Blood Alcohol Content Imputation

Practical Data Processing

P. Boily Centre for Quantitative Analysis and Decision Support Idlewyld Analytics and Consulting Services

Contents

- **1.** Project Description
- **2.** Data Preparation and Methodology
- **3.** Results
- **4.** Consulting Post-Mortem

Project Description

Project Description BAC Imputation

- □ Fatal collisions often involve **alcohol** (driver, pedestrian, cyclist).
- Breathalyzer tests cannot be conducted on deceased individuals, so the presence of alcohol in the blood cannot be confirmed until the coroner's report is available.
- Given For various reasons, these reports can take **up to a year** to produce.
- □ The **blood alcohol concentration** (BAC) levels may not make their ways to interested parties in a **timely fashion**.
- This can cause **delays** in policy implementation and could possibly lead to otherwise preventable deaths.
- Data analysts often resort to **imputation methods** in order to make an informed guess as to the BAC level in fatal collisions.
- □ This is what the *Ministry of Transportation of Ontario* (MTO) was looking for in 2007: using a small number of features (many of which are themselves missing values), is it possible to
 - predict whether alcohol was involved, and if so,
 - predict the BAC level?

Project Description NHTSA Imputation Algorithm

- □ According to preliminary estimates for 2002, alcohol was involved in about **42%** of all motor vehicle crashes where there was a fatality in the United States.
- BAC levels were **missing from 58%** of fatality reports in 2001.
- The distribution of BAC levels for observations for which it was provided is **semi-continuous**; about 62% of the units have BAC=0, and 38% fall in the range 0 < BAC < 0.94.
- Responses above 0.4 are sparse.

Distribution of Reported BAC Among Actively-

Project Description NHTSA Imputation Algorithm

□ The U.S.A.'s *National Highway Traffic Safety Administration* (NHTSA) uses a **two-stage model**:

- 1. impute **zero/non-zero** BAC status through a multivariate procedure (details can be found in Subramanian and Utter's paper), and
- **2. conditional** on non-zero BAC, they impute 10 BAC levels for each missing BAC value *via* a general linear model (for zero BAC, the 10 BAC levels are all set at 0).
- □ This creates 10 (potentially *different*) versions of the dataset with **no missing BAC values**.
- **D** The analysis of interest is conducted **10 separate times**, once on each of the distinct versions
- □ This allows for **valid statistical inferences** and for **confidence intervals** to be drawn.
- The main drawback of this method is that the values of some explanatory variables may be missing for a large number of records; these missing values are treated as belonging to a separate category (one for each variable): that of 'missing value'.
- As there may be many disparate reasons to explain why different records are missing a given variable's value, this may lead to a **loss of information**, which translates into a **less powerful** imputation method.

Project Description NHTSA Imputation Algorithm

- Validation: for 5 years in the FARS data base, 25% of observations for which BAC was known were removed.
- Removed BAC values were estimated using the 2-stage algorithm.
- Comparison with known values are shown in the table.
- □ Assumed missing mechanism: MCAR
- Evidence suggests that this is not an appropriate assumption observations with missing BAC levels are much more likely to be 0, everything else being equal.

Extent of Non-Sober Drivers (BAC=0.01+) Computed from all Drivers with Known BAC Results, and Computed from Imputing for 25 % of these Known Results Randomly set to Missing

Year	Known	MI
1982	64%	63%
1986	57%	56%
1990	51%	51%
1993	46%	46%
1995	44%	44%

Project Description Regression Sequences

- □ In the case of multiple missing values in the **explanatory variables**, a possible solution is to use a **sequence of regression models**.
- □ Missing values for each explanatory variable are imputed as follows:
- 1. the explanatory variable Y_1 with the **fewest missing values** is imputed to \tilde{Y}_1 , using the explanatory variables **X** with **no missing values** (\tilde{Y}_1 contains no missing values).
- 2. the explanatory variable Y_2 with the **next fewest missing values** is imputed to \tilde{Y}_2 using the explanatory variables $\{X, \tilde{Y}_1\}$ (\tilde{Y}_2 contains no missing values).

3. ...

- 4. the process continues in sequence **until the last remaining explanatory variable with missing values** Y_m is imputed to \tilde{Y}_m using $\{X, \tilde{Y}_1, ..., \tilde{Y}_{m-1}\}$. At this point, there are no more missing values in the dataset.
- The main drawback of this method is that some information might be "**hiding**" in $\{Y_2, ..., Y_m\}$ which, combined with the information found in **X**, could provide a better imputation for Y_1 than \tilde{Y}_1 .

Objective: combine two approaches while removing their respective drawbacks... but with the caveat that there is no future use: the MTO simply wanted a predicted BAC.

Data Preparation and Methodology

NCDB Data

- Our algorithm imputes a likely BAC level for drivers and pedestrians involved in fatal collisions for a given year based on:
 - a number of variables from the *National Collision Database* (NCDB), as well as
 - data from the *Traffic Injury Research Foundation* (TIRF) over a preceding five-year period
- Start by removing all records involving non-fatal collisions and all records involving nondrivers or non-pedestrians
- □ There are two BAC-linked target variables (one categorical and one semi-continuous).
 - 1. Was BAC equal to 0, or was it greater than 0? (TEST)
 - 2. What was the BAC level? (P_BAC1F)
- □ In a preliminary phase, a MANOVA identified a subset of NCDB variables as having a significant effect on the target variables.

Imputation Variables

	Retained	(and	<u>binned</u>)	variables:
--	----------	------	-----------------	------------

- whether the record identifies a driver or a pedestrian (P_PSN);
- the sex (P_SEX) and age (P_AGE) of the deceased;
- whether a safety device was worn by the deceased (P_SAFE);
- the hour (C_HOUR) & weekday (C_WDAY) when the collision occurred;
- the number of vehicles/pedestrians involved in the collision (C_VEHS), and
- various contributing factors as determined by police officers on the scene (V_CF1-V_CF4).
- V_CF_GR might be expected to be a more significant predictor of BAC, but preliminary analyses show that it is not any more significant than other retained variables.

