
illustrates the method. A discussion of the BAC imputation

results for 2007 is then provided, together with some final
comments regarding the algorithm and how it could be
improved.
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1. Statistical Imputation

Ideally, every record of a data set would be complete. In
practice, this is not always the case: observation times
may be missed, values may be unavailable, data may get
corrupted by machine errors, etc. The more holes in a data
set, the lesser its utility.

Imputation methods are processes by which missing
values are substituted by reasonable “guesses”. Statisti-
cal imputation uses probability theory to provide these
“guesses.” The number of imputation strategies is vast,
ranging from classical hot-deck and cold-deck imputation
to the more modern methods of logistic regression, nearest
neighbours imputation and multiple imputation. Certain
methods might give better results when adapted to certain
types of data sets, but in general, we cannot speak of THE
method for BAC imputation.
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Two previously published imputation methods have influ-
enced our approach: the routine used by the National High-
way Traffic Safety Administration (NHTSA) to impute BAC
in FARS [4], and the multivariate technique for imputation
using a sequence of regression models of Raghunathan,
Lepkowski, Van Hoewyk and Solenberger [3].

The NHTSA approach [4] uses a two-stage model where
zero/non-zero BAC status is first imputed through some
multivariate procedure, and, conditional on non-zero BAC,
a general linear model (together with appropriate transfor-
mations) is used to impute ten BAC values for each missing
value, allowing valid statistical inferences on variances and
confidence intervals to be drawn. The main drawback of
this method, however, is that the values of some explana-
tory variables are missing for a large number of records.
For each variable, missing values were treated as belonging
to a separate category: that of ’missing value’. As there
may be many disparate reasons to explain why different
records are missing a given variable, this may lead to a
loss of information, which translates into a less powerful
imputation method.

In the case of multiple missing values in the explana-
tory variables, [3] uses a sequence of regression models.
The missing values for each explanatory variable are im-
puted as follows: first, the explanatory variable Y1 with the
fewest missing values is imputed to Ỹ1 using the explanatory
variables X with no missing values. Then the explanatory
variable Y2 with the next fewest missing values is imputed
to Ỹ2 using the explanatory variables {X , Ỹ1}. The process
continues in sequence until the last remaining explanatory
variable with missing values Ym is imputed to Ỹm using
{X , Ỹ1, . . . , Ỹm−1}. The main drawback of this method is
that some information might be “hiding” in {Y2, Y3, . . . , Ym}
which, combined with the information found in X , could
provide a better imputation for Y1.

Transport Canada’s BAC Imputation Algorithm (TCBA-
CIA) retains the two-stage model and multiple imputation
of [4], as well as sequential regression from [3], but it does
so in a manner that eliminates the drawbacks associated
with either of the methods, as described above.

2. Data Preparation

TCBACIA imputes a likely BAC level for drivers and pedes-
trians involved in fatal collisions for a given year based on
a number of variables from the National Collision Database
(NCDB) as well as data from the Traffic Injury Research
Foundation (TIRF) over a preceding five-year period. Once
all records involving non-fatal collisions and all records
involving non-drivers or non-pedestrians in fatal collisions
have been removed, two BAC-linked dependent variables
can clearly be identified (one categorical and one semi-
continuous).

1. Was BAC equal to 0, or was it greater than 0? (TEST)
2. What was the BAC level? (P_BAC1F)

In a preliminary phase [2], a multivariate analysis of vari-
ance (MANOVA) identified the following independent (or
explanatory) NCDB variables as having a significant effect
on the dependant variables:

whether the record identifies a driver or a pedestrian
(P_PSN);
the sex (P_SEX) and age (P_AGE) of the deceased;
whether a safety device was worn (P_SAFE) by the
deceased;
the hour (C_HOUR) and weekday (C_WDAY) when
the collision occurred;
the number of vehicles/pedestrians involved in the
collision, and (C_VEHS)
various contributing factors (V_CF1−V_CF4) as
determined by police officers on the scene.

Some of the explanatory variables classes were originally
grouped in order to insure meaningful MANOVA. The actual
data is thus categorical.

