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1 Survey of Quantitative Methods

The bread and butter of quantitative consulting is the ability to apply quantitative methods to
business problems in order to obtain actionable insight. Clearly, it is impossible (and perhaps
inadvisable, in a more general sense) for any given individual to have expertise in every field of
mathematics, statistics, and computer science.

We believe that the best consulting framework is reached when a small team of consultants
possesses expertise in 2 or 3 areas, as well as a decent understanding of related disciplines, and
a passing knowledge in a variety of other domains: this includes keeping up with trends, im-
plementing knowledge redundancies on the team, being conversant in non-expertise areas, and
knowing where to find detailed information (online, in books, or through external resources).

In this section, we present an introduction for 9 “domains” of quantitative analysis:

survey sampling and data collection;
data processing;
data visualisation;
statistical methods;
queueing models;
data science and machine learning;
simulations;
optimisation, and
trend extraction and forecasting;

Strictly speaking, the domains are not free of overlaps. Large swaths of data science and time
series analysis methods are quite simply statistical in nature, and it’s not unusual to view opti-
misation methods and queueing models as sub-disciplines of operations research. Other topics
could also have been included (such as Bayesian data analysis or signal processing, to name but
two), and might find their way into a second edition of this book.

Our treatment of these topics, by design, is brief and incomplete. Each module is directed at
students who have a background in other quantitative methods, but not necessarily in the topic
under consideration. Our goal is to provide a quick “reference map” of the field, together with
a general idea of its challenges and common traps, in order to highlight opportunities for appli-
cation in a consulting context. These subsections are emphatically NOT meant as comprehensive
surveys: they focus on the basics and talking points; perhaps more importantly, a copious number
of references are also provided.

We will start by introducing a number of motivating problems, which, for the most part, we
have encountered in our own practices. Some of these examples are reported on in more details
in subsequent sections, accompanied with (partial) deliverables in the form of charts, case study
write-ups, report extract, etc.).

As a final note, we would like to stress the following: it is IMPERATIVE that quantitative consul-
tants remember that acceptable business solutions are not always optimal theoretical solutions.
Rigour, while encouraged, often must take a backseat to applicability. This lesson can be difficult
to accept, and has been the downfall of many a promising candidate.

(DRAFT) 2



P Boily, J Schellinck, S Hagiwara (DRAFT) 1.4 STATISTICAL ANALYSIS

1.4 Statistical Analysis

Loosely speaking, a statistic is any function of a sample from the distribution of a random vari-
able; statistics aim to extract information from an observed sample to summarise the essential
features of a dataset.

In general, statistics can be divided into two categories based on their purposes: descriptive
statistics and inferential statistics.

As its name implies, descriptive statistics aim to describe the collected data; examples include:

sample size (overall and/or subgroups);
demographic breakdowns of participants;
measures of central tendencies (e.g., mean, median, mode, etc.), and
measures of variability (e.g., sample variance, minimum, maximum, interquartile range,
etc.).

They can be presented as a single number, in a summary table, or even in graphical representations
(e.g., histogram, pie chart, etc.) Descriptive statistics can be extended to summarise multivariate
behaviours, via sample correlations, contingency tables, scatter plots, etc.

Descriptive statistics not only provide an easy-to-understand overview of the dataset, but they
also give the consultant a chance to study the collected sample and investigate two important
questions:

does the sample make sense? and is the sample representative?

Inferential statistics, on the other hand, aim to facilitate the process of inference (induction) to
the general population from which the sample is drawn.

In this (criminally) brief tour of a far-reaching and ubiquitous subject, we will highlight ten areas
of particular interest for consultants; further details can be found in [1–7].

1.4.1 Hypothesis Testing

In a very broad sense, most of statistical inference is done through hypothesis testing – are the
client’s conjectures about their business situation compatible with the evidence provided by the
data? Is there a way to get a quantitative ruling in favour of competing hypotheses that relies on
something other than the client’s gut feeling?

Suppose that a researcher wants to determine if, as she believes, a new teaching method en-
ables students to understand elementary statistical concepts better than the traditional lectures
given in a university setting. She recruits N = 80 second-year students to test her claim. The
students are randomly assigned to one of two groups: students in group A are given the tradi-
tional lectures, whereas students in group B are taught using the new teaching method. After
three weeks, a short quiz is administered to the students in order to assess their understanding of
statistical concepts – Table 1 summarises the results.
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Group Sample Size Sample Mean Sample Variance
A NA = 40 ȳA = 75.2 S2

A = 6.3
B NB = 40 ȳB = 79.1 S2

B = 5.4

Table 1: Summary of teaching method study example

If we assume that both groups have similar background knowledge prior to being taught (which
we attempt to do by randomising the group assignment), then the effectiveness of the teaching
methods may be compared using two hypotheses, the null hypothesis H0 and the alternative
Ha. One-sided testing pits

H0 : µA ≥ µB against Ha : µA < µB

(or the reverse); in two-sided testing, we have

H0 : µA = µB against Ha : µA 6= µB.

Intuitively, testing for inequality of method seems looser than testing for the superiority of a
specific method over the other.

Hypothesis testing can generate two types of error: we can mistakenly reject H0 when it is,
in fact, correct (type I error), or we can mistakenly accept H0 when it is actually false (type II
error). In order to control the probability of making a type I error (called significance level, and
denoted by α), we usually let the hypothesis of interest be the alternative hypothesis.

Since the researcher wants to claim that the new method is more effective than the traditional
ones, then it is most appropriate for her to use one-sided hypothesis testing with

H0 : µA ≥ µB against H1 : µA < µB;

The testing procedure is simple

1. calculate a test statistic under H0;
2. reject H0 in favour of H1 if the test statistic falls in the critical region (also called rejection

region) of an associated distribution, and
3. accept H0 otherwise – or rather, fail to reject it (see Figure 1).

Using the summary table above, we can test the researcher’s claim by using the two-sample t
test. Assuming that variability in two groups are roughly the same, the test statistic is given by:

t0 =
ȳB − ȳA

Sp

Ç

1
NA
+ 1

NB

,

where the pooled variance S2
p is

S2
p =
(NA− 1)S2

A + (NB − 1)S2
B

NA+ NB − 2
.
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Figure 1: Critical regions for hypothesis testing at α (in grey); two-sided on the left, one-sided on the
right; γk represent the critical value for the given test and underlying distribution.

In the example, the test statistic is t0 = 7.211. To reject or accept the null hypothesis, we need
to compare it against the critical value of the Student T distribution with N − 2= 78 degrees of
freedom at α= 0.05, which is

t∗ = t1−α,N−2 = t0.95,78 = 1.665.

Since t0 > t∗ at α = 0.05, we can conclude that we have enough evidence to believe that new
teaching method is indeed more effective than the traditional methods, at α= 0.05.

IMPORTANT NOTE: in general, the challenge is to recognise which test statistic to use and how
it is distributed under H0. Various scenarios have been explored in the literature (see [2], for
instance) and it would be important for statistical consultants to be able to derive their own tests
when the client’s data does not meet the various assumptions. Ad-hoc solutions come at a price,
however – a fair number of clients (and reviewers), if they are familiar with statistical tests at all,
do not understand how they are derived and thus only trust ‘tried, tested, and true’ methods (this
applies to other fields of quantitative analysis). New tests and approaches are likely to be treated
with suspicion.

Questions to Ponder
1. Distribution assumptions:

what distribution assumptions are we making by using a t−test?
how can we verify them?
if such assumptions are violated, what is our recourse?

2. Assumption of equal variance:

how can we verify the appropriateness of using pooled variance?
if it is not appropriate, can we modify the test to overcome the problem?

3. One-sided vs. two-sided tests:

when is it appropriate to use a one-sided test, and when is it better to employ a two-
sided test?
are there drawbacks in using a two-sided test when a one-sided test would be indi-
cated?
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Figure 2: Effectiveness of new teaching method; the grey line is the overall sample mean.

1.4.2 Analysis of Variance (ANOVA)

Analysis of variance (ANOVA) is a statistical method that partitions a dataset’s variability into
explainable variability (model-based) and unexplained variability (error) using various statis-
tical models, to determine whether (multiple) treatment groups have significantly different group
means.

The total sample variability of a feature y in a dataset is defined as

SStot =
N
∑

k=1

(yk − ȳ)2,

where ȳ is the overall mean of the data.

Let us return to the teaching method example given in Section 1.4.1. Figure 2 shows all the
students’ scores, ordered by participant ID. Since the assignment of ID is arbitrary (at least, in
theory), we do not observe any patterns – if we were to guess someone’s score with no knowledge
except for their participant ID, then picking the sample mean is as good as any other reasonable
guesses.

Statistically speaking, this means that the null model

yi, j = µ+ εi, j,

where µ is the overall mean, i = A, B, and j = 1, . . . , 40, does not explain any of the variability
in the student scores (as usual, εi, j represents the departure or noise from the model prediction).

(DRAFT) 6
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Figure 3: Effectiveness of new teaching method for two groups. the grey line is the overall sample mean,
while the red and blue lines represent the average score for groups A and B, respectively.

But the students did not all receive the same treatment – 40 randomly selected students were
assigned to group A, and the other 40 to group B. When we add this information onto Figure 2,
we clearly see that the two study groups show different characteristics in term of their average
scores (see Figure 3). Using their group assignment information, we can refine our null model
into the treatment-based model

yi, j = µi + εi, j,

where µi, i = A, B represent the group means. Using this model, we can decompose SStot into
between-treatment sum of squares and error (within-treatment) sum of squares as

SStot =
∑

i, j

(yi, j − ȳ)2 =
∑

i, j

(yi, j − ȳi + ȳi − ȳ)2

=
∑

i

Ni( ȳi − ȳ)2 +
∑

i, j

(yi, j − ȳi)
2 = SStreat + SSe

The SStreat component looks at the difference between each of the treatment means and the over-
all mean, which is explainable; the SSe component, on the other hand, looks at the difference
between each observation and its group mean. Clearly, the treatment-based model on its own
cannot explain the cause of this variability.

In short, using a treatment-based model, we can explain SStreat/SStot×100% of the total vari-
ability. This ratio is called the coefficient of variation, and is denoted by R2.

Formally, the ANOVA table incorporates a few more items – Table 2 summarises all the infor-
mation it contains; the ANOVA table for the teaching methodology example is shown in 3.

The test statistic F0 follows an F -distribution with (d.f.treat, d.f.e) = (1, 78) degrees of freedom.
At a significance level of α = 0.05, the critical value F ∗ = F0.95,1,78 = 3.96 is substantially smaller
than the test statistic F0 = 52, implying that the two-treatment model is statistically significant.
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Source Sum of Squares d.f. Mean Square F0

Treatment (Model) SStreat p− 1 MStreat = SStreat/(p− 1) MStreat/MSe

Error SSe N − p MSe = SSe/(N − p)
Total SStot N − 1

Table 2: A simple ANOVA table, with p treatments and N observations.

Source Sum of Squares d.f. Mean Square F0

Treatment (Model) 304.2 1 304.2 52.0
Error 456.3 78 5.85
Total 760.5 79

Table 3: ANOVA table for the teaching methodology example, with p = 2 and N = 80.