Variable	Classification
P_PSN_GR	<pre>1 = 'Driver' 2 = 'Pedestrian/Cyclist' . = 'Missing'</pre>
C_WDAY_GR	<pre>1 = 'Weekday' 2 = 'Weekend' . = 'Missing'</pre>
C_HOUR_GR	1 = '00:00 to 05:59' 2 = '06:00 to 09:59' 3 = '10:00 to 15:59' 4 = '16:00 to 19:59' 5 = '20:00 to 23:59' . = 'Missing'
C_VEHS_GR	<pre>1 = 'One vehicle involved' 2 = 'Two vehicles involved' 3 = 'Three or more vehicles involved' . = 'Missing'</pre>
P_SEX_GR	1 = 'Male' 2 = 'Female' . = 'Missing'
P_AGE_GR	1 = '<= 19' 2 = '20-29' 3 = '30-39' 4 = '40-49' 5 = '50-59' 6 = '>=60' . = 'Missing'
P_SAFE_GR	<pre>1 = 'No Safety Device Used' 2 = 'Safety Device Used' 3 = 'Not Applicable' . = 'Missing'</pre>
V_CF_GR	<pre>1 = 'Alcohol Deemed a Contributing Factor by Police Officer' 2 = 'Alcohol not Deemed a Contributing Factor by Police Officer' . = 'Missing'</pre>

Methodology Inflating the Data Set

Original data set contains *n* records.

- □ **Replicate** the data set $k \ge 1$ times, where k is selected in order to create a large enough data set to produce statistically meaningful results.
- Replicated data set contains *kn* records.
- □ If *n* ≫ 1 or if there is no **systematic pattern** in the missing values, small values of *k* can be used.
- □ When *n* is smaller, larger values of *k* must be used

□ Aim: impute TEST and P_BAC1F

Jan Star		SEL	PG	SAL	Cr Cr		2	AC MIS		
	1	2	1	3	2	1	0	0	0	
	2	2	1	2	1	1			0	
	3	2	1	2	2	2	0	0	0	
	4	1	1		1	2			1	
	5	2	1	4	2	1			0	
	6	3	2	3	2	2	1	91	0	7
	7	1		1	1	2	1	156	1	ŀ
	8	2	2	1	1	1	1	23	0	
d.	9	2	1	2	2				1	
	10	2	1	3	2		0	0	1	
	11	2	1	3	2	2			0	
1	12	1	1	5		1			1	
sed	13	1	2	4			0	0	2	
	14	2	2	4	1	1	1	118	0	

Missing: 0 1 1 2 3

Methodology **Step 1–1: 1st Order Imputation**

- □ If there are explanatory variables that have **no missing value**, they do not need to be processed – **yellow** in the example
- Among the remaining explanatory variables, find the one with the **fewest missing values** (tie: pick at random) – **blue** in the example
- □ The records for which that value is missing will be **imputed** – **brown** in the example
- The records for which the values of the other explanatory variables are not missing constitute the **training set** for imputation – green in the example
- □ If the training set is **too small**, there might be issues with the quality of imputation.

Miss

RB	KEY	565	Per	Shi	4/9	TES	A B	Ser Inio	2	$\overline{\langle}$	REC	s les	SE	Per	Shir	6 (S	TES	2	S INIS	
1	1 2 3	2 2 2	1 1 1	3 3 3	2 2 2	1 1 1	0 0 0	0 0	000		1	1 2 3	2 2 2	1 1 1	3 3 3	2 2 2	1 1 1	0 0 0	0 0 0	000
2	1 2 3	2 2 2	1 1 1	2 2 2	1 1 1	1 1 1	-	-	000		2	1 2 3	2 2 2	1 1 1	2 2 2	1 1 1	1 1 1	•		0 0 0
3	1 2 3	2 2 2	1 1 1	2 2 2	2 2 2	2 2 2	0 0 0	0 0 0	000		3	1 2 3	2 2 2	1 1 1	2 2 2	2 2 2	2 2 2	0 0 0	0 0 0	0 0 0
4	1 2 3	1 1 1	1 1 1		1 1 1	222	-	•	1 1 1		4	1 2 3	1 1 1	1 1 1		1 1 1	2 2 2			1 1 1
5	1 2 3	2 2 2	1 1 1	4 4 4	2 2 2	1 1 1	-	•	0 0 0		5	1 2 3	2 2 2	1 1 1	4 4 4	2 2 2	1 1 1			0 0 0
6	1 2 3	<u>ი ი ი</u>	2 2 2	333	2 2 2	222	1 1 1	91 91 91	0 0 0		6	1 2 3	333	2 2 2	333	2 2 2	2 2 2	1 1 1	91 91 91	0 0 0
7	1 2 3	1 1 1	-	1 1 1	1 1 1	222	1 1 1	156 156 156	1 1 1		7	1 2 3	1 1 1	2 1 1	1 1 1	1 1 1	2 2 2	1 1 1	156 156 156	0 0 0
8	1 2 3	222	2 2 2	1 1 1	1 1 1	1 1 1	1 1 1	23 23 23	000	imputation	8	1 2 3	2 2 2	2 2 2	1 1 1	1 1 1	1 1 1	1 1 1	23 23 23	0 0 0
9	1 2 3	2 2 2	1 1 1	2 2 2	2 2 2	•		•	1 1 1		9	1 2 3	2 2 2	1 1 1	2 2 2	2 2 2	•			1 1 1
10	1 2 3	222	1 1 1	3 3 3	2 2 2		0 0 0	0 0 0	1 1 1		10	1 2 3	2 2 2	1 1 1	3 3 3	2 2 2	•	0 0 0	0 0 0	1 1 1
11	1 2 3	222	1 1 1	333	2 2 2	222	-	-	000		11	1 2 3	2 2 2	1 1 1	333	2 2 2	2 2 2		•	0 0 0
12	1 2 3	1 1 1	1 1 1	5 5 5	-	1 1 1	-		1 1 1		12	1 2 3	1 1 1	1 1 1	5 5 5	-	1 1 1			1 1 1
13	1 2 3	1 1 1	2 2 2	4 4 4	-	•	0 0 0	0 0 0	2 2 2		13	1 2 3	1 1 1	2 2 2	4 4 4	-	•	0 0 0	0 0 0	2 2 2
14	1 2 3	2 2 2	2 2 2	4 4 4	1 1 1	1 1 1	1 1 1	118 118 118	000		14	1 2 3	2 2 2	2 2 2	4 4 4	1 1 1	1 1 1	1 1 1	118 118 118	0 0 0
issi	ing:	0	3	3	6	9				-	Miss	ing:	0	0	3	6	9			