Variable Classification

P_PSN_GR 1 = ’Driver’
2 = ’Pedestrian/Cyclist’
. = ’Missing’

C_WDAY_GR 1 = ’Weekday’
2 = ’Weekend’
. = ’Missing’

C_HOUR_GR 1 = ’00:00 to 05:59’
2 = ’06:00 to 09:59’
3 = ’10:00 to 15:59’
4 = ’16:00 to 19:59’
5 = ’20:00 to 23:59’
. = ’Missing’

C_VEHS_GR 1 = ’One vehicle involved’
2 = ’Two vehicles involved’
3 = ’Three or more vehicles involved’
. = ’Missing’

P_SEX_GR 1 = ’Male’
2 = ’Female’
. = ’Missing’

P_AGE_GR 1 = ’<= 19’
2 = ’20-29’
3 = ’30-39’
4 = ’40-49’
5 = ’50-59’
6 = ’>=60’
. = ’Missing’

P_SAFE_GR 1 = ’No Safety Device Used’
2 = ’Safety Device Used’
3 = ’Not Applicable’
. = ’Missing’

V_CF_GR 1 = ’Alcohol Deemed a Contributing
Factor by Police Officer’

2 = ’Alcohol not Deemed a Contributing
Factor by Police Officer’

. = ’Missing’

One might think that V_CF_GR as defined above would
be a very significant predictor of BAC, but preliminary anal-
yses show that it is not any more significant when taken
individually than any of the other explanatory variables
that have been retained.

P.Boily, 2007 Page 2 of 9
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3. Methodology

So how does our algorithm differ from [3, 4]? Roughly
speaking, TCBACIA inflates the original data set using repli-
cates (analogues of multiple imputation), then uses sequen-
tial logistic regression on the entire data set in order to
impute the missing values of explanatory variables upon
which the two-stage model is built. The data set is even-
tually deflated down to its original size. The process is
described in detail in this section.

Inflating the Data Set
Suppose the original data set contains n records. We start by
replicating the data set k times, where k ≥ 1 is some integer.
The value of k is selected in order to create data sets which
will be large enough for whatever imputation method was
chosen to produce statistically meaningful results. If the
original data set contained n records, the replicated data
set contains kn records.

For data sets with n large or without systematic patterns in
the missing values, small values of k can be used; when n is
smaller, larger values of k must be used. For instance, using
SAS 9.2’s proc logit to impute BAC values (according to the
method which will be described below) for real-life Ontario
fatal collision data from 2000 to 2007 with n ≈ 10000,
a value of k = 9 was found to eliminate all parametric
convergence problems.

Step 1−1: First First-Order Imputation
Let m be the number of explanatory variables. Amongst
the m1 explanatory variables with missing values, find the
one with the fewest, and denote it by Yα1

. (In the event of
a tie, Yα1

can be selected at random.)
Let Wα1

denote all records for which none of the non-
Yα1

values are missing. We can further subdivide Wα1
into

W imp
α1

and W train
α1

, depending on whether the value of Yα1
is

missing or not for those records.
Next, impute the missing values of Yα1

in W imp
α1

using

W train
α1

as a training set. Any acceptable imputation method
can be used. Considering the categorical nature of the
data points, generalised (or multinomial) logistic regression
seems specially well-suited to the task.

Step 1−2: Second First-Order Imputation
Amongst the remaining explanatory variables, find the one
with the next fewest number of missing values and denote
it by Yα2

.
Let Wα2

denote all records for which none of the non-Yα2

values are missing; we can further subdivide Wα2
into W imp

α2

and W train
α2

as above. Impute the missing values of Yα2
in

W imp
α2

using W train
α2

as a training set.

Step 1−m1: Last First-Order Imputation
This process is repeated until the imputation of missing
values of the last remaining explanatory variable (and the
one with the largest number of missing values in the orig-
inal data set), denoted by Yαm1

, in W imp
αm1

using W train
αm1

as a
training set.

By construction, a record with two or more missing values
will never be involved in the preceding steps; consequently,
after first-order imputation, any record with missing values
will have no fewer than two missing values.