This, in turn, means that the model recognises a statistically significant difference between the
students scores, based on the teaching methods.

The coefficient R2 provides a way to measure the model’s significance. From Table 3, we can
compute R2 = 304.2

760.5 = 0.4, which means that 40% of the total variation in the data can be ex-
plained by our two-treatment model. Is this good enough? That depends on the project, and on
the client’s needs.

Diagnostic Checks As with most statistical procedures, ANOVA relies on certain assumptions
for the its result to be valid. Recall that our model is given by

yi, j = µi + εi, j

What assumptions are being imposing? The main assumption is that the error terms follow inde-
pendently and identically distributed (i.i.d.) normal distributions (i.e., εi, j

i.i.d.∼ N (0,σ2)). We are
thus required to verify three assumptions:

normality of the error terms;
constant variance (within treatment groups), and
equal variances (across treatment groups).

Normality can be tested visually with the help of a normal-QQ plot, which compares the stan-
dardized residuals quantiles against the theoretical quantiles of the standard normal distribution
(a straight line indicates normality). Figure 4 shows some departure in the lower tail, however,
moderate departure from normality is usually acceptable as long as it is mostly a tail phenomenon.

To test the assumption of constant variance, we can run visual inspection using (a) residuals
vs. fitted values, and (b) residuals vs. order/time. Figure 5 shows that variability from the
mean in each treatment group is reasonably similar. If a distinct difference arises and we cannot
conclude that the group variances are constant, we will need to apply a variance stabilising
transformation, such as a logarithmic transformation or square-root transformation before
proceeding.

Formally, equality of variance is often tested using Bartlett’s test (when normality of the
residuals is met) or the modified Levene’s test (when it is not).

(DRAFT) 8



P Boily, J Schellinck, S Hagiwara (DRAFT) 1.4 STATISTICAL ANALYSIS

Figure 4: Normal QQ-plot for the two-treatment teaching model (standardised residuals); note the mod-
erate (but acceptable) departure in the lower tail.

Figure 5: Diagnostic check for constant variance in the two-treatment teaching model. The spread is fairly
similar; we can safely assume constant variance (as well as equal variance across treatment groups).

IMPORTANT NOTES: when there are more than p > 2 treatment groups, ANOVA provides a
test for H0 : µ1 = µ2 = · · · = µp vs. H1 : µi 6= µ j for at least one of i 6= j. A significant F0 value
indicates that there is at least one group which differs from others, but it does not specify which
one(s) that may be. Specialised comparison methods such as Scheffe’s method and Tukey’s test
can be used to identify the statistically different treatments.

Finally, while ANOVA can accommodate unequal treatment group sizes, it is recommended to
keep those sizes equal across all groups – this makes the test statistic less sensitive to violations
of the assumption of equal variances across treatment groups, providing yet another reason to
involve the consultant with the data collection process.
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1.4.3 Multiple Linear Regression

In sections 1.4.1 and 1.4.2, we considered a scenario where a single, categorical, explanatory
variable (Treatment A vs. Treatment B) was used to model a desired response variable (score y).
Real-world data is, of course, much more intricate and complex, typically consisting of multiple
response variables, with multiple quantitative and categorical/qualitative explanatory features.
In this section, we will review how such cases can be handled.

Multiple Linear Regression in Matrix Form Throughout, we suppose that the dataset consists
of N observations with a single response output Y and p explanatory variables X1, . . . , X p. The
first-order linear model describing this scenario can be represented in matrix from by

y = Xβ + ε, (1)

where y = [y1, · · · , yN]>, β = [β0, · · · ,βp]>, and ε = [ε1, · · · ,εN]> are the response vector, the
coefficient vector, and the error vector, respectively, and

X =









1 x1,1 · · · x1,p

1 x2,1 · · · x2,p
...

...
. . .

...
1 xN ,1 · · · xN ,p









is the design matrix, with the further assumption that ε ∼ N (0,σ2In), where I is the N × N
identity matrix.

Qualitative Explanatory Variables It has been said that the colour of a vehicle is part of the
assessment for car insurance premiums (whether this is true or not, we are not qualified to dis-
cuss). Such a variable is qualitative (nominal, in fact) in nature, as there is no reasonable way to
order colours for insurance purposes. If we want to incorporate this feature in an insurance pre-
mium model taking into account k possible colour choices, then we need k− 1 dummy variables
X1, . . . , Xk−1 defined according to the form of

X1 =

¨

1 if colour = red

0 otherwise

X2 =

¨

1 if colour = black

0 otherwise
...

Xk−1 =

¨

1 if colour = forest green

0 otherwise

With ordinal variables (e.g., on scale of 1 to 5, how likely are you to buy a new phone this year?),
we may choose to have 4 dummy variables as above, or a single continuous variable. While the
latter approach saves 4 degrees of freedom, we are imposing an assumption that equal spacings
on the ordinal have an equal impact on the outcome, which is not always the case – in which case
dummy variables might be indicated.

(DRAFT) 10
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Source Sum of Squares d.f. Mean Square F0

Regression SSreg p− 1 MSreg = SSreg/(p− 1) MSreg/MSe

Error SSe N − p MSe = SSe/(N − p)
Total SStot N − 1

Table 4: ANOVA table for first-order multiple regression model (1); with p explanatory variables and N
observations.

Overall Significance of the Model For the model presented in (1), ordinary least square (OLS)
estimation yields fitted values

ŷ = Xβ̂ = X(XX>)−1X>y

and residuals
e = y − ŷ = (I − X(XX>)−1X>)y .

The ANOVA table has the same form as Table 2 (see Table 4); it is used in testing

H0 : β1 = β2 = · · ·= βp = 0 against H1 : βi 6= 0 for at least one i.

If the test statistic F0 is significant, it does not necessarily imply that all the independent variables
X1, . . . , X p are useful in predicting y, only that at least one of them is. We can examine signifi-
cance of the β coefficients individually (using t-test), or multiple coefficients simultaneously (e.g.,
Bonferroni simultaneous confidence interval). Choosing the best subset of the model will be
discussed in Sections 1.4.4 and ??.

Model Adequacy Checks There are some rare examples for which OLS does not yield a unique
solution; but in the vast majority of instances, the data can be fitted to the model. How can we
tell if the model is adequate to the situation at hand?

Assumptions on Residuals – We cannot emphasise enough that the model is not neces-
sarily valid when it is statistically significant (i.e. when F0 is in the critical region); the
conclusion only follows once the model has been determined to be an adequate fit for the
data. A normal-QQ plot can help verify the assumption of normality, for instance, while
the assumptions of independence and constant variance can be tested using scatterplots of
fitted values against residuals.

Outliers and Influential Points – In addition, outliers and influential points could affect
the fitted values. While it is typically easier to classify some observations as outliers, influ-
ential points can distort the regression line significantly. Figure 6 shows the clear impact of
an influential point. Outliers and influential points should be studied carefully, as there are
a number of possible mechanisms that can account for their presence; it may be that these
anomalies are due to data entry error, in which case we may try to correct/impute with a
reasonable alternative, if possible (see Section ??). It may be the case that these unusual
observations are worth studying on their own merit.

Multicollinearity and Variance Inflation Factor (VIF) – Last but not least, it is important to
take a look at the scatterplot matrix and the correlation matrix of the explanatory variables
to detect multicollinearity. While it is hoped that the explanatory variables have some
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Figure 6: Illustrative example of the effect of an influential point. The red dot in the top left corner is an
influential point – the slope of the regression line when it is included in the data (red) is quite different
from the slope when it is not (blue).

relationship with the response variable (otherwise any model is bound to be fruitless), high
correlations and/or dependencies among the explanatory variables is contraindicated as it
introduces instability in the estimates of the regression coefficients are unstable. We can
formally test for presence of multicollinearity using variance inflation factors (VIF); in its
presence, data reduction and data transformation strategies might need to be implemented.

1.4.4 Data Reduction/Model Selection

In a good model, a balance has been struck between its predictive ability and its simplicity.
Clients look for the simplest model that explains the behaviour of the response variable Y in a
reasonably adequate manner (a version of Occam’s Razor). If there are p predictor variables
X1, . . . , X p, then there are 2p possible models from which to select the "best", ranging from the
simple average model yi = β0 + εi to the full model yi = β0 +

∑p
j=1β j x i, j + εi.

Step-wise Regression As the number of predictors p grows, it is not feasible to fit all 2p possible
models to determine the optimal model. Step-wise regression is an automated model selection
procedure that builds a succession of models from which a choice can be made. There are numer-
ous variants – this particular algorithm is called forward selection, for reasons that will shortly
become clear (to fix the problem in conceptual space, assume that there are p = 10 predictor
variables).

1. Selecting the first variable: Fit p simple linear regressions

yi = β0 + β j x i, j + εi, j = 1, . . . , p

and choose the model with highest R2 value. In other words, select the variable X j that best
describes the behaviour of Y on its own. If X5 turns out to be that variable, for instance,

(DRAFT) 12



P Boily, J Schellinck, S Hagiwara (DRAFT) 1.4 STATISTICAL ANALYSIS

then the tentative model is
yi = β0 + β5X i,5 + εi.

If this model is not statistically significant (tested at predetermined significance level α),
then the final model selection is

yi = β0 + εi

and the search is complete. Otherwise, proceed to step 2.

2. Selecting the second variable: Fit all two-parameter regression models

yi = β0 + β5 x i,5 + β j x i, j + εi, j = 1, . . . , p, j 6= 5.

Select the model that has the highest value of the test statistic

t ′k =

√

√

√MSR(Xk|X5)
MSE(X5, Xk)

.

Say that k = 3 yields the largest such value. If the associated model’s p−value is smaller
than α, then our tentative model is updated to

yi = β0 + β3X i,3 + β5X i,5 + εi

and we proceed to step 3. Otherwise, the final model selection is

yi = β0 + β5X i,5 + εi

and the search is complete.

3. All subsequent steps: Repeat step 2 using

t
′′

k =

√

√

√MSR(Xk|X5, X3)
MSE(X5, X3, Xk)

and so forth, until no additional term improves the model significantly.

In contrast to forward selection which starts with the simple average model

yi = β0 + εi

and build a nested sequence of increasingly complex models, backward elimination begins with
the full model

yi = β0 +
p
∑

j=1

β j x i, j + εi

and keeps removing terms until removal of any variable causes a significant loss of its predictive
power (calculated using t(`)k ). In general, forward selection and backward elimination will not
select the same final model.
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In the combined approach, the process starts from the simple average model as in forward se-
lection, but each time a new variable is added to the tentative model, a backward elimination
search is performed to test whether any of the previously added variables are no longer signif-
icant. This approach enables the model to be better tuned to the data and has been known to
prevent overfitting (more on this in Section ??). In either case, the step-wise selection methods
are expensive, computing-wise.

The test statistic t(`)k is the square root of the ratio of conditional MSR over MSE. In everyday
terms, it is testing whether the addition of Xk provides a significant improvement in predictive abil-
ity over the current tentative model’s. Other alternative include the Akaike Information Criterion
(AIC), the Bayesian Information Criteria (BIC), Mallow’s Cp Criterion, and the R2 criterion –
simply pick the model which optimises the desired criterion.