Methodology Step 1–2: 1st Order Imputation

- □ If there are explanatory variables that have **no missing value**, they do not need to be processed – **yellow** in the example
- Among the remaining explanatory variables, find the one with the **fewest missing values** (tie: pick at random) – **blue** in the example
- □ The records for which that value is missing will be **imputed brown** in the example
- □ The records for which the values of the other explanatory variables are not missing constitute the **training set** for imputation – **green** in the example
- The imputation method is left to the analyst it could even vary from one step to the next.

Miss

KE	500	ROC	SPI	8		2				(P)	RE	KE	Sel	Pop	Shire	2	15	3		
1	2	1	3	2	1	0	0	0		``	\rightarrow	1	2	1	3	2	1		0	0
2	2	1	3	2	1	0	0	0			1	2	2	1	3	2	1	ō	ō	ō
3	2	1	3	2	1	0	0	0				3	2	1	3	2	1	0	0	0
1	2	1	2	1	1			0				1	2	1	2	1	1	•		0
2	2	1	2	1	1			0			2	2	2	1	2	1	1			0
3	2	1	2	1	1			0				3	2	1	2	1	1			0
1	2	1	2	2	2	0	0	0			_	1	2	1	2	2	2	0	0	0
2	2		2	2	2	0	0	0			3	2	2		2	2	2		0	0
1	2	1		2	2	-		1				1	2	1	2	2	2	-	0	0
2	i	1	•	1	2	•	•	1			4	2	i.		4	1	2	•	•	ŏ
3	1	1		1	2			1				3	1	1	3	1	2	:		ŏ
1	2	1	4	2	1			0				1	2	1	4	2	1			0
2	2	1	4	2	1			0			5	2	2	1	4	2	1		-	0
3	2	1	4	2	1			0				3	2	1	4	2	1			0
1	3	2	3	2	2	1	91	0				1	3	2	3	2	2	1	91	0
2	3	2	3	2	2	1	91	0			6	2	3	2	3	2	2	1	91	0
3	3	2	3	2	2	1	91	0				3	3	2	3	2	2	1	91	0
1		4		1	2	1	150	0			7	1		4	1	1	2	1	156	0
2		1	4	1	2	1	150	0			ŕ	2			1	1	2	1	150	0
1	2	2	1	1	2	1	23	0				1	2	2	1	1	2	1	23	0
2	2	2	÷.	1	1	1	23	ŏ			8	2	2	2	1	1	1	1	23	ŏ
3	2	2	1	1	1	1	23	õ	imputati	on	Ĩ	3	2	2	1	1	1	1	23	ō
1	2	1	2	2				1				1	2	1	2	2				1
2	2	1	2	2				1			9	2	2	1	2	2				1
3	2	1	2	2			-	1				3	2	1	2	2				1
1	2	1	3	2		0	0	1				1	2	1	3	2		0	0	1
2	2	1	3	2	•	0	0	1			10	2	2	1	3	2		0	0	1
3	2	1	3	2	÷	0	0	1				3	2	+	3	2			U	0
2	2		2	2	2	•	•	0			11	2	2		2	2	2	•		0
3	2	1	3	2	2	•	•	0			l.,	3	2	÷.	3	2	2			ŏ
1	1	1	5	-	1			1				1	1	1	5	-	1	÷	-	1
2	1	1	5		1			1			12	2	1	1	5		1			1
3	1	1	5		1			1				3	1	1	5		1			1
1	1	2	4			0	0	2				1	1	2	4			0	0	2
2	1	2	4			0	0	2			13	2	1	2	4			0	0	2
3	1	2	4	-		0	0	2				3	1	2	4			0	0	2
1	2	2	4	1	1	1	118	0			4.4	1	2	2	4	1	1	1	118	0
2	2	2	4	1		1	118	0			14	2	2	2	4	1	1	1	118	0
ing	4	2	4	E	0		110	0			/ieci	ing	0	0	0	6	0		110	
nıg.	0	U	3	0	9						1133	nıy.	0	0	0	0	3			

Methodology Step 1–3: 1st Order Imputation

- □ If there are explanatory variables that have **no missing value**, they do not need to be processed – **yellow** in the example
- Among the remaining explanatory variables, find the one with the **fewest missing values** (tie: pick at random) – **blue** in the example
- □ The records for which that value is missing will be **imputed brown** in the example
- The records for which the values of the other explanatory variables are not missing constitute the **training set** for imputation – green in the example
- Note that some of the missing values may end up not being imputed (why?) – see red box