Step 2−1: First Second-Order Imputation
We now alter the data set slightly by appending m2 new vari-
ables, obtained by crossing all the distinct pairs of explana-
tory variables which still have missing values. Amongst
those new explanatory variable, denote the one with the
fewest number of missing values by Yα1,β1

.
Let Wα1,β1

denote all records for which none of the non-
Yα1,β1

values are missing. We can further subdivide Wα1,β1

into W imp
α1,β1

and W train
α1,β1

, depending on whether the Yα1,β1

values are missing or not for those records. Impute the
missing values for Yα1,β1

in W imp
α1,β1

using W train
α1,β1

as a training
set.

Step 2−2: Second Second-Order Imputation
Amongst the remaining crossed explanatory variables, find
the one with the next fewest number of missing values and
denote it by Yα2,β2

.
Let Wα2,β2

denote all records for which none of the non-
Yα2,β2

values are missing; we can further subdivide Wα2,β2

into W imp
α2,β2

and W train
α2,β2

as above. Impute the missing values

for Yα2,β2
in W imp

α2,β2
using W train

α2,β2
as a training set.

Step 2−m2: Last Second-Order Imputation
This process is repeated until the imputation of missing
values of the last remaining crossed explanatory variable,
denoted by Yαm2

,βm2
, in W imp

αm,βm2
using W train

αm,βm2
as a training

set. By construction, a record with three or more missing
values will never be involved in the preceding steps; con-
sequently, after second-order imputation, any record with
missing values will have no fewer than three such missing
values.

Continuation
This process is repeated with triplets of explanatory vari-
ables, then quadruplets, and so on, until the data set con-
tains no record with missing values of the explanatory vari-
ables.

Imputation of the Dependent Variables Z1 and Z2
Denote the two dependent variables described in the previ-
ous section by Z1 (BAC> 0 or not) and Z2 (BAC level).
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Let W imp
Z1

and W train
Z1

denote the records for which the value
of Z1 is missing and the records for which it is available, re-
spectively. The missing values of the categorical variable Z1

in W imp
Z1

can be imputed as above, using W train
Z1

as a training
set.

The variable Z2 is seen as semi-continuous because a sub-
stantial proportion of BAC values are zero while the non-
zero responses are continuously distributed over the pos-
itive real number line within some acceptable range, say
(0, A), where A> 0 is some upper BAC limit.

Our model is thus a two-stage model where zero/non-zero
BAC status (i.e. the value of Z1) is first imputed through
some procedure (e.g. logistic regression), and, conditional
on Z1 = 1 (i.e. BAC > 0), some other model (such as a
general linear model) can be used to impute the actual BAC
level.

For all records with Z1 = 1, let W imp
Z1=1,Z2

and W train
Z1=1,Z2

denote the records for which value of Z2 is missing and the
records for which it is available, respectively. The missing
values of the semi-continuous variable Z2 in W imp

Z1=1,Z2
can

be imputed using some general linear model built upon
W train

Z1=1,Z2
.

Deflating the Data Set
At this stage, for each of the n original records, we have k
values of Z1 and Z2; let us denote the jth replicate of the ith

record by Z j,i
1 and Z j,i

2 . Pick some threshold a ∈ (0, 1) and
define

Z i
1 =

1
n

∑l
j=1 Z j,i

1 and Z i
2 =

∑k
j=1 Z j,i

1 Z j,i
2

nZ i
1

.

Then the actual imputed values for the ith record are

Z i
1 =

¨
1 if Z i

1 > a
0 else

and Z i
2 =

¨
Z i

2 if Z i
1 > a

0 else

The threshold value a has the following interpretation: if
more than 100a% of the replicates for a given record have
been imputed to have non-zero BAC, that record is reported
to have non-zero BAC, and its BAC level is the average of
the BAC levels taken over all its non-zero BAC replicates. If
the “cost” associated with false positives (imputed BAC> 0
but actual BAC= 0) is the same as that of a false negative
(imputed BAC = 0 but actual BAC > 0), then a = 0.5 is a
good choice.

4. Artificial Example

The following simplified artificial example will be used to
illustrate the method presented in the previous section.

Inflating the Data Set
The database consists of the n= 14 records shown in the
table below.

In the example, each record is replicated k = 3 times. The
replicated records X i, j , i = 1, . . . , 14, j = 1, . . . , 3, have five
categorical explanatory variables: Y1 (VEHS), Y2 (SEX),
Y3 (AGE), Y4 (SAFE) and Y5 (CF), as well as a categori-
cal dependant variable Z1 (TEST) and a semi-continuous
dependent variable Z2 (BAC). The replicated values are
given in the second table from the left. Missing values are
indicated by a ’.’ (see below).