IMPORTANT NOTE: step-wise regression is flawed in many ways which we will not explore at the
moment; in practice, it has slowly started being replaced by regularisation methods such as ridge
regression and the LASSO (see Section ??). From a consulting standpoint, this is a development
over which it is worth trying to educate clients.

1.4.5 Basics of Multivariate Statistics

Up until this point, we have been considering situations the response has been univariate. In
applications, especially those that require data science methods, the situation often calls for mul-
tivariate responses, where the response variables are thought to have some relationship (e.g. a
correlation structure). It remains possible to analyse each response variable independently, but
the dependence structure can be exploited to make joint (or simultaneous) inferences.

Properties of the Multivariate Normal Distribution The probability density function of a ran-
dom vector X ∈ Rp that follows a multivariate normal distribution with mean vector µ and
covariance matrix Σ, denoted by X ∼Np(µ,Σ), is given by

f (X) =
1

(2π)p/2|Σ|1/2
e−

1
2 (X−µ)

>Σ−1(X−µ),

where

Σ=









σ1,1 σ1,2 · · · σ1,p

σ2,1 σ2,2 · · · σ2,p
...

...
. . .

...
σp,1 σp,2 · · · σp,p









.

For such an X , the following properties hold:

1. any linear combination of its components are normally distributed;
2. all subsets of components follow a (modified) multivariate normal distribution;
3. a diagonal covariance matrix implies the independence of its components;
4. conditional distributions of components follow a normal distribution, and
5. the quantity (X −µ)>Σ−1(X −µ) follows a χ2

p distribution.
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These properties make the multivariate normal distribution attractive, from a theoretical point of
view (if not entirely realistic). For instance,

using the first property, we can use contrasts to test which components are distinct from
the others;
the fifth property is the multivariate analogue of the square of a standard normal random
variable Z ∼N (0, 1) following a Z2 ∼ χ2

1 distribution;
but two univariate normal random variables with zero covariance are not necessarly inde-
pendent (the joint p.d.f. of two such variables is not necessarily the p.d.f. of a multivariate
normal distribution).

A number of univariate approaches generalise nicely.

Hypothesis Testing for Mean Vectors When the sample comes from a univariate normal dis-
tribution, we can test

H0 : µ= µ0 against H1 : µ 6= µ0

by using a t−statistic. Analogously, if the sample comes from a p−variate normal distribution, we
can test

H0 : µ= µ0 against H1 : µ 6= µ0

by using Hotelling’s T 2 test statistic, mathematically defined as

T 2 = N · (X̄ −µ)>S−1(X̄ −µ)

where X̄ denotes the sample mean and S is the sample covariance matrix. Under H0,

T 2 ∼
(N − 1)p
(N − p)

Fp,N−p.

Thus, we do not reject H0 at a significance level of α if

N · (X̄ −µ0)
>S−1(X̄ −µ0)≤

(N − 1)p
(N − p)

Fp,N−p(α) (2)

and reject it otherwise.

Confidence Region and Simultaneous Confidence Intervals for Mean Vectors In the p−variate
normal distribution, any µ that satisfies the condition

N · (X̄ −µ)>S−1(X̄ −µ)≤
(N − 1)p
(N − p)

Fp,N−p(α) (3)

resides inside a (1− α)100% confidence region (an ellipsoid in this case). Simultaneous Bon-
ferroni confidence intervals with overall error rate α can also be derived, using

( x̄ j −µ j)± tN−1(α/p)

√

√s j, j

N
for j = 1, . . . , p
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Figure 7: 95% confidence ellipse, Bonferroni and Hotelling’s T2 simulatenous confidence intervals for a
bivariate normal random sample.

Another approach is to use Hotelling’s T 2 simultaneous confidence intervals, given by

( x̄ j −µ j)±
√

√p(N − 1)
N − p

Fp,N−p(α)

√

√s j, j

N
for j = 1, . . . , p

Figure 7 shows these regions for a bivariate normal random sample. Notice that the Hotelling’s T 2

simultaneous confidence intervals form a rectangle that confines the confidence region, while the
Bonferroni confidence intervals are slightly narrower. Given that all the components of the mean
vector are correlated (according to a generally non-diagonal covariance matrix), the confidence
region should be used if the goal is to study the plausibility of the mean vector as a whole,
while Bonferroni confidence intervals may be more suitable when component-wise confidence
intervals are of interest.

1.4.6 Multivariate Analysis of Variance (MANOVA)

As shown in Section 1.4.2, ANOVA is often used in a first pass to determine whether the means
from every sub-population are identical.

One-Way MANOVA ANOVA can test means from more than two populations; the multivariate
ANOVA (MANOVA) is quite simply a multivariate extension of ANOVA which tests whether the
mean vectors from all sub-populations are identical.

Let there be I sub-populations in the population, from each of which Ni p−dimensional responses
are drawn, i = 1, . . . , I . Mathematically, each observation can be expressed as:

Xi, j = µ+τi + εi j
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Source SSP d.f.
Treatment B =

∑I
i=1 Ni(X̄i − X̄)>(X̄i − X̄) I − 1

Error W =
∑I

i=1

∑ni

j=1(Xi j − X̄i)>(Xi j − X̄i)
∑I

i=1 Ni − I
Total B+W =

∑I
i=1

∑ni

j=1(Xi, j − X̄)>(Xi, j − X̄)
∑I

i=1 Ni − 1

Table 5: One-way MANOVA table; with I sub-populations.

1. Some HS or Less 2. HS 3. College/University 4. Post-Graduate or higher
16 55 83 46

Table 6: Respondents’ educational achievements, from a (fictitious) 2017 survey.

where µ is the overall mean vector, τi is the ith population-specific treatment effect, and
εi j is the random error, which follows a Np(0,Σ) distribution. It is important to note that the
covariance matrix Σ is assumed to be the same for each sub-population, and that

I
∑

i=1

Niτi = 0

to ensure that the estimates are uniquely identifiable.

To test the hypothesis

H0 : τ1 = · · ·= τI = 0 against H1 : at least one of τi 6= 0,

we decompose the total sum of squares and cross-products SSPtot into

SSPtot = SSPtreat + SSPe.

Based on this decomposition, we compute the test statistic known as Wilk’s lambda

Λ∗ =
|W |
|B+W |

and reject H0 if Λ∗ is too small.

1.4.7 Goodness-of-Fit Tests

A (fictitious) 2017 survey asked a sample of N = 200 adults between the age of 25 to 35 about
their highest educational achievement. The result is summarised in Table 6. In 1997, it was
found that p1 = 13% of adults had not complete high school, p2 = 32% had obtained a high
school degree but not a post-secondary degree, p3 = 37% had either an undergraduate college
or university diploma but no post-graduate degree, and p4 = 18% had at least one post-graduate
degree. Based on the result of this survey, is there sufficient evidence to believe that educational
backgrounds of the population have changed since 1997?

Since each respondent’s educational achievement can only be classified into one of these cat-
egories, they are mutually exclusive. Furthermore, since these categories cover all possibilities
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Category O j p j,0 m j,0 (O j −m j,0)2/m j,0

1 16 0.13 26 3.846
2 55 0.32 64 1.266
3 83 0.37 74 1.095
4 46 0.18 36 2.778

Total 200 1 200 7.815

Table 7: Summary table for goodness-of-fit data for educational achievements under H0.

on the educational front, they are also exhaustive. We can thus view the distribution of educa-
tional achievements as being multinomial. For such a distribution, with parameters p1, · · · , pk,
the expected frequency in each category is m j = N p j.

Let Oj denote the observed frequency for the jth category. If there has been no real change since
1997, we would expect the sum of squared differences between the observed 2017 frequencies
and the expected frequencies based on 1997 data to be small. We can use this information to test
the goodness-of-fit between the observations and the expected frequencies via Pearson’s χ2 test
statistic

X 2 =
k
∑

j=1

(Oj −m j)2

m j

which follows a χ2 distribution with k− 1 degrees of freedom.

In the above example, the hypotheses of interest are

H0 : p1 = 0.13, p2 = 0.32, p3 = 0.37, p4 = 0.18 against H1 : not H0.

Table 7 summarises the information under H0. Pearson’s test statistic is X 2 = 7.815, with an
associated p−value of 0.0295, which implies that there is enough statistical evidence (at the
α = 0.05 level) to accept that the population’s educational achievements have changed over the
last 20 years.

1.4.8 Paired Comparisons and Analysis of Covariance (ANCOVA)

In Section 1.4.1, we looked at the effectiveness of new teaching method by assigning each group
to a specific treatment and comparing the mean test scores. A crucial assumption for that model
is that subjects in each group have similar background knowledge about statistics prior to the
three week lectures. If this assumption is wrong, however, we may be making incorrect decisions
based on the model. Even if each group had similar background knowledge on average, there may
be large variability from person-to-person, masking the true treatment effect.

Paired Comparison One way to avoid such subject-to-subject variability is to administer both
treatments to each individual, and then compare treatment effects by looking at the difference in
the outcomes. If a grocery chain is interested in measuring the effectiveness of two advertising
campaigns, for instance, it is reasonable to assume that there is a large variability in total sales,
as well as popular items sold, at each store – it may then be preferable to run both campaigns in
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each store and analyse the resulting data rather than to split the stores into two groups (in each
of which a different advertising campaign is run) and then to compare the mean outcomes in the
two groups.

Formally, let X i,1 denote the total sales with campaign A and X i,2 the total sales with campaign
B. The quantity of interest is Di = X i,1 − X i,2 for each store i = 1, . . . , N . Assuming that the
differences Di follow an i.i.d. normal distribution with mean δ and variance σ2

d , then we can test

H0 : δ = 0 against H1 : δ 6= 0

by using the test statistic

t0 =
p

N
D̄
sd

,

which follows a Student’s t distribution with N − 1 degrees of freedom; thus we reject H0 if the
observed test statistic t0 has p-value less than the pre-specified significance level α/2.

Analysis of Covariance (ANCOVA) ANOVA compares multiple group means and tests whether
any of the group means differ from the rest, by breaking down the total variability into a treat-
ment (explainable) variability component and an error (unexplained) variability component, and
building a ratio F0 to determine whether or not to reject H0.

Analysis of covariance (ANCOVA) introduces concomitant variables (or covariates) to the
ANOVA model, splitting the total variability into 3 components: SStreat, SScon, and SSe, aiming to
reduce error variability. The choice of covariates is thus crucial in running a successful ANCOVA.

In order to be useful, a concomitant variable must be related to response variable in some way,
otherwise it not only fails to reduce error variability, but it also increases the model complexity.
In the teaching method example, we could consider administering a pre-study test to measure
the prior knowledge level of each participant and use this score as a concomitant variable. In the
advertising campaign example, we could have used the previous month’s sales as a covariate. In
medical studies, we could use the age and weight of subjects as covariates.

But concomitant variables should not be affected by treatments. Suppose that, in a medical
study, patients were asked how strongly they believed that they were given actual medication rather
than a placebo. If the treatment is indeed effective, then a participant’s response to this question
could be markedly different in the treatment group than in the placebo group (perhaps the med-
ication has strong side-effects which cannot be ignored). This means that true treatment effect
may be masked by concomitant variable due to unequal effects on treatment groups.