Miss

KE	513	Por	SAL	2	je,	2	R MI			R	RE	KE	SEL	ROL	SAL	C?	Ites	B	S MIS	
1	2	1	3	2	1	0	0	0		`	È	1	2	1	3	2	1	0	0	0
2	2	1	3	2	1	ō	0	0			1	2	2	1	3	2	1	õ	õ	õ
3	2	1	3	2	1	ō	ō	õ			Ľ.	3	2	1	3	2	1	ŏ	õ	õ
1	2	1	2	1	1	-		0			\vdash	1	2	1	2	1	1	-	-	0
2	2	1	2	1	1			0			2	2	2	1	2	1	1			õ
3	2	1	2	1	1			õ			-	3	2	1	2	1	1			ŏ
1	2	1	2	2	2	0	0	0				1	2	1	2	2	2	0	0	0
2	2	1	2	2	2	0	0	0			3	2	2	1	2	2	2	0	0	0
3	2	1	2	2	2	õ	Ō	Ō			Ŭ	3	2	1	2	2	2	ō	õ	õ
1	1	1	1	1	2			0				1	1	1	1	1	2			0
2	1	1	4	1	2			0			4	2	1	1	4	1	2			0
3	1	1	3	1	2			0				3	1	1	3	1	2			0
1	2	1	4	2	1			0				1	2	1	4	2	1			0
2	2	1	4	2	1			0			5	2	2	1	4	2	1			0
3	2	1	4	2	1		-	0				3	2	1	4	2	1			0
1	3	2	3	2	2	1	91	0				1	3	2	3	2	2	1	91	0
2	3	2	3	2	2	1	91	0			6	2	3	2	3	2	2	1	91	0
3	3	2	3	2	2	1	91	0				3	3	2	3	2	2	1	91	0
1	1	2	1	1	2	1	156	0				1	1	2	1	1	2	1	156	0
2	1	1	1	1	2	1	156	0			7	2	1	1	1	1	2	1	156	0
3	1	1	1	1	2	1	156	0				3	1	1	1	1	2	1	156	0
1	2	2	1	1	1	1	23	0				1	2	2	1	1	1	1	23	0
2	2	2	1	1	1	1	23	0	imputati	on	8	2	2	2	1	1	1	1	23	0
3	2	2	1	1	1	1	23	0	imputati			3	2	2	1	1	1	1	23	0
1	2	1	2	2				1				1	2	1	2	2		•		1
2	2	1	2	2	-	-	-	1			9	2	2	1	2	2	•	•		1
3	2	1	2	2	-	Ŀ		1				3	2	1	2	2		·		1
1	2	1	3	2	•	0	0	1			40	1	2	1	3	2		0	0	1
2	2	1	3	2	-	0	0	1			10	2	2	1	3	2	•	0	0	1
3	2	1	3	2		U	U	1				3	2	4	3	2		0	U	0
1	2	-	3	2	2	•	-	0			11	2	2	4	2	2	2	•		0
2	2	4	3	2	2	•	•	0				2	2	1	3	2	2	•	•	0
0 4	4	4	5	2	4	•	-	1				1	4	1	5	4	4	·		0
2	4	-	5	-		•	-	4			12	2		1	5	2	1	•	-	0
2	4	4	5		1	•		1			12	2	1	1	F	4	1	•		0
1	4	2	4			·		2				1	1	2	÷		-	· 0		2
2	4	2	4		•	0	0	2			13	2	1	2				0	0	2
2	1	2	4	1		0	0	2				3	1	2				ő	õ	2
1	2	2	4	- 1	+	1	118	0				1	2	2	-	1	1	1	118	0
2	2	2	4	1	1	1	118	0			14	2	2	2	4	1	1	1	118	õ
3	2	2	4	1	1	1	118	õ				3	2	2	4	1	1	1	118	Ő
na.	0	0	0	6	9	-				N	Aissi	ina:	0	0	0	3	9			
1000					~												-			

Methodology Step 1–4: 1st Order Imputation

- □ The processed explanatory variables are shown in **yellow** in the example
- □ In general, more than one record will be imputed at every step see **red** box.
- □ At most m_1 first-order imputations can be conducted; $m_1 = \#$ of explanatory variables
- By construction, a record with two or more missing values will **never** be involved in the preceding steps; consequently, after firstorder imputation, any record with missing values will have **no fewer than two** missing values.

ľ	4	()	-	0		1						2			10		2			
ġ	18	2/2	2/6	6/3	1/2	9	3/2	રે હિં	ľ,	X	6/2	6	3/3	2/6	E -	2/6	No.	3/9	8 1	2
Ì	1	2	1	3	2	1	0	0	0		Г	1	2	1	3	2	1	0	0	0
	2	2	1	3	2	1	0	0	0		1	2	2	1	3	2	1	0	0	0
	3	2	1	2	2	1		0	0			3	2	1	2	2	1	0	U	0
	2	2	1	2	1	1			0		2	2	2	1	2	1	1			0
4	3	2	1	2	1	1			0			3	2	1	2	1	1			0
	2	2	1	2	2	2	ő	0	0		3	2	2	1	2	2	2	0	0	0
	3	2	1	2	2	2	õ	õ	Õ		Ŭ	3	2	1	2	2	2	ŏ	õ	õ
	1	1	1	1	1	2	•		0			1	1	1	1	1	2	•	-	0
	2	1	1	4	1	2		-	0		4	2	1	1	4	1	2	•	-	0
	1	2	1	4	2	1			0			1	2	1	4	2	1			0
	2	2	1	4	2	1			0		5	2	2	1	4	2	1		-	0
	3	2	1	4	2	$\frac{1}{2}$	1	91	0			3	2	1	4	2	1		. 91	0
	2	3	2	3	2	2	1	91	ŏ		6	2	3	2	3	2	2	1	91	õ
	3	3	2	3	2	2	1	91	0			3	3	2	3	2	2	1	91	0
	1	1	2	1	1	2	1	156	0		7	1	1	2	1	1	2	1	156	0
	3	1	1	1	1	2	1	156	ŏ		Ľ	3	i.	1	1	1	2	1	156	0
1	1	2	2	1	1	1	1	23	0			1	2	2	1	1	1	1	23	0
	2	2	2	1	1	1	1	23	0	imputation	8	2	2	2	1	1	1	1	23	0
	3	2	2	2	2	-	1	23	1			3	2	-	2	2	1	-	23	0
	2	2	1	2	2				1		9	2	2	1	2	2	2			0
4	3	2	1	2	2		·		1			3	2	1	2	2	1			0
1	2	5	1	3	2		0	0	1		10	2	2	1	3	2	1	0	0	0
-	3	2	1	3	2	1	õ	õ	1		Ľ	3	2	1	3	2	2	Ō	ō	0
1	1	2	1	3	2	2		-	0			1	2	1	3	2	2		-	0
I	2	2	1	3	2	2	•	-	0		11	2	2	1	3	2	2	:		0
	1	1	1	5	1	1	•		0			1	1	1	5	1	1		-	0
2	2	1	1	5	2	1			0		12	2	1	1	5	2	1	•		0
	3	1	1	5	1	1			2			3	1	2	5	_	-			2
3	2	1	2	4		1	0	ő	2		13	2	1	2	4			0	ő	2
	3	1	2	4	-		0	0	2			3	1	2	4	•		0	0	2
	1	2	2	4	1	1	1	118	0		14	1	2	2	4	1	1	1	118	0
1	3	2	2	4	1	1	1	118	0		14	3	2	2	4	1	1	1	118	ŏ
ai.	na	0	0	0	2	0				•	Miss	ing:	0	0	0	2	2			