The number of missing values for each explanatory variables
is shown at the bottom of each table; the number of missing
explanatory variables by record is found in the last column.
Ultimately, we are looking to impute the values of Z1 and
Z2 for the six records for which these values are missing.
Along the way, we will also impute the missing values of
the explanatory variables.

Step 1−1
In this case, there are m= 5 explanatory variables, m1 = 4
such variables with missing values and the one with the
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fewest number of missing values is Yα1
= Y2, which is high-

lighted in blue in the (pre-imputation) table below (on the
left). The set W imp

α1
= {X7,1, X7,2, X7,3} is shown in brown;

the training set

W train
α1
= {X1, j , X2, j , X3, j , X5, j , X6, j , X8, j , X11, j , X14, j}3j=1

is in light green. The (artificial) results of the imputation are
shown in the (post-imputation) table on the right. Explana-
tory variables shown in yellow indicates that this variable
will no longer be imputed for the current imputation order.

Step 1−2
After the first first-order imputation, we have Yα2

= Y3,
W imp
α2
= {X4,1, X4,2, X4,3}, and

W train
α2
= {X1, j , X2, j , X3, j , X5, j , X6, j , X7, j , X8, j , X11, j , X14, j}3j=1.

The (pre-imputation) table is the top left entry in the next
column; the (artificial) post-imputation results are found
in the top right entry.

Step 1−3
After the second first-order imputation, we have Yα3

= Y4,
W imp
α3
= {X4,1, X4,2, X4,3}, and

W train
α3
= {X1, j , X2, j , X3, j , X5, j , X6, j , X7, j , X8, j , X11, j , X14, j}3j=1.

The (pre-imputation) table is the bottom left entry below;
the (artificial) post-imputation results are found in the bot-
tom right table.
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Step 1−4
The last first-order imputation is the imputation of Yα4

= Y5,
where W imp

α4
= {X4,1, X4,2, X4,3},

W train
α4
= {X1, j , X2, j , X3, j , X5, j , X6, j , X7, j , X8, j , X11, j , X12, j , X14, j}3j=1.

The (pre-imputation) table is the left entry below; the (arti-
ficial) post-imputation results are found next to it.

By construction, at the end of first-order imputation, all the
records are either complete or they contain no fewer than
2 missing values.

Step 2−1
We have m2 = 1 since the only pair of distinct explanatory
variables with missing values is {Y4, Y5} – crossing them
yields Yα1,β1

, highlighted in blue in the larger table in the

next column. The set W imp
α1,β1

= {X13,1, X13,2, X13,3} is shown
in brown; the training set

W imp
α1
= {X i, j : i 6= 13, j = 1, 2,3}

is in light green. The (artificial) results of the imputation
are shown in the (post-imputation) bottom left table. The
last table shows the result of “de-crossing” Yα1,β1

into its
constituent variables Y4 and Y5.

Since all explanatory variables have been imputed, we can
now conduct the imputation of the dependent variables.
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Imputation of the Dependent Variable Z1
From this point on, it is the number of dependent variables
by record which is found in the last (magenta) column. The
set

W imp
Z1
= {X2, j , X4, j , X5, j , X9, j , X11, j , X12, j}3j=1

is shown in brown and the training set

W train
α1
= {X1, j , X3, j , X6, j , X7, j , X8, j , X10, j , X13, j , X14, j}3j=1

is in light green in the table on the left below. The (artificial)
results of the imputation are shown in the (post-imputation)
table on the right.

Imputation of the Dependent Variable Z2
In light of the two-stage model described in the Methodol-
ogy, when Z1 = 0, Z2 is automatically 0, which is illustrated
in the table on top in the next column.

We now have

W imp
Z1=1,Z2

= {X2,2, X2,3, X4,1, X5,1, X5,2, X5,3, X9,2,

X11,1, X11,2, X12,2, X12,3}
in brown and

W train
Z1=1,Z2

= {X6, j , X7, j , X8, j , X14, j}3j=1

in light green in the table on the bottom left in the next
column; the (artificial) results of the imputation are shown
in the (post-imputation) table bottom right.