Qualitative covariates (such as gender, say) are not part of the ANCOVA framework. Indeed,
such a covariate just creates new ANOVA treatment groups.

Figure 8 shows a potential breakdown of the total variability when moving from an ANOVA to an
ANCOVA model – the error variability is further split into an error and a covariate component,
while the treatment variability remains unchanged.
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Figure 8: Breakdown of variability for ANOVA and ANCOVA.

ANCOVA Model and Its Assumptions Suppose that we are testing the effect of p treatments,
with N j subjects in each group. Then the ANCOVA model takes the form

yi, j = µ+τ j + γ(x i, j − x̄) + εi, j (4)

where

yi, j is the response of the ith subject in the jth treatment group;
µ is the overall mean;
τ j is the jth treatment effect subject to a constraint

∑p
j=1τ j = 0;

γ is the coefficient for the covariate effect;
(x i, j − x̄) is the covariate value of the ith subject in the jth treatment group, adjusted by the
mean, and
εi, j is the error of ith subject in the jth treatment group.

Four assumptions must be satisfied:

independence and normality of residuals – the residuals are thought to follow an i.i.d.
normal distribution with mean of 0 and variance σ2

ε
;

homogeneity of residual variances – the variance of the residuals must be uniform across
treatment groups;
homogeneity of regression slopes – the regression effect (slope) must be uniform across
treatment groups, and
linearity of regression – the regression relationship between the response and the covariate
must be linear.

The first of these assumptions can be tested with the help of a QQ-plot and a scatter-plot of
residuals vs. fitted values, while the second may use the Bartlett or the Levene test. The final
assumption is not as crucial as the other three assumptions. Various remedial methods can be
applied should any of these assumptions fail.

The third assumption, however, is crucial to the ANCOVA model; it can be tested with the
equal slope test, which requires an ANCOVA regression on equation (4) with an additional in-
teraction term x ×τ. If the interaction is not significant, the third assumption is satisfied. In the
event that the interaction term is statistically significant, a different approach (e.g. moderated
regression analysis, mediation analysis) is required since using the original ANCOVA model is not
prescribed. An in-depth application of an ANCOVA model is highlighted in Section 1.4.11.

(DRAFT) 20



P Boily, J Schellinck, S Hagiwara (DRAFT) 1.4 STATISTICAL ANALYSIS

Dose levels (d) 0 7000 15000 30000
Sample size (n) 50 35 65 50

Number of observed adverse effect (y) 3 6 33 39
Rate of observed adverse effect (p) 0.06 0.17 0.51 0.78

Table 8: Summary of experimental results involving C.I. Acid Red 114; N = 200.

1.4.9 Nonlinear Regression

From the use of tooth paste, cosmetics, cleaning solutions and so forth, we are exposed to nu-
merous chemicals on a daily basis; thousands of new chemicals are introduced into commercial
products each year, and government agencies (such as Health Canada and the Environmental Pro-
tection Agency in the U.S.) must determine whether these chemicals are safe for humans, animals,
and the environment.

To test whether a chemical poses a risk of adverse effects, we must first determine whether
it triggers adverse effects over a range of potential exposure levels, and if so, how much is con-
sidered safe (or how much would pose an unacceptable risk). Traditionally (and not necessarily
ethically), rodents were used to study whether a chemical is carcinogenic or not.

Suppose that N laboratory rodents are divided into k groups, with each group consisting of Ni

rodents. Over the course of the experiment, each group was given a certain amount of expo-
sure to the chemical under investigation. The outcome of the experiment is whether each rodent
eventually develops a tumour or not; that is, the outcome is expressed as 0 (tumour absent) or 1
(tumour present). Table 8 summarises the outcome of an experiment.

Clearly, we cannot fit an ordinary linear regression to the data as the outcome is dichotomous.
How could we model the relationship between the adverse effect and the dose levels?

For each dose level d, the probability of adverse effect is pd = P(y = 1|d). The conditional
expectation given the dose level is also E(y = 1|d) = pd . Since the relationship resembles an
S−shaped curve, we may use a logistic distribution to model the data:

E(y = 1|d) = pd =
exp[β0 + β1d]

1+ exp[β0 + β1d]

To obtain maximum likelihood estimates for β0 and β1, we need to rely on numerical methods
such as the Newton-Raphson method; the dose-response model for the above example is shown
in Figure 9.

Relationship to Linear Regression Since pd is a probability, it has to lie in [0, 1]. By taking
the odds of having an adverse effect, defined by ωd = pd/(1− pd), the boundary of the response
is changed to [0,∞). Taking the log odds will span R, and the functional form of the logistic
regression model is

log(ωd) = log
�

pd

1− pd

�

= β0 + β1d, (5)

which is a simple linear regression model.
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Figure 9: Dose-response model for C.I. Acid Red 114 using logistic regression.

Other non-linear regression models Other sigmoidal curves can be used to model the re-
lationship between predictors and a binary response variable. Popular alternatives include the
probit link P(y|x) = Φ(β0+β1 x), where Φ is the cumulative distribution function of the standard
normal distribution, or the complementary log-log link P(y|x) = 1− exp(−exp(β0 + β1 x)). In
toxicology studies, one of the most widely used model is called the Hill, and it is defined via

P(y|d,α,κ,η) = α+ (1−α)
dη

dη +κη
;

part of its appeal to health scientists is the interpretation of its parameters – α represents the
background rate for adverse effect, while κ denotes ED50 (the effective dose at which 50%
of participants would exhibit the response of interest) and η provides the steepness of the
dose-response curve.

Figure 10 compares the simple logistic model to the Hill model; we observe that the Hill model
provides a closer fit to the observed proportions, and the curvature is more pronounced compared
to the logistic model.

1.4.10 Bayesian Statistics

In classical statistics, model parameters such as µ andσ are treated as constants; Bayesian statis-
tics, on the other hand assume that model parameters are random variables. As the name
implies, Bayes’ Theorem lies at the foundation of Bayesian statistics:

P(H|D) =
P(D|H)× P(H)

P(D)
, (6)

where H represents the hypothesis and D denotes the observed data, which is sometimes written
in shorthand as posterior = P(H|D)∝ P(D|H)× P(H) = evidence× prior. In other words, our
degree of belief in a hypothesis should be updated by the evidence provided by data.
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Figure 10: Dose-response model for C.I. Acid Red 114 using logistic regression (blue) and the Hill model
(red).

IMPORTANT NOTE: the use of Bayesian statistics is controversial in many quarters, and your
clients (or fellow consultants) might have strong frequentist leanings. Navigate with care.

Bayes’ Theorem escapes the controversy – nobody disputes its validity – and has proven to be a
useful component in various models and algorithms, such as email spam filters, and the following
example.

Suppose we are interested in diagnosing whether a tumour is begin or malignant, based on sev-
eral measurements obtained from video imaging. Bayes’ Theorem (6) can be recast in a tumour
data mould:

posterior: P(H|D) = based on collected data, how likely is a given tumour to be benign (or
malignant)?
prior: P(H) = in what proportion are tumours benign (or malignant) in general?
likelihood: P(D|H) = knowing a tumour is benign (or malignant), how likely is it that
these particular measurements would have been observed?
evidence: P(D) = regardless of a tumour being benign or malignant, what is the chance
that a tumour has the observed characteristics?

To answer the above question (that is, to compute the posterior), we will use a naïve Bayes
classifier (see Section ?? for other classification methods).

Naïve Bayes Classification for Tumour Diagnoses

1. Objective function: a simple way to determine whether a tumour is benign or malignant
is to compare posterior probabilities and choose the one with highest probability. That is,
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Figure 11: Boxplot visualisation of measurements for benign and malignant tumours.

Table 9: Scores for an undiagnosed tumour.

we diagnose a tumour as malignant if

P(malignant|D)
P(benign|D)

=
P(D|malignant)× P(malignant)

P(D|benign)× P(benign)
> 1,

and as benign otherwise.
2. Dataset: the classifier is built on a sample of N = 458 tumours with nine measurements,

each scored on a scale of 1 to 10. The measurements include items such as clump thickness
and bare nuclei; boxplots of these measurements are shown in Figure 11. We also have one
undiagnosed case with these measurements, with its explanatory signature scores given in
Table 9; this is the observation for which a prediction is required.

3. Assumptions: we assume that the scores of each measurement are independent of one
another (hence the naive qualifier); this assumption simplifies the likelihood function to

P(H|D) = P(H|x1, x2, · · · , x9) = P(H|x1)× · · · × P(H|x9).

4. Prior distribution: we can ask subject matter experts to provide a rough estimate for the
general ratio of benign to malignant tumours, or use the proportion of benign tumours in
the sample as our prior. In situations where we have no knowledge about this distribution,
we may simply assume a non-informative prior (in this case, the prevalence rates being
the same for both responses).

(DRAFT) 24



P Boily, J Schellinck, S Hagiwara (DRAFT) 1.4 STATISTICAL ANALYSIS

Figure 12: Multinomial probabilities for benign and malignant tumours.

Class Prior Likelihood Posterior Ratio
Malignant 0.327 5.85× 10−11 1.92× 10−11 3.15× 10−8

Benign 0.673 9.06× 10−4 6.09× 10−4

Table 10: Computation of posterior probabilities in the undiagnosed case.

5. Computation of likelihoods: under independence, each measurement is assumed to follow
a multinomial distribution (since scores are on scale from 1 to 10). Multiplying probabil-
ities from each multinomial distribution (one each for both classes) provides the overall
likelihoods for benign and malignant tumours, respectively. The likelihood of the undiag-
nosed case being a benign tumour is given to be 9.06×10−4, while the likelihood of being a
malignant tumour is 5.85×10−11, based on the multinomial probabilities given in Table 12

6. Computation of Posterior: Multiplying the prior probability and likelihood, we get a quqn-
tity that is proportional to the respective posterior probabilities. Looking at Table 10, we
conclude that the tumour in the undiagnosed case islikely benign (note that we have no
measurement on how much more likely it is to be benign than to be malignant – the classifier
is not calibrated).

1.4.11 Case Study: Covariance Analysis of the Effect of a Probiotic Agent on IBS

Irritable Bowel Syndrome (IBS) is a functional colonic disease with high prevalence. Typical
symptoms include “chronic abdominal pain, discomfort, bloating, and alteration of bowel habits”
[Wikipedia]; it has been linked to chronic pain, fatigue, and work absenteeism and is considered
to have a severe impact on quality of life [Paré et al. (2006), Maxion-Bergemann et al. (2006)].
Although there is no known cure for IBS, there are treatments that attempt to relieve symptoms,
including dietary adjustments, medication and psychological interventions.

In 2010, the Canadian College of Naturopathic Medicine (CCNM) was commissioned to conduct
a study to investigate the effect of a probiotic agent on IBS. The study’s details and a preliminary
data analysis using hierarchical linear models (HLM) can be found in a preliminary report – it’s
key findings are that a strong placebo/expectation effect is present in the early stages of the study
(which is not entirely surprising given the nature of the phenomenon under study), and that there
is no strong statistical evidence to suspect that the agent itself has much of an effect on mild to
moderate IBS [Herman, Cooley, Seely (2011)].