Methodology Crossing and Uncrossing Variables

 \Box Two variables X_1 and X_2 are **crossed** into $X_{1,2}$ as follows:

- assume that X_1 's levels are $\{1, ..., n_1\}$
- assume that X_2 's levels are $\{1, ..., n_2\}$
- there are $n_1 \times n_2$ distinct crossed levels

 $\mathcal{A} = \{(1,1), \dots, (n_1, 1), (1,2), \dots, (n_1, 2), \dots, (1, n_2), \dots, (n_1, n_2)\}$

- construct a bijection $f_{1,2}: \mathcal{A} \to \{1, \dots, n_1 \times n_2\}$
- (there are many such bijections)
- if $X_1 = i$ and $X_2 = j$, then $X_{1,2} = f_{1,2}(i, j)$

The variable $X_{1,2}$ is **uncrossed** into X_1 and X_2 as follows:

- if $X_{1,2} = \alpha$, then $(X_1, X_2) = f_{1,2}^{-1}(\alpha)$
- There is no need to cross variables for which there are no missing records
- Imputation proceeds as before (training set, imputing set, imputed variable, etc.)

REC RE	KE	28	Re	Shi	2/2						1		E	Pic	910	TE	2		
	1 2 3	2 2 2	1 1 1	333	2 2 2	1 1 1	3 3 3	9 9 9	5 5 5	3 3 3	3 3 3	2 2 2	1 1 1	8 8 8	5 5 5	3 3 3	0 0 0	0 0 0	0 0 0
2	1 2 3	2 2 2	1 1 1	2 2 2	1 1 1	1 1 1	თთთ	8 8 8	4 4 4	3 3 3	2 2 2	1 1 1	1 1 1	4 4 4	3 3 3	1 1 1	•	•	0 0 0
3	1 2 3	2 2 2	1 1 1	2 2 2	2 2 2	222	0 0 0 0 0 0 0	8 8 8	5 5 5	44	2 2 2	2 2 2	2 2 2	5 5 5	4 4 4	4 4 4	0 0 0	000	000
4	1 2 3	1 1 1	1 1 1	1 4 3	1 1 1	2 2 2	1 1 1	1 4 3	1 1 1	2 2 2	1 4 3	1 1	2 2 2	1 10 7	2 8 6	2 2 2	•	•	0 0 0
5	1 2 3	2 2 2	1 1	4 4 4	2 2 2	1 1	3 3 3 3	10 10 10	55	3 3 3 6	4 4 4	2 2 2	1 1 1	11 11 11	7 7 7	3 3 3	•		000
6	1 2 3	5 0 0 0	2 2 2	333	2 2	222	6 6 0	15 15 15	8	6	9 9 9	5 5	4 4 4	8 8 8	6 6	4 4 4	1 1 1	91 91 91	000
7	23	1	1	1	1 1	22	2 1 1	1 1 1	1	2 2 2	1 1	4 1 1	4 2 2	1 1 1	2 2	2 2	1 1 1	156 156 156	0
8	1 2 3	2 2 2	2 2 2	1 1 1	1 1 1	1 1 1	4 4 4	7 7 7	4 4 4	3 3 3	7 7 7	4 4 4	3 3 3	1 1 1	1 1 1	1 1 1	1 1 1	23 23 23	0 0 0
9	1 2 3	2 2 2	1 1 1	2 2 2	2 2 2	1 2 1	3 3 3	8 8 8	5 5 5	3 4 3	2 2 2	2 2 2	1 2 1	5 5 5	343	343	-	•	0 0 0
10	1 2 3	2 2 2	1 1 1	333	2 2 2	1 1 2	ი ი ი ი	9 9 9	5 5 5	334	333	2 2 2	1 1 2	8 8 8	5 5 6	3 3 4	0 0 0	0 0 0	0 0 0
11	1 2 3	2 2 2	1 1 1	333	2 2 2	2 2 2	3 3 3	9 9 9	5 5 5	4 4 4	3 3 3	2 2 2	2 2 2	8 8 8	6 6 6	4 4 4	•		0 0 0
12	1 2 3	1 1 1	1 1 1	5 5 5	1 2 1	1 1 1	1 1 1	5 5 5	1 2 1	1 1 1	5 5 5	1 2 1	1 1 1	13 14 13	9 9	1 3 1	-	•	000
13	1 2 3	1 1 1	2 2 2	4 4 4	•	•	2 2 2	4 4 4	* * *	* *	10 10 10	* * *	* *	* * *	* * *		0 0 0	0 0 0	2 2 2
14	1 2 3	2 2 2	2 2 2	4 4 4	1 1 1	1 1 1	4 4 4	10 10 10	4 4 4	3 3 3	10 10 10	4 4 4	333	10 10 10	7 7 7	1 1 1	1 1 1	118 118 118	0 0 0
Miss	ina:	0	0	0	3	3	0	0	*	*	0	*	*	*	*	3			

Methodology Step 2: Second-Order Imputation

- This process is repeated until the imputation of missing values of the last remaining crossed explanatory variable
- Imputation of the explanatory variables requires uncrossing of the imputed crossed variable
- By construction, a record with three or more missing values will **never** be involved in the preceding steps; consequently, after secondorder imputation, any record with missing values will have **no fewer than three** such missing values.
- □ No more than $0.5m_1(m_1 + 1)$ second-order imputations will be conducted

