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PROBLEM DESCRIPTION



Problem Description
Supply chains play a crucial role in the transportation of goods from one part of the world to
another. As the saying goes, “a given chain is only as strong as its weakest link” – in a multi-
modal context, comparing the various transportation segments is far from an obvious
endeavour.

Transport Canada is looking to produce an index to track container transit times in multi-
modal chain networks.

This index should depict the reliability and the variability of transit times but in such a way as
to be able to allow for performance comparison between differing time periods.

The seasonal variability of performance is relevant to supply chain monitoring and the ability
to quantify and account for the severity of its impact on the data is thus of great interest.



Problem Description
The ultimate goal of this project is to compare quarterly and/or monthly performance data,
irrespective of the transit season, in order to determine how well the network is performing,
as it applies to the Shanghai → Port Metro Vancouver/Prince Rupert → Toronto corridors,
and to produce a scoring methodology which could then be applied to other corridors.



Problem Description
The supply chain under investigation has Shanghai as the point of origin of shipments, with
Toronto as the final destination; the containers enter the country either through Vancouver or
Prince Rupert.

Containers leave their point of origin by boat, arrive and dwell in either of the two ports
before reaching their final destination by rail.



Problem Description
For each of the three segments (Marine Transit, Port Dwell, Rail Transit), the data consists of
the monthly empirical distribution of transit times

§ from January 2010 to March 2013 (for Port Dwell)
§ from January 2010 to April 2013 (for Marine and Rail)

The data is built from sub-samples (assumed to be randomly selected and fully
representative) of all containers entering the appropriate segment.



Problem Description
Each segment’s performance was measured using Fluidity Indicators, which are computed
using various statistics of the transit/dwelling time distributions for each of the supply chain
segments. The main indicators under consideration were:

§ Reliability Indicator (RI) – the ratio of the 95th percentile to the 5th percentile of
transit/dwelling times (a high RI indicates high volatility, whereas a low RI (≈ 1)
indicates a reliable corridor);

§ Buffer Index (BI) – the ratio of the positive difference between the 95th percentile
and the mean, to the mean. A small BI (≈ 0) indicates that the mean and the 95th
percentile transit times are roughly the same, and so that there is only slight
variability in the upper (longer) transit/dwelling times; a large BI indicates that the
variability of the longer transit/dwelling times is high, and that outliers might be
found in that domain;

§ Coefficient of Variation (CV) – the ratio of the standard deviation of transit/dwelling
times to the mean transit time.



Problem Description
The time series of monthly indicators (which are derived from the monthly transit/dwelling
time distributions in each segment) were then decomposed into their

§ trend;
§ seasonal component (seasonality, trading-day, moving-holiday), and
§ irregular component.

The trend and the seasonal components provide the expected behaviour of the indicator
time series; the irregular component arose as a consequence of supply chain volatility.

A high irregular component at a given time point indicates a poor performance against
expectations for that month.



ILLUSTRATION
Time-Series Decomposition



Basic Concepts
A time series is a sequence of values, measured at regular intervals over time. Ideally,

§ the reporting periods should be identical (e.g. daily, monthly, quarterly or yearly);
§ the measurements should be taken over discrete (exclusive), consecutive periods,
§ the concepts and the measurement approach should be consistent over time.

Correlations and root causes can be identified if the time series are stationary (independent
of time). Statistical tools which assume data independence are invalidated if the data is
serially dependent.

If serial dependence is suspected or expected to exist, time series decomposition is required
to identify trend, cyclical and seasonal components, in addition to providing accurate
forecasts.

The time series seasonal adjustment enables the identification of turning points and
provides consistent comparisons of indicators across time periods.



Components Hierarchy
Time series