The sponsor has expressed interest in determining whether these findings still hold when the
trial data is examined using analysis of covariance (ANCOVA), a general linear model which
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evaluates whether the population means of a dependent/response variables (in this case, IBS
Severity or a measure of Quality of Life (QoL)) are equal across levels of a categorical indepen-
dent variable (in this case, two treatment effects over time), while statistically controlling for the
effects of covariates (in this case, the baseline scores for IBSS and QoL). By comparison with the
more traditional analysis of variance (ANOVA), ANCOVA can be used to increase the likelihood
of finding a significant difference between treatment groups (when one exists) by reducing the
within-group error variance.

While some of the results looked promising (in particular for severe IBS sufferers), no statisti-
cal evidence for treatment effect was found at the 95% significance level; furthermore, even had
evidence been found at that level, design and recruitment issues would have called their practical
significance into question.

In 2013, CCNM conducted a second study to investigate the effect of the probiotic agent, this
time focusing on severe IBS. The results are provided in the report “Covariance Analysis of IBS
Study II”.
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This report presents key findings of the covariance analysis that was performed to test the effect of the probiotic agent on 
the severe sufferers of Irritable Bowel Syndrome (IBS). 

It relies in many ways on work previously done by CQADS; as such, large chunks of this report follow the structure and 
content of “Covariance Analysis for the 2010 CCNM Pilot Study on Irritable Bowel Syndrome” [9], a report produced 
by CQADS in August of 2013.   

Background	and	Executive	Summary	
Irritable Bowel Syndrome (IBS) is a functional colonic disease with high prevalence. Typical symptoms include “chronic 
abdominal pain, discomfort, bloating, and alteration of bowel habits” [1]; it has been linked to chronic pain, fatigue, and 
work absenteeism and is considered to have a severe impact on quality of life [2, 3]. Although there is no known cure for 
IBS, there are treatments that attempt to relieve symptoms, including dietary adjustments, medication and psychological 
interventions.  

In 2010, the Canadian College of Naturopathic Medicine (CCNM) was commissioned to conduct a pilot study to investigate 
the effect of a probiotic agent on IBS. The study’s details and a preliminary data analysis using hierarchical linear models 
(HLM) can be found in a preliminary report: it’s key findings are that a strong placebo/expectation effect is present in the 
early stages of the study which is not entirely surprising given the nature of the phenomenon under study, and that there is 
no strong statistical evidence to suspect that the agent itself has much of an effect on mild to moderate IBS [4]. Furthermore, 
the key findings from covariance analyses (ANCOVA) on the above data conducted by the Centre for Quantitative Analysis 
and Decision Support (CQADS) aligned with the analysis using HLM [4,9]; the main ANCOVA results are summarized in  
the table below. 

ANCOVAs for IBS and QoL measures 
(original dataset) 

Sample 
Size 

Initial At 3 months 
p-value 

mean SD mean SD 
All subjects IBS severity Placebo 57 273.8 73.7 204.0 97.2 0.095 

(0.137†) Probiotics 59 268.9 76.4 175.3 78.6 
QoL Placebo 58 42.0 20.4 33.4 21.0 

0.056 Probiotics 59 40.2 18.6 26.4 17.5 
Severe subjects* IBS severity* Placebo 16 363.0 57.9 281.4 121.4 

(0.049†) Probiotics 19 351.0 44.0 206.3 104.5 
QoL* Placebo 17 55.8 21.6 50.6 21.8 

0.007 Probiotics 19 48.3 16.1 29.9 18.0 
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Due to the small sample size (and because of issues associated with positively determining membership in the severe sufferer 
category), the analyses marked with a “*” were not endorsed by CQADS, and are provided for completeness. The 
significance of the treatment is measured by the p-value (p-values obtained after analysis on the reduced dataset, for which 
outliers have been removed, are indicated by a “†”). 

While some of the results looked promising, no statistical evidence for treatment effect was found at the 95% significance 
level; furthermore, even had evidence been found at that level, design and recruitment issues would have called their 
practical significance into question [9].   

In 2013, CCNM conducted a second study to investigate the effect of a probiotic agent, this time focusing on severe IBS 
sufferers. Potential participants were considered to be severe IBS sufferers if they had total IBS severity scores of 300 or 
higher, with the highest possible score being 500. The study sponsor has expressed interest in analyzing this new data using 
Analysis of Covariance (ANCOVA) in order to determine whether there is a statistically significant difference between the 
placebo and the probiotic agent.  

ANCOVA is a general linear model which evaluates whether the population means of a dependent/response variable (in 
this case, total IBS severity score, five IBS sub-scores, and a measure of Quality of Life) are equal across levels of a 
categorical independent variable (in this case, two treatment effects over time), while statistically controlling for the effects 
of covariates (in this case, the baseline scores). By comparison with the more traditional analysis of variance (ANOVA), 
ANCOVA can be used to increase the likelihood of finding a significant difference between treatment groups (when one 
exists) by reducing the within-group error variance. 

The main results of the 7 ANCOVAs (for the new data, imputed with Last Observation Carried Forward, see next page) and 
the 5 IBS sub-scores ANCOVAs (for the original data, imputed with LOCF, below). Detailed explanations are found in the 
body of the report.   

ANCOVA for the 5 IBS sub-scores 
(original dataset) Group Sample 

Size 
Initial At 3 months 

p-value 
mean SD mean SD 

All subjects Abdominal 
pain 

Placebo 57 45.26 23.50 30.68 24.51 
0.106 Probiotics 59 43.95 22.79 23.49 21.41 

Abdominal 
distension 

Placebo 57 51.28 22.93 34.18 26.48 
0.445 Probiotics 59 48.35 25.28 30.19 22.25 

Satisfaction Placebo 57 67.79 20.89 56.95 23.40 
0.085 Probiotics 59 69.60 23.53 50.42 21.38 

Interference Placebo 57 65.81 18.63 47.63 21.16 
0.158 Probiotics 59 59.67 18.13 40.14 20.07 

Frequency Placebo 57 43.68 24.32 34.56 27.37 
0.347 Probiotics 59 47.37 28.26 31.04 28.78 

 
As shown in these tables, the ANCOVA of the two clinical trials to study the effect of the probiotic agent on IBS do not 
reveal a statistically significant treatment effect. That being said, even though we conclude that there is no evidence to 
differentiate the treatment effect from the placebo effect, there were some instances when the difference in improvements 
between the two treatment groups (Probiotics over Placebo in the first study, I over K in the second) were nearly significant 
(e.g., patients’ satisfaction with their bowel movement habits in the first study, and their quality of life in both studies, with 
p-values reaching 0.085, 0.056 and 0.061, respectively).  

While the p-values themselves may look encouraging, the large placebo effect and high fluctuating nature of IBS on a day-
to-day basis make it very difficult to control for the uncertainty in the data. Furthermore, it is far from obvious that these 
results can be generalized to a larger population due to the non-probabilistic nature of samples collected for the clinical 
trials, as well as the possibility of a self-reporting bias. 
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 ANCOVA for the 7 core analyses  
(new dataset) Group Sample 

Size 
Initial End (at 3 month) 

p-value 
mean SD mean SD 

All subjects Total IBS severity I 45 350.41 42.91 265.75 100.62 0.310 
K 42 351.82 53.83 245.10 106.21 

Abdominal pain I 45 61.92 17.52 43.30 23.08 0.603 
K 42 64.56 17.64 39.96 26.18 

Satisfaction I 45 82.74 15.43 65.54 22.13 0.330 
K 42 76.58 16.79 57.61 23.55 

Interference I 45 74.41 13.97 56.22 22.60 0.327 
K 42 75.38 15.05 56.42 23.01 

Frequency I 45 62.89 23.22 52.22 32.11 0.358 
K 42 62.98 23.58 45.95 31.00 

Abdominal 
distension 

I 45 68.44 16.91 48.46 25.77 0.902 
K 42 72.32 16.26 45.17 27.88 

QOL I 43 52.91 18.52 40.43 23.33 0.061 
K 41 52.59 15.63 47.66 20.35 

1.	Understanding	the	Structure	of	the	Data	
1.1 Recruitment 
100 participants were recruited for the study, where 50 of which were assigned to group K, and 50 to the group I: one of 
these groups represent the active treatment group, while the other group is administered a placebo treatment (CQADS 
analysts do not know which label corresponds to which group).  

The objective of this study is to examine the effect of the treatment against the (placebo) control group on severe IBS 
patients. It should be noted that there were 16 participants who were not classified as a severe IBS sufferer according to 
their pre-treatment total IBS severity scores. Participant ID 68, who had a severity score of 158, was discarded from the 
study; however, 15 patients whose baseline IBS severity scores ranging from 259.6 to 298 were kept for this study as the 
severity of IBS is known to fluctuate rather frequently. 

1.2 Randomization 
In order to facilitate a balanced representation in the active treatment group and the placebo group in terms of their 
demographical characteristics, participants were first categorized by their gender group (M/F) and age group (< or ≧50 
years). Within each subgroup, participants were then randomly assigned to the treatment group or the placebo group, in a 
double-blind fashion (i.e. neither the examiners nor the participants were aware of the groups to which they had been 
assigned). As the number of treatment/placebo assignments in each group was not intended to be even, this randomization 
process leads us to (Unbalanced) Randomized Complete Block Design. 

1.3 Outcome Measures 
The two main response variables under considerations are the total IBS severity score and the IBS Quality of Life (QoL) 
measure. Furthermore, we will be examining the effect of treatment on each of the five questions that constitute the total 
IBS severity score. These questions measure the levels of abdominal pain, abdominal distension and bloating, satisfaction, 
interference, and frequency. All scores are collected at the beginning of the study (baseline) and at one-month intervals for 
three months. As a side note, all of these response variables are computed using self-reported data.   

1.4 Drop-outs, Missing Observations, and Imputation 
Eight participants did not deliver any information after the baseline measure: four participants from the group K and four 
from group I. As there was no information regarding the treatment effects for those participants, they were eliminated from 
the remaining analysis. Furthermore, six participants failed to follow-up after the first or the second month of the study. 
Table 1 summarizes the breakdown of those participants. 
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Table 1  – IBSS drop-out data. Only those participants that remain after the first two months are retained 

 
Total # of 
recruited 

participants 

Dropped out 
after 

Baseline 

Dropped out 
after Month 

1 

Dropped out 
after Month 

2 

Remaining 
after  Month 

3 
Treatment K 49 4 3 2 40 (81.6%) 
Treatment I 50 4 1 0 45 (90.0%) 

Total 99 8 4 2 85 (85.8%) 
 
Since the covariance analysis requires the dataset to be free of missing observations, imputations must be performed prior 
to proceeding with the analysis.  

In general, it is difficult to study the exact reasons why some participants terminate the follow-up prematurely; however it 
could be conjectured that participants who complete the study are either more likely to believe in the effect of the active 
agent or to actually be feeling the effect of the treatment than those who fail to complete the treatment. In fact, taking a look 
at drop-outs with partial information, it is often the case that these observations do not follow the general downward trend 
seen in the participants with the complete information. In an attempt to test this conjecture, partial non-respondents should 
be kept in the analysis. 