2/20	SAL	6	10	TES	2	S INIS		$\overline{\langle}$	offic Rich	5	SE	ROL	SAL	Cr Cr	TES	3	S IN	
1	3	2	1	3	0	0	0		Г	1	2	1	3	2	1	0	0	0
1	3	2	1	3	0	0	0		1	2	2	1	3	2	1	0	0	0
1	2	4	1	3	0	0	0		\vdash	3	2	1	3	- 1	-	0	U	0
1	2	1	1	1			õ		2	2	2	1	2	1	1			ŏ
1	2	1	1	1			0			3	2	1	2	1	1			0
1	2	2	2	4	0	0	0			1	2	1	2	2	2	0	0	0
1	2	2	2	4	0	0	0		3	2	2	1	2	2	2	0	0	0
1	1	2	2	2	0	0	0		\vdash	1	2	1	2	- 1	2		0	0
1	4	1	2	2			0		4	2	1	1	4	1	2			0
1	3	1	2	2	-		0			3	1	1	3	1	2		-	0
1	4	2	1	3	-		0		_	1	2	1	4	2	1	•	-	0
1	4	2	1	3	•		0		5	2	2	1	4	2	1	•		0
2	3	2	2	4	.1	91	0		\vdash	1	3	2	3	2	2	1	91	0
2	3	2	2	4	1	91	0		6	2	3	2	3	2	2	1	91	0
2	3	2	2	4	1	91	0			3	3	2	3	2	2	1	91	0
2	1	1	2	2	1	156	0		_	1	1	2	1	1	2	1	156	0
1	1	1	2	2	1	150	0		14	2		1	1	1	2	1	156	0
2	1	1	1	1	1	23	0		\vdash	1	2	2	1	1	1	1	23	0
2	1	1	1	1	1	23	0		8	2	2	2	1	1	1	1	23	0
2	1	1	1	1	1	23	0	uncrossing		3	2	2	1	1	1	1	23	0
1	2	2	1	3	-		0			1	2	1	2	2	1		-	0
1	2	2	2	4	-		0		9	2	2	1	2	2	2	·		0
1	3	2	1	3	0	0	0		\vdash	1	2	1	3	2	1	0	0	0
1	3	2	1	3	0	0	ō		10	2	2	1	3	2	1	ō	Ō	ō
1	3	2	2	4	0	0	0			3	2	1	3	2	2	0	0	0
1	3	2	2	4	-		0			1	2	1	3	2	2		-	0
1	3	2	2	4	-		0		11	2	2	1	3	2	2	•	-	0
1	5	1	1	1			0		\vdash	1	1	1	5	1	-	-		0
1	5	2	1	3			0		12	2	1	1	5	2	1			0
1	5	1	1	1			0			3	1	1	5	1	1			0
2	4		•	2	0	0	0			1	1	2	4	1	2	0	0	0
2	4	•	•	4	0	0	0		13	2	1	2	4	2	2	0	0	0
2	4			1	1	118	0		\vdash	1	2	2	4	1	- 1	1	118	0
2	4	1	1	1	1	118	0		14	2	2	2	4	1	1	1	118	0
2	4	1	1	1	1	118	0		L	3	2	2	4	1	1	1	118	0
0	0	3	3	0					Miss	ing:	0	0	0	0	0			

Methodology Continuation

- This process is repeated with triplets of explanatory variables, then quadruplets, and so on, until the dataset contains no record with missing values of the explanatory variables
- □ There is a danger: at every new step, we (potentially) use imputed values as if they were **actual** values, and these imputed values are in turn used to impute new values.
- □ Like all imputation methodologies, this procedure works best when the number of missing values is **small** relative to the number of total observations.
- □ A potential solution is to set *k* **large enough**, but that might be accompanied by an increase in computational time.
- □ **The proof of the eating is in the pudding**: in this application, the goal is to predict the presence/absence of BAC and its accompanying levels. How well does the procedure perform?

n

Aissing

0 0 0

Methodo	ogy
Step 3: Target	Variables

- ❑ At this stage there are **no missing values** in the explanatory variables yellow in the example
- □ The categorical variable TEST (Z_1) is imputed in the **same manner** as the explanatory variables

RE	10	6	R	102	10	1ê	হ)	R
14	°V	5/2	2/2	6 / S	1 (M	1	2	r V	۰/	. N
	1	2	1	3	2	1	0	0	0	
1	2	2	1	3	2	1	0	0	0	
+	1	2	+	2	2	+	•	0	2	
,	2	2	1	2	i.	1	1		2	
	3	2	1	2	1	1			2	
	1	2	1	2	2	2	0	0	0	
3	2	2	1	2	2	2	0	0	0	
4	3	2	1	2	2	2	0	0	0	
	1	1		1		2	-	-	2	
•	2	÷.		4	1	2	1		2	
+	1	2	1	4	2	1		-	2	
5	2	2	1	4	2	1			2	
	3	2	1	4	2	1		-	2	
	1	3	2	3	2	2	1	91	0	
5	2	3	2	3	2	2	1	91	0	
4	3	3	2	3	2	2	1	91	0	
,	1	4	4			2		100	0	
	3	÷.	1	÷.	÷.	2		156	0	
+	1	2	2	1	1	1	1	23	0	
3	2	2	2	1	1	1	1	23	0	
	3	2	2	1	1	1	1	23	0	imputation
	1	2	1	2	2	1		-	2	
9	2	2	1	2	2	2		-	2	
+	3	2	+	2	2	+			2	
0	2	2	1	3	2	i.	ŏ	õ	õ	
Ĭ	3	2	1	3	2	2	Ō	ō	õ	
	1	2	1	3	2	2			2	
1	2	2	1	3	2	2		-	2	
4	3	2	1	3	2	2			2	
2	1	1		5	1	1	-	-	2	
4	3	÷.		5	1	ł.	1	•	2	
1	1	1	2	4	1	2	0	0	0	
3	2	1	2	4	2	2	0	0	0	
	3	1	2	4	2	2	0	0	0	
	1	2	2	4	1	1	1	118	0	
4	2	2	2	4	1	1	1	118	0	
	3	2	2	4		1	10	116	0	· .
SI	ing:	U	U	U	U	U	18	18		P