Deflating the Data Set
In this example, we assume that the threshold a is 0.5: if
more than 50% of the replicates for a given record have
Z1 = 1, the record has Z1 = 1 and its value for Z2 is the
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BAC average taken over all its non-zero Z1 replicates. The
final results are shown in the last two tables below: red
entries indicate records for which alcohol was deemed to
have played a factor.

5. Results for Ontario (2007)

In this section, we show the results of our BAC imputation
algorithm for fatal collisions occurring in Ontario during
the year 2007. The data set also contains the collisions
from 2000 to 2005 (which were the only data available
when the algorithm was originally conceived).

Throughout, missing values of categorical variables are
imputed using SAS 9.2’s proc logit.

There were n = 9689 records in the combined databases.
Early trials confirmed that k = 9 replications eliminated
all convergence errors in the logistic regression routine
used by SAS. Since using more replicates can only improve
the method, we use k = 10 in order to conform with [4].
Furthermore, analysis of existing BAC levels determined
that A= 500 would be a reasonable upper limit to use. By
comparison, a BAC level of 80 is the threshold for impaired
driving in Ontario.

The frequency tables for the explanatory variables in the
replicated records are shown below.

The number of replicated records with specific numbers of
missing explanatory variables indicate that first-, second-,
third- and fourth-order imputation of explanatory variables
will be necessary.

This means that 10750 first-order imputations, 1100 second-
order imputations, 190 third-order and 20 fourth-order
imputations were needed to obtain a complete set of repli-
cated records.
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Once the values of Z1 were imputed (using an extensive
SAS program, written to implement the BAC Imputation
Algorithm described above), we used a threshold a = 0.5
to determine whether a record had zero or non-zero BAC:
if more than 50% of the replicates for a given record had
Z1 = 1, the record itself was assumed to have non-zero
BAC, which was then imputed as follows.

The existing BAC levels were first transformed according to

Ẑ2 = tan
� π

500
Z2 −

π

2

�
,

in effect carrying the range of Z2 from (0, 500) to (−∞,∞).
SAS 9.2’s proc glm was then used to impute Ẑ2 for the miss-
ing values, and the inverse transformation provided the
imputed Z2 values.

It is impossible to present the specific results of the impu-
tation due to spatial considerations. It is however possible
to compare the results of the imputation with validated
data, that is, with the actual BAC value provided by the
Coroner’s report once those became available. Only the
imputation results for Z1 are presented as validation data
for the actual BAC level Z2 was not made available to the
author at the time this paper was written. As can be seen,
the performance for pedestrian fatalities was slightly better
than the performance for driver fatalities when imputing
BAC for fatal collisions occurring in Ontario during 2007.

Metric Drivers Pedestrians Combined

Accuracy 82.66% 91.23% 84.33%
Precision (PPV) 85.19% 75.61% 82.55%

Negative Predictive Value 81.92% 100.00% 84.93%
Sensitivity 58.23% 100.00% 65.08%
Specificity 94.92% 87.95% 93.47%

False Positive Rate (α) 5.08% 12.05% 6.53%
False Negative Rate (β) 41.77% 0.00% 34.92%

Positive Likelihood Ratio 11.46 8.30 9.96
Negative Likelihood Ratio 0.44 0.00 0.37

F-score 0.69 0.86 0.73

6. Conclusion
In this article, we have presented the BAC imputation algo-
rithm used by the Evaluation & Data Systems Division of
the Road Safety and Motor Vehicle Directorate at Transport
Canada. It loosely based on the two-stage approach and
multiple imputation of [4], and the sequential regression
of [3]; however, it is hoped that some of the drawbacks of
these methods can be overcome by introducing replicates
in the observations before imputation proper starts.

We used “naive” logistic regression and a basic general
linear model for the categorical variables and the continu-
ous BAC level variable, respectively. More sophisticated or
better-suited imputation methods could no doubt improve
the power of our algorithm. And while we were able to
obtain various metrics for our algorithm when applied to
the 2007 Ontario data, it would be beneficial to compare
those results with those that would be obtained using other
methods, specifically those of [3,4].
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