Therefore, for those participants with recorded observations up to the second follow-up, the Last Observation Carried 
Forward (LOCF) imputation was favoured over the regression imputation [5], and implemented for the analysis. However, 
it should be noted that four participants dropped out of the study after the first follow-up. Due to the observed month-to-
month fluctuation in the scores within each patient, it may not be reasonable to assume that the IBS severity scores and QoL 
measures for these participants stay constant over a two month period. Therefore, the decision was made to eliminate these 
participants from subsequent analysis. 

To compensate for the fact that the imputation was done prior to the covariance analysis, one degree of freedom is docked 
for each imputation. Note that only the missing observations at the third month into the study are imputed, as we are 
interested in comparing the baseline measures and the final measures. 

For the IBS severity score and its five sub-scores, there were no partial non-respondent; however, subjects 19, 22, and 32 
did not complete some questions on the QoL questionnaire at the baseline. For this reason, these participants are removed 
from the covariance analysis for the QoL scores. Table 2 summarizes the participants who dropped out prior to completion 
of the study and who were kept for the analysis with imputed scores.  

Table 2 – Number of participants used in covariance analyses for IBS severity measure and QoL measure 

 
Treatment group 

IBS QoL 
K I K I 

Removed 7 5 8 7 
Completed (+ imputed) 40 (42) 45 39 (41) 43 
Total (Recruited) 49 50 49 50 

 
1.5 Outlier Detection 
Outlying observations frequently have a dramatic effect on the fitted values of the selected model; should such extreme 
points be found in the dataset, they need to be studied carefully in order to determine whether they should be retained or 
removed [6]. If influential observations are identified, remedial measures may need to be applied in order to minimize their 
undue effects.  

Given that we have at most four data points per participant, and due to the large observed within-participant variability over 
time, it is near impossible to identify within-participant observations which we could deemed to be “extreme”. It is, however, 
significantly easier to identify any abnormal between-participant observations.   

Numerous methods can be used to find outliers; none of them are foolproof and good judgement must be used. For this 
reason, the box-and-whisker plots can help in the search for possible outliers: data points falling below 𝑄#	– 	1.5 ∙ IQR or 
above 𝑄*	 + 	1.5 ∙ IQR, (where 𝑄#, 	𝑄*,	IQR are the first quartile, the third quartile and the inter-quartile range, respectively) 
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require a more in-depth analysis (see Figure 1, on page 6). From the box-and-whisker plots, we observe that medians for 
treatment groups I and K usually do not differ greatly at the third follow-up. Furthermore, the variability of the data (given 
by the range of the whisker) tends to be greater at the last follow-up compared to the variability observed at the pre-treatment 
assessment. 

2.	Model	Selection	
As mentioned in Section 1.2, the participants were stratified according to their gender (M/F) and age group (< or ≥50 years), 
and then randomized within each block in an effort to promote balanced representation between two treatment groups. From 
a statistical perspective, blocking is used to isolate controllable variables that are not of the primary interest: since 
participants were randomized within each block (subgroup), and the number of treatment/placebo assignments in each group 
was not intended to be even, this randomization process leads us to unbalanced Randomized Complete Block Design 
(RCBD). 

2.1 ANCOVA Models 
On top of the treatment and the block effects, ANCOVA models involve the linear effect of a continuous covariate [7]: the 
models that we use are of the following form: 

𝑦./0 = 𝜇 + 𝜏. + 𝛽/ + 𝛾𝑥./0 + 𝜀./0 , 

where  

• 𝑦./0 is the 𝑘th response variable in the 𝑖th treatment group and 𝑗th block (the scores at third follow-up); 
• 𝜇 is the overall mean;  
• 𝜏. is the 𝑖th treatment effect; 
• 𝛽/ is the 𝑗th block effect;  
• 𝛾 is the covariate (or regression) effect;  
• 𝑥./0 = 𝑋./0 − 𝑋=  is the 𝑘th  covariate (or concomitant variable) in the 𝑖th  treatment group and 𝑗th  block (the 

baseline IBSS or QoL value adjusted for the mean), and  
• 𝜀./0 is the 𝑘th residual in the 𝑖th treatment group and 𝑗th block. 

 
The indices correspond to 𝑖 = 1,2, 𝑗 = 1,… , 4, 𝑘 = 1,… , 𝑛./, ∑ ∑ 𝑛.// = 𝑁. , where 𝑁 is the number of participants. 

2.2 ANCOVA Assumptions 
In order to use an ANCOVA model, four assumptions must be satisfied: 

1. Independence and Normality of Residuals: the residuals are thought to be independently and identically 
distributed random variables following a normal distribution with zero mean (i.e. 𝜺~𝑁(𝟎, 𝜎𝜺I𝑰)); 

2. Homogeneity of Residual Variances: the variance of the residuals must be uniform across treatment groups; 
3. Homogeneity of Regression Slopes: the regression effect (slope) must be uniform across treatment groups, and 
4. Linearity of Regression: the regression relationship between the response and the covariate must be linear. 

 
The first of these assumptions can be tested with the help of a QQ-plot and a scatter plot of residual vs. fitted values, while 
the second may use the Bartlett's or the Levene's test. The final assumption is not as crucial as the other three assumptions. 
Various remedial methods can be applied should any of these assumptions fail [6].   

The third assumption, however, is critical to the ANCOVA model. It can be tested with the equal slope test: we run an 
ANCOVA regression on the models given in Sections 4 and 5 with an additional interaction term 𝑥 × 𝜏. If the interaction 
is not significant, the third assumption is satisfied. In the event that the interaction term is statistically significant, a different 
approach (e.g. moderated regression analysis, mediation analyses) is required as using the original ANCOVA model is not 
prescribed [8]. ANCOVA assumptions will be verified for both IBSS and QoL response variables in sections 4 and 5 
respectively. 
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Figure 1 – Box-and-whisker plots for IBS severity scores at each time point. The blue and red columns represent the scores for treatment groups I, 
and K, respectively, while circles represent outlying values according to the box-and-whisker test 

 

3.	Covariance	Analysis	for	the	IBS	Severity	Score	
A total of 100 participants were recruited for the study. One subject did not meet the recruitment criteria, and eight of which 
dropped out after the baseline assessment. A further three drop-outs were removed (see Section 1.4), leaving a total of N = 
88 participants for the analyses for the IBS severity score and its sub scores. In order to accommodate the two imputations 
(again, see Section 2.4), two degrees of freedom are docked from the residual source in the ANCOVA analyses. 

3.1 Total IBS Severity Score 
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The ANOVA table for the ANCOVA Model on the total IBS severity score is found in Table 3. At first glance, as the p-
value for the treatment effect is 0.310, we conclude that there is not enough evidence to suggest that the two treatment 
effects differ at 0.05 significance  level. Since the 95% confidence interval for the difference in the treatment effects include 
0, the estimated treatment effects are not presented. 

Table 3 – ANOVA table for the variance analysis on the total IBS severity score with degrees of freedom modified to accommodate imputation. 

Source df Type III SS MS F p-value 
𝝉 (Treatment) 1 10521 10521 1.043 0.310 
𝜷 (Block) 3 19551 6517 0.646 0.588 
𝜸 (Covariate) 1 89895 89895 8.911 0.004 
𝜺 (Residual) 81-2=79 796996 10088.56   

 

The ANCOVA assumptions are verified as follows. The assumption of independence of the residuals is satisfied based on 
the visual assessment of diagnostic plots in Figure 2. The data is well behaved on the normal Q-Q plot, verifying that the 
assumption of normality is met.  

Bartlett's test is used to assess the homogeneity of the residual variances in groups K and I. The test statistic 𝑋I = 0.265, 
with a corresponding p-value of 0.60, implies that there is insufficient evidence to reject the assumption of homogeneity of 
variances. A plot of the variances corroborates the assertion that the second assumption is met (see Figure 3).  

Figure 2 – Normality and independence of the residuals from ANCOVA for the total IBS severity score 

 

Furthermore, with a p-value of 0.004 for the covariate effect, it seems reasonable to assume that the relationship between 
the response and the covariate is indeed linear.  

Finally, the test for equal slopes compares the original model 𝑦~𝜏 + 𝛽 + 𝛾𝑥 to the modified interaction model  

𝑦~𝜏 + 𝛽 + 𝛾𝑥 + 𝜌(𝑥 × 𝜏). 

The lack of significance of the interaction term is interpreted as favourable to the third assumption. The appropriate ANOVA 
table is shown in Table 4; the corresponding p-value of 0.937 indicates that that it is reasonable to assume the homogeneity 
of regression slopes.  
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Figure 3 – Homogeneity of variance between treatment groups I and K for the total IBS severity score based on ANCOVA  

 

Table 4 – Homogeneity of regression slopes across treatment groups for the covariance model for the total IBS severity score with degrees of freedom 
modified to accommodate imputation. 

Model dfe RSS dfdiff SS F p-value 
Original 79 796996 

    

Interaction 78 796932 1 64 0.006 0.937 
 
The plot of residuals vs. fitted values (Figure 2, left) shows three outliers based on the covariance analysis. Table 5 
summarizes treatment effects on these participants. This combination provides an impetus to study the effect of possible 
influential observations. Note that all three outliers in Table 5 have large reduction in the IBS severity score to categorize 
those participants as either not suffering from IBS (scores ranging from 0 to 75) or mildly suffering from IBS (scores ranging 
from 75 to 175). While their rate of reduction is anomalous compared to the rest of the participants, since not all three 
participants belong to one group, the covariance analysis on reduced dataset (i.e., IDs 16, 18, and 68 removed) should not 
alter the results significantly. Hence, no further analyses are conducted for the total IBS severity score and we conclude that 
there is not enough evidence to believe that treatments I and K produces significantly different results. 

Table 5 – Outliers based on the covariance analysis on the total IBS severity score 

ID Group Baseline score Final score Difference 
16 I 448 134 -314 
18 K 326 6 -320 
68 I 365 65 -300 

 

3.2 Abdominal Pain Score 
The ANOVA table for the abdominal pain score using ANCOVA Model is found in Table 6. It should be noted that the 
p-value for the covariate effect is 0.630, the result suggests that analysis of variance would be more appropriate than analysis 
of covariance to test the difference in the abdominal pain scores in two treatment groups. 

Table 6 – ANOVA table for the covariance analysis on the abdominal pain score with degrees of freedom modified to accommodate imputation. 

Source df Type III SS MS F p-value 
𝝉 (Treatment) 1 192 192 0.314 0.577 
𝜷 (Block) 3 3003 1001 1.639 0.187 
𝜸 (Covariate) 1 143 143 0.233 0.630 
𝜺 (Residual) 81-2=79 48261 611   
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Table 7, which provides the ANOVA table for the analysis of variance on the abdominal pain score, indicates that the 
treatment effects do not differ as the p-value for the difference in the treatment effects is 0.603. The assumption of 
independence of the residuals is satisfied based on the visual assessment of diagnostic plots in Figure 4. The normal Q-Q 
plot shows a slight deviation from the assumption of normality; however, as ANOVA is moderately robust to the violation 
of this assumption, the level of deviation seen here is no concern.  

Table 7 – ANOVA table for the variance analysis on abdominal pain scores with degrees of freedom modified to accommodate imputation. 