Methodology Step 3: Target Variables

- ❑ At this stage there are **no missing values** in the explanatory variables **yellow** in the example
- □ The numerical variable P_BAC1F (Z₂) requires a different imputation framework, perhaps a general linear model (after an appropriate transformation)

5	30	Re	Shi	2/9	J.	8			E.	RE		30	Re	SAL	6	S.	9		
ľ	2	4	2	- 7	Ň		-		Ň	$ \rightarrow $		0. /.		. /6	- 1	X			,
5	2	4	2	2		0	0	0		1	2	2		2	2	1	0	0	0
3	2	1	3	2	i	ŏ	ŏ	ŏ		Ľ.	3	2		3	5	1	õ	ŏ	ŏ
1	2	1	2	1	1	0	0	0			1	2	1	2	1	1	0	0	0
2	2	1	2	1	1	1		1		2	2	2	1	2	1	1	1	133	0
3	2	1	2	1	1	1	1.1	1			3	2	1	2	1	1	1	133	0
1	2	1	2	2	2	0	0	0			1	2	1	2	2	2	0	0	0
2	2	1	2	2	2	0	0	0		3	2	2	1	2	2	2	0	0	0
5	2	1	4	4	2	0	U	1			3	2	1	2	2	2	0	0	0
5		4	4		2	h.	ò	0		4	2	4		1		2		0	0
3	1	1	3	1	2	õ	ő	0		1	3	1	1	3	1	2	0	0	0
	2	1	4	2	1	1		1			1	2	1	4	2	1	1	66	0
2	2	1	4	2	1	1	1	1		5	2	2	1	4	2	1	1	66	0
3	2	1	4	2	1	1		1			3	2	1	4	2	1	1	66	0
1	3	2	3	2	2	1	91	0			1	3	2	3	2	2	1	91	0
2	3	2	3	2	2	1	91	0		6	2	3	2	3	2	2	1	91	0
5	3	4	3	2	2	1	91	0			3	3	2	3	2	2	1	91	0
		2			2		156	0		7	2	4	1		1	2		100	0
3	i	1	i.	i.	2	1	156	ŏ		Ľ	3	÷.	ł.	1	1	2	i	156	ŏ
1	2	2	1	1	1	1	23	Ō			1	2	2	1	1	1	1	23	0
2	2	2	1	1	1	1	23	0		8	2	2	2	1	1	1	1	23	0
3	2	2	1	1	1	1	23	0	imputation		3	2	2	1	1	1	1	23	0
1	2	1	2	2	1	0	0	0			1	2	1	2	2	1	0	0	0
2	2	1	2	2	2	1	ò	1		9	2	2	1	2	2	2	1	45	0
2	2	1	2	2	+	0	0	0			3	2	4	2	2	1	0	0	0
5	2	1	3	2	i	ō	ŏ	ŏ		10	2	2	i	3	2	1	0	ŏ	ŏ
3	2	1	3	2	2	0	Ō	0			3	2	1	3	2	2	0	ō	ō
1	2	1	3	2	2	1	-	1			1	2	1	3	2	2	1	165	0
2	2	1	3	2	2	1		1		11	2	2	1	3	2	2	1	165	0
3	2	1	3	2	2	0	0	0			3	2	1	3	2	2	0	0	0
	1	1	5	2	1	1	U	1		12	1	4	4	5	1	1	1	04	0
3	1	1	5	1	1	1	1	1		12	3	1	1	5	1	1	1	45	0
1	1	2	4	1	2	0	0	0			1	1	2	4	1	2	0	0	0
2	1	2	4	2	2	0	0	0		13	2	1	2	4	2	2	0	0	0
3	1	2	4	2	2	0	0	0			3	1	2	4	2	2	0	0	0
	2	2	4	1	1	1	118	0			1	2	2	4	1	1	1	118	0
2	2	2	4			1	118	0		14	2	2	2	4	1	1	1	118	0
- 1	0	0	0	0	0	0	11	0	n	/licei	ing	0	0	0	0	0	0	0	0
g.	0	U	0	0	0	0	11		n i	1122	ing.	0	0	0	0	0	0	0	

6

Methodology Deflating the Data Set

- □ At this stage, for each of the *n* original records, there are *k* values of for each of Z_1 and Z_2 .
- □ Pick some **threshold** $a \in (0,1)$
- □ Let $p_{1,i}$ be the **proportion** of the *i*th record's *k* replicates for which $Z_1 = 1$.

$$\Box \operatorname{Set} Z_1^i = \begin{cases} 1, \text{ if } p_{1,i} > a \\ 0, \text{ else} \end{cases}$$

□ Let $\overline{Z_2^i}$ be the average of the *i*th record's Z_2 values, weighted by their Z_1 values.

$$\square \text{ Set } Z_2^i = \begin{cases} \overline{Z_2^i}, \text{ if } p_{1,i} > a \\ 0, \text{ else} \end{cases}$$

B	15	6	E	100		12	0		
10	9	6/9	2/6	n / 9	4/2	10	7/2	<u>ନ V</u> ଞ	'n/
	1	2	1	3	2	1	0	0	0
1	2	2	1	3	2	1	0	0	0
	3	2	1	3	2	1	0	0	0
	1	2	1	2	1	1	0	0	0
2	2	2	1	2	1	1	1	133	0
	3	2	1	2	1	1	1	133	0
~	1	2	1	2	2	2	0	0	0
3	2	2	1	2	2	2	0	0	0
	3	2	+	2	4	4	1	- 85	0
4	2		4	1		2		0	0
4	2		1	3	÷.	2	0	0	0
	1	2	1	4	2	1	1	66	0
5	2	2	1	4	2	1	1	66	0
5	3	2	1	4	2	1	1	66	õ
	1	3	2	3	2	2	1	91	0
6	2	3	2	3	2	2	1	91	0
	3	3	2	3	2	2	1	91	0
	1	1	2	1	1	2	1	156	0
7	2	1	1	1	1	2	1	156	0
	3	1	1	1	1	2	1	156	0
	1	2	2	1	1	1	1	23	0
8	2	2	2	1	1	1	1	23	0
	3	2	2	1	1	1	1	23	0
	1	2	1	2	2	1	0	0	0
9	2	2	1	2	2	2	1	45	0
	3	2	1	2	2	1	0	0	0
40	1	2	1	3	2	1	0	0	0
10	2	2	1	3	2	2	0	0	0
_	1	2	1	3	2	2	1	165	0
11	2	2	1	2	2	2	1	165	0
	3	2	1	3	2	2	ò	0	0
_	1	1	1	5	1	1	0	0	0
12	2	1	1	5	2	1	1	94	0
	3	1	1	5	1	1	1	45	0
_	1	1	2	4	1	2	0	0	0
13	2	1	2	4	2	2	0	0	0
	3	1	2	4	2	2	0	0	0
	1	2	2	4	1	1	1	118	0
14	2	2	2	4	1	1	1	118	0
	3	2	2	4	1	1	1	118	0
issi	ing:	0	0	0	0	0	0	0	