Source df Type III SS MS F p-value 
𝝉 (Treatment) 1 163.31 163.31 0.273 0.603 
𝜷 (Block) 3 3147.44 1049.15 1.759 0.162 
𝜺 (Residual) 83-2=81 48404 597.58   

 
To assess the homogeneous variances of the residuals in the groups I and K, Bartlett's test is used. There is insufficient 
evidence to conclude that the variances are non-homogeneous across treatment groups as the statistic is 𝑋I = 0.239 with a 
corresponding p-value of 0.625. A plot of the variances corroborates the assertion that the second assumption is met (see 
Figure 5).  

Figure 4 – Normality and independence of the residuals from ANOVA for the abdominal pain scores 

 

Figure 5 – Homogeneity of variance between treatment groups I and K for the ANOVA of the abdominal pain score 
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The plot of residuals vs. fitted values (Figure 4, left) shows three outliers based on the variance analysis. Table 8 
summarizes treatment effects on them. This combination provides an impetus to study the effect of possible influential 
observations. However, since the p-value associated with the treatment effect on the abdominal pain score is 0.603, analysis 
on the reduced dataset (i.e., potential influential observations removed) should not result in change in the decision based on 
ANOVA. Therefore, no further analyses are conducted for the abdominal pain score and we conclude that there is not 
enough evidence to believe that treatments I and K produces significantly different results. 

Table 8 – Outliers based on the analysis of variance on the abdominal pain score 

ID Group Baseline score Final score Difference 
73 K 50 100 50 
77 I 78 94 16 
88 I 76 0 -76 

 

3.3 Satisfaction Score 
Table 9 provides the ANOVA table for the satisfaction score using ANCOVA Model. As the p-value for the treatment 
effect is given to be 0.330, we conclude that there is not enough evidence to suggest that the treatment has an effect at the 
0.05 significance  level. 

The ANCOVA assumptions are verified as follows. The assumption of independence of the residuals is satisfied based on 
the visual assessment of diagnostic plots in Figure 6. The normal Q-Q plot demonstrates deviation from the assumption of 
normality on both tails; however, as ANCOVA is moderately robust to the violation of this assumption, the level of deviation 
seen here is no concern.  

Due to a moderate deviation from the normality assumption, Levene's test is used to assess the homogeneous variances of 
the residuals in the groups I and K. The test statistic is 𝑊 = 0.072 with a corresponding  p-value of 0.790. There is thus 
insufficient evidence to conclude that the variances are non-homogeneous across treatment groups. A plot of the variances 
corroborates the assertion that the second assumption is met (see Figure 7).  

Table 9 – ANOVA table for the covariance analysis on satisfaction score with degrees of freedom modified to accommodate imputation. 

Source df Type III SS MS F p-value 
𝝉 (Treatment) 1 837 837 0.961 0.330 
𝜷 (Block) 3 4089 1363 1.565 0.205 
𝜸 (Covariate) 1 13078 13078 15.013 <0.001 
𝜺 (Residual) 81-2=79 68815 871   

 
Furthermore, with a p-value for the covariate effect being less than 0.001, it seems reasonable to assume that the relationship 
between the response and the covariate is linear.  

The ANOVA table for the test of homogeneity of the regression slopes is shown in Table 10; the corresponding p-value of 
0.261 indicates that that it is reasonable to assume the homogeneity of regression slopes.  

The plot of residuals vs. fitted values (Figure 6, left) shows three outliers based on the covariance analysis. Table 11 
summarizes treatment effects on them. This combination provides an impetus to study the effect of possible influential 
observations. However, since the p-value associated with the treatment effect on the satisfaction score is 0.330, analysis on 
the reduced dataset (i.e., potential influential observations removed) should not result in change in the decision based on 
ANOVA. Therefore, no further analyses are conducted for the abdominal pain score and we conclude that there is not 
enough evidence to believe that treatments I and K produces significantly different results. 
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Figure 6 – Normality and independence of the residuals from ANCOVA for the satisfaction score 

 

Figure 7 – Homogeneity of variance between treatment groups I and K for the ANCOVA of the satisfaction score 

 

Table 10 – Homogeneity of regression slopes across treatment groups for the covariance model for the satisfaction score with degrees of freedom 
modified to accommodate imputation. 

Model dfe RSS dfdiff SS F p-value 
Original 79 68815 

    

Interaction 78 67700 1 1115 1.280 0.261 
 

Table 11 – Outliers based on the analysis of variance on the satisfaction score 

ID Group Baseline score Final score Difference 
12 I 100 10 -90 
16 K 100 0 -100 
55 I 10 100 90 
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3.4 Interference Score 
Table 12 provides the ANOVA table for the interference score using ANCOVA Model. As the p-value for the treatment 
effect is given to be 0.327, we conclude that there is not enough evidence to suggest that the treatment has an effect at the 
0.05 significance level. 

Table 12 – ANOVA table for the covariance analysis on interference score with degrees of freedom modified to accommodate imputation. 

Source df Type III SS MS F p-value 
𝝉 (Treatment) 1 680 680 0.973 0.327 
𝜷 (Block) 3 878 293 0.419 0.740 
𝜸 (Covariate) 1 4899 4899 7.013 0.010 
𝜺 (Residual) 81-2=79 55183 699   

 
The ANCOVA assumptions are verified as follows. The assumption of independence of the residuals is satisfied based on 
the visual assessment of diagnostic plots in Figure 8. The normal Q-Q plot demonstrates deviation from the assumption of 
normality on both tails; however, as ANCOVA is moderately robust to the violation of this assumption, the level of deviation 
seen here is no concern.  

Due to a moderate deviation from the normality assumption, Levene's test is used to assess the homogeneous variances of 
the residuals in the groups I and K. The test statistic is 𝑊 = 0.068 with a corresponding p-value of 0.795. There is thus 
insufficient evidence to conclude that the variances are non-homogeneous across treatment groups. A plot of the variances 
corroborates the assertion that the second assumption is met (see Figure 9).  

Figure 8 – Normality and independence of the residuals from ANCOVA for the interference score 

 

Furthermore, with a p-value for the covariate effect being 0.01, it seems reasonable to assume that the relationship between 
the response and the covariate is linear.  

The ANOVA table for the test of homogeneity of the regression slopes is shown in Table 13; the corresponding p-value of 
0.261 indicates that that it is reasonable to assume the homogeneity of regression slopes.  

The plot of residuals vs. fitted values (Figure 8, left) shows three outliers based on the covariance analysis. Table 14 
summarizes treatment effects on them. This combination provides an impetus to study the effect of possible influential 
observations. However, since the p-value associated with the treatment effect on the interference score is 0.327, analysis on 
the reduced dataset (i.e., potential influential observations removed) should not result in change in the decision based on 
ANOVA. Therefore, no further analyses are conducted for the abdominal pain score and we conclude that there is not 
enough evidence to believe that treatments I and K produces significantly different results. 
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Figure 9 – Homogeneity of variance between treatment groups I and K for the ANCOVA of the interference score 

 

Table 13 – Homogeneity of regression slopes across treatment groups for the covariance model for the interference score with degrees of freedom 
modified to accommodate imputation. 

Model dfe RSS dfdiff SS F p-value 
Original 79 68815 

    

Interference 78 67700 1 1115 1.280 0.261 
 

Table 14 – Outliers based on the analysis of variance on the interference score 

ID Group Baseline score Final score Difference 
53 K 87 0 -87 
69 I 100 15 -85 
76 K 56 88 32 

 

3.5 Frequency Score 
Table 15 provides the ANOVA table for the frequency score using ANCOVA Model. As the p-value for the treatment 
effect is given to be 0.358, we conclude that there is not enough evidence to suggest that the treatment has an effect at the 
0.05 significance level. 

Table 15 – ANOVA table for the covariance analysis on frequency score with degrees of freedom modified to accommodate imputation. 

Source df Type III SS MS F p-value 
𝝉 (Treatment) 1 596 596 0.854 0.358 
𝜷 (Block) 3 1116 372 0.533 0.661 
𝜸 (Covariate) 1 3588 3588 7.083 0.009 
𝜺 (Residual) 81-2=79 40014 507   

 
The ANCOVA assumptions are verified as follows. The assumption of independence of the residuals is satisfied based on 
the visual assessment of diagnostic plots in Figure 10. The normal Q-Q plot demonstrates a slight deviation from the 
assumption of normality; however, as ANCOVA is moderately robust to the violation of this assumption, the level of 
deviation seen here is no concern.  

Due to a minor deviation from the normality assumption, Levene's test is used to assess the homogeneous variances of the 
residuals in the groups I and K. The test statistic is 𝑊 = 0.321 with a corresponding p-value of 0.573. There is thus 



 

 

14 ANCOVA of IBS Study 

October 2014                                                                                                                              CQADS Project Number: 14-004 

 

insufficient evidence to conclude that the variances are non-homogeneous across treatment groups. A plot of the variances 
corroborates the assertion that the second assumption is met (see Figure 11).  

Figure 10 – Normality and independence of the residuals from ANCOVA for the frequency score 

 

Figure 11 – Homogeneity of variance between treatment groups I and K for the ANCOVA of the frequency score 

 

Furthermore, with a p-value for the covariate effect being 0.009, it seems reasonable to assume that the relationship between 
the response and the covariate is linear.  

The ANOVA table for the test of homogeneity of the regression slopes is shown in Table 16; the corresponding p-value of 
0.427 indicates that that it is reasonable to assume the homogeneity of regression slopes.  

The plot of residuals vs. fitted values (Figure 10, left) shows three outliers based on the covariance analysis. Table 17 
summarizes treatment effects on them. This combination provides an impetus to study the effect of possible influential 
observations. However, since the p-value associated with the treatment effect on the satisfaction score is 0.358, analysis on 
the reduced dataset (i.e., potential influential observations removed) should not result in change in the decision based on 
ANOVA. Therefore, no further analyses are conducted for the abdominal pain score and we conclude that there is not 
enough evidence to believe that treatments I and K produces significantly different results. 
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Table 16 –  Homogeneity of regression slopes across treatment groups for the covariance model for the frequency score with degrees of freedom 
modified to accommodate imputation. 

Model dfe RSS dfdiff SS F p-value 
Original 79 40014 

    

Frequency 78 40006 1 8.000 0.016 0.427 
 

Table 17 – Outliers based on the analysis of variance on the frequency score 

ID Group Baseline score Final score Difference 
18 K 66.7 2 -64.7 
34 I 82.7 10 -72.7 
64 K 90 10 -80 

 

3.6 Abdominal Distension Score 
Table 18 provides the ANOVA table for the abdominal distension score using ANCOVA Model. As the p-value for the 
treatment effect is given to be 0.902, we conclude that there is not enough evidence to suggest that the treatment has an 
effect at the 0.05 significance level. 

Table 18 – ANOVA table for the covariance analysis on abdominal distension score with degrees of freedom modified to accommodate imputation. 