deflating

Results

Data

- □ We impute BAC levels for those fatal collisions occurring in **Ontario** during the year **2007** for which data is not available (**587 records** in total).
- □ The data set also contains the collisions from 2000 to 2005
- □ Missing values of categorical variables are imputed using SAS 9.2's **proc** logit.
- □ There were n = 9689 records in the combined databases.
- □ Early trials confirmed that k > 9 replications eliminated all convergence errors in the logistic regression routine used by SAS. We use k = 10.
- □ Furthermore, analysis of existing BAC levels determined that A = 500 mg/dL is a reasonable upper limit for BAC levels.
- By comparison, a BAC level of **80 mg/dL** is the threshold for impaired driving in Ontario.

Data

□ The frequency tables for the explanatory variables in the replicated records are shown below.

P_	11	Freque	ency	Percer	nt		
1		87940		90.76			
2		8950		9.24			
C_	W	DAY_G	R Fr	equend	y	Percer	nt
1			50	470		52.09	
2			46	420		47.91	
С	HC	UR_G	R Fre	equenc	y	Percer	It
1			13	310		13.78	1
2			134	490		13.97	
3			30	230		31.31	
4			25	100		25.99	
5			14	430		14.94	
Fre	equ	ency M	lissi	ng = 33	30		_
C_	VE	HS_GF	₹ Fre	quenc	y F	Percen	t
1			302	260	3	31.23	1
2			467	'30	4	8.23	
3			199	00	2	20.54	
P	SE	X GR	Freq	uency	Pe	rcent	T
1		_	7379	0	76	.55	C
2			2260	0	23	.45	C

Frequency Missing = 500

P_AGE_GR	Frequency	Percent
1	9170	9.72
2	19750	20.92
3	17240	18.26
4	18490	19.59
5	13260	14.05
5	16480	17.46

Frequency Missing = 2500

P_SAFE_GR	Frequency	Percent
1	10560	11.68
2	62380	69.00
3	17460	19.31

Frequency Missing = 6490

V_CF_GR	Frequency	Percent
1	12290	13.20
2	80820	86.80

Frequency Missing = 3780

Univariate Frequency Counts for Explanatory Variables

vari	Frequency	Percent
0	84830	87.55
1	10750	11.10
2	1100	1.14
3	190	0.20
4	20	0.02

Distribution of Records with 0, 1, 2, 3, and 4 Missing Explanatory Variables Values.

Imputation

- □ 10750 first-order imputations, 1100 second-order imputations, 190 third-order and 20 fourth-order imputations were needed to obtain a **complete set of replicated records**.
- □ Once the values of Z_1 were imputed, we used the threshold a = 0.5 to determine whether a record had zero or non-zero BAC: if more than 50% of the replicates for a given record had Z_1 , the record itself was assumed to have non-zero BAC
- □ The existing BAC levels were first transformed according to

$$\hat{Z}_2 = \tan\left(\frac{\pi}{500}Z_2 - \frac{\pi}{2}\right)$$

carrying the range of Z_2 from (0,500) to $(-\infty, \infty)$.

□ SAS 9.2's **proc** glm was then used to impute \hat{Z}_2 for the missing values, and the **inverse transformation** provided the imputed Z_2 values.

Results and Validation (Z_1)

עופס	EDS	CORONER					
	LIND	BAC>0	BAC=0				
	BAC>0	92	16				
IMPUTED	BAC=0	66	299				
DEDEST		CORONER					
	NANO	BAC>0	BAC=0				
	BAC>0	31	10				
IMPUTED	BAC=0	0	73				
		CORONER					

COME		CONTONER					
COME		BAC>0	BAC=0				
	BAC>0	123	26				
IMPUIED	BAC=0	66	372				

Metric	Drivers	Pedestrians	Combined
Accuracy	82.66%	91.23%	84.33%
Precision (PPV)	85.19%	75.61%	82.55%
Negative Predictive Value	81.92%	100.00%	84.93%
Sensitivity	58.23%	100.00%	65.08%
Specificity	94.92%	87.95%	93.47%
False Positive Rate (α)	5.08%	12.05%	6.53%
False Negative Rate (β)	41.77%	0.00%	34.92%
Positive Likelihood Ratio	11.46	8.30	9.96
Negative Likelihood Ratio	0.44	0.00	0.37
F-score	0.69	0.86	0.73

Consulting Post-Mortem

Consulting Post-Mortem

Client needed results quickly

- didn't leave much time to fine-tune the model (playing around with various predictive models and transformations, etc)
- More emphasis was placed on Z_1 than Z_2 , at the client's behest, but Z_2 would have been a **more important quantity to impute** (a certain amount of BAC is legally allowed)
 - numerical values harder to impute
- Client put a lot of faith in the idea that BAC absence/presence should be easy to impute accurately
 - felt that accuracy should have been in high 90s, in spite of small number of explanatory variables available
- The threshold value provides an **estimate of the variance in** Z_1 , but in general, uncertainty was not going to be used in ulterior analyses – this simplified the algorithm design.
- **Overfitting** issues? No performance evaluation was conducted until validation **risky**.
- In retrospect, while the algorithm did what was asked of it, I feel that it is neither robust enough or sophisticated enough. I lucked out.