Source df Type III SS MS F p-value 
𝝉 (Treatment) 1 7 7 0.015 0.902 
𝜷 (Block) 3 847 282 0.586 0.626 
𝜸 (Covariate) 1 5383 5383 11.182 0.001 
𝜺 (Residual) 81-2=79 38028 481   

 
The ANCOVA assumptions are verified as follows. The assumption of independence of the residuals is satisfied based on 
the visual assessment of diagnostic plots in Figure 12. The normal Q-Q plot demonstrates a slight deviation from the 
assumption of normality; however, as ANCOVA is moderately robust to the violation of this assumption, the level of 
deviation seen here is no concern.  

Due to a minor deviation from the normality assumption, Levene's test is used to assess the homogeneous variances of the 
residuals in the groups K vs. I. The test statistic is 𝑊 = 0.059 with a corresponding p-value of 0.809. There is thus 
insufficient evidence to conclude that the variances are non-homogeneous across treatment groups. A plot of the variances 
corroborates the assertion that the second assumption is met (see Figure 13).  

Furthermore, with a p-value for the covariate effect being 0.001, it seems reasonable to assume that the relationship between 
the response and the covariate is linear.  

The ANOVA table for the test of homogeneity of the regression slopes is shown in Table 19; the corresponding p-value of 
0.835 indicates that that it is reasonable to assume the homogeneity of regression slopes.  

The plot of residuals vs. fitted values (Figure 12, left) shows three outliers based on the covariance analysis. Table 20 
summarizes treatment effects on them. This combination provides an impetus to study the effect of possible influential 
observations. However, since the p-value associated with the treatment effect on the satisfaction score is 0.358, analysis on 
the reduced dataset (i.e., potential influential observations removed) would not result in change in the decision based on 
ANOVA. Therefore, no further analyses are conducted for the abdominal pain score and we conclude that there is not 
enough evidence to believe that treatments I and K produces significantly different results. 

 



 

 

16 ANCOVA of IBS Study 

October 2014                                                                                                                              CQADS Project Number: 14-004 

 

Figure 12 – Normality and independence of the residuals from ANCOVA for the abdominal distension score 

 

Figure 13 – Homogeneity of variance between treatment groups I and K for the ANCOVA of the abdominal distension score 

 

Table 19 – Homogeneity of regression slopes across treatment groups for the covariance model for the abdominal distension score with degrees of 
freedom modified to accommodate imputation. 

Model dfe RSS dfdiff SS F p-value 
Original 79 38028 

    

Interaction 78 38007 1 21.000 0.044 0.835 
 

Table 20 – Outliers based on the analysis of variance on the abdominal distension score 

ID Group Baseline score Final score Difference 
18 K 66.7 0 -66.7 
64 I 80 10 -70 
69 I 75 5 -70 
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4.	Covariance	Analysis	for	the	QoL	Score	
As before, a total of 100 participants were recruited for the study, where one subject did not meet the recruitment criteria, 
three subjects had incomplete baseline measure for QoL, and eight of which dropped out after the baseline assessment. A 
further four drop-outs were removed (see Section 2.4), leaving a total of N = 84 participants for the analyses for the IBS 
severity score and its sub scores. In order to accommodate the two imputations (again, see Section 2.4), two degrees of 
freedom are docked from the residual source in the ANCOVA analyses. 

4.1 QoL Score on Full Dataset 

The ANOVA table for the ANCOVA Model on the QoL score is found in Table 21. At first glance, as the p-value for the 
treatment effect is 0.061, we conclude that there is not enough evidence to suggest that the two treatment effects differ at 
0.05 significance level; however, it should be noted that the point estimate yields that, on average, participants in treatment 
group I have lost an extra 7.26 QoL score over the course of three months treatment period. 

Table 21 – ANOVA table for the variance analysis on the QoL score with degrees of freedom modified to accommodate imputation. 

Source df Type III SS MS F p-value 
𝝉 (Treatment) 1 1099 1099 3.629 0.061 
𝜷 (Block) 3 370 123 0.407 0.748 
𝜸 (Covariate) 1 14847 14847 49.031 <0.001 
𝜺 (Residual) 78-2=76 23013 303   

 
The ANCOVA assumptions are verified as follows. The assumption of independence of the residuals is satisfied based on 
the visual assessment of diagnostic plots in Figure 14. The data is well behaved on the normal Q-Q plot, verifying that the 
assumption of normality is met.  

Bartlett's test is used to assess the homogeneous variances of the residuals in the groups K vs. I. The test statistic is 𝑋I = 
0.006, with a corresponding p-value of 0.937 imply that there is insufficient evidence to conclude that the variances are 
heterogeneous across treatment groups. A plot of the variances corroborates the assertion that the second assumption is met 
(see Figure 15).  

Figure 14 – Normality and independence of the residuals from ANCOVA for the QoL score 
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Figure 15 – Homogeneity of variance between treatment groups I and K for the QoL score based on ANCOVA  

 

Furthermore, with a p-value for the covariate effect being less than 0.001, it seems reasonable to assume that the relationship 
between the response and the covariate is indeed linear.  

The ANOVA table for the test of homogeneity of the regression slopes is shown in Table 22; the corresponding p-value of 
0.481 indicates that that it is reasonable to assume the homogeneity of regression slopes.  

Table 22 – Homogeneity of regression slopes across treatment groups for the covariance model for the QoL score with degrees of freedom modified 
to accommodate imputation. 

Model dfe RSS dfdiff SS F p-value 
Original 76 23014 

    

Interaction 75 22862 1 152.000 0.502 0.481 
 

The plot of residuals vs. fitted values (Figure 14, left) shows three outliers based on the covariance analysis. Table 23 
summarizes treatment effects on these participants. This combination provides an impetus to study the effect of possible 
influential observations. Since the p-value associated with the difference in the effects of the two treatment groups is 0.061, 
we will examine whether the treatment effect would be statistically significant, under the removal of the potential influential 
observations. 

Table 23 – Outliers based on the covariance analysis on the QoL score 

ID Group Baseline score Final score Difference 
14 K 37.5 72.1 34.6 
59 I 54.4 72.1 11.7 
69 I 70.2 11.4 -58.8 

 

4.2 QoL Score on Reduced Dataset 
The ANOVA table for the ANCOVA Model on the QoL score based on a reduced dataset is found in Table 24. At first 
glance, as the p-value for the treatment effect is increased to 0.093, we conclude that there is not enough evidence to suggest 
that the two treatment effects differ at a 0.05 significance level; however, it should be noted that the point estimate yields 
that, on average, participants in treatment group I have lost an extra 6.04 QoL score over the course of three months treatment 
period. 
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Table 24 – ANOVA table for the variance analysis on the QoL score on a reduced dataset with degrees of freedom modified to accommodate 
imputation. 

Source df Type III SS MS F p-value 
𝝉 (Treatment) 1 733 733 2.906 0.093 
𝜷 (Block) 3 730 243 0.965 0.414 
𝜸 (Covariate) 1 16494 16494 65.381 <0.001 
𝜺 (Residual) 75-2=73 18416 252   

 
The ANCOVA assumptions are verified as follows. The assumption of independence of the residuals is satisfied based on 
the visual assessment of diagnostic plots in Figure 16. The data shows a minor deviation from the assumption of normality 
on the normal Q-Q plot; however, as the ANCOVA is moderately robust to the deviation from the normality assumption, 
the level of deviation seen here is no concern.  

The Levene's test is thus used to assess the homogeneous variances of the residuals in the groups I and K. The test statistic 
is 𝑊 = 0.023, with a corresponding p-value of 0.881, implying that there is insufficient evidence to conclude that the 
variances are heterogeneous across treatment groups. A plot of the variances corroborates the assertion that the second 
assumption is met (see Figure 17).  

Figure 16 – Normality and independence of the residuals from ANCOVA for the QoL score 

 

Figure 17 – Homogeneity of variance between treatment groups I and K for the QoL score based on ANCOVA  
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Furthermore, with a p-value for the covariate effect being less than 0.001, it seems reasonable to assume that the relationship 
between the response and the covariate is indeed linear.  The ANOVA table for the test of homogeneity of the regression 
slopes is shown in Table 25; the corresponding p-value of 0.467 indicates that that it is reasonable to assume the 
homogeneity of regression slopes.  

Table 25 – Homogeneity of regression slopes across treatment groups for the covariance model for the QoL score on a reduced dataset with degrees 
of freedom modified to accommodate imputation. 

Model dfe RSS dfdiff SS F p-value 
Original 73 18416 

    

Interaction 72 18281 1 135.000 0.535 0.467 
 

The plot of residuals vs. fitted values (Figure 16, left) shows three outliers based on the covariance analysis. However, 
since these observations are classified as an outlier only due to the removal of the three outliers from the original dataset, 
we will not perform any further analyses on the QoL score, and conclude that, at 95% significance level, two treatment 
groups do not differ in their treatment effects. 

5.	IBS	Sub-Score	Analyses	for	2010	Dataset	
Extremely similar analyses were conducted for the sub-scores of the IBS data collected during the 2010 pilot study; in the 
interest of readability, the results were condensed and placed in a table format in the Executive Summary. While none of 
the sub-scores showed statistically significant improvement under the probiotic agent, one of them (Statisfaction, p-value: 
0.085) was nearly significant.  

6.	Conclusions	and	Recommendations	
We end the report with key findings of our analysis, as well as some recommendations for future investigations.  

6.1 Blocking and Balanced Designs 
In this report, we have found that blocking (or subgrouping) the participants according to their gender and age does not play 
an important role in the ANCOVA. In future studies involving this probiotic agent, blocking should only be used if there 
are compelling reasons to suspect that treatment effects are different for at least one subgroup, as blocking results in fewer 
degrees of freedom. 

Special care should also be taken to have a balanced design (i.e., equal number of replicates for each subgroup), especially 
if subgroup analyses are of interest: for instance, the overwhelming number of female participants and small number of 
male participants make any conclusions about male subgroups statistically unsound.  

6.2 Recruitment Process 
In the 2013 IBS Study, participants needed to come forward to be selected. The recruitment process used advertisements on 
the radio, in local newsletters and newspapers, on the web and social media, as well as posters with which local MDs and 
NDs could encourage patient referrals.  

The elephant in the room is that this type of recruitment process leads to self-selection biases: the participants in the 2013 
IBS Study may not constitute a representative sample of IBS sufferers, which makes it difficult to generalize the result of 
the analyses beyond the collected sample, even when there is a significant impact. 

This is a problem that plagues numerous clinical studies – unfortunately, it is quite difficult to counter this situation.  

6.3 Practical Significance of Results 
With the caveat brought up in section 6.2, our interpretation of the covariance analyses results is that  there is simply not 
enough evidence to conclude that the agent is effective against IBS. 
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It is true that the difference in the treatment effects between the two groups on the (self-reported) QoL score is nearly 
statistically significant at the 0.05 significance level. The corresponding estimated difference in the treatment effects is 7.26 
under the using full dataset, which means that on average, participants in the group I seem to have lost an extra 7.26 QoL 
points over the course of three months, compared to those in the group K. However, given the amount of variability in 
individuals from month to month, we are reluctant to conclude that the agent under investigation provides a practically 
significant improvement in the average participant’s quality of life.  

Further investigation may shed some light on the situation and will help us determine if the relationship between the agent 
and QoL is causal or spurious. 

6.4 Publication of Results 
Even though this study did not find any statistically significant improvement for IBS, it should be published in order to 
counter publication bias.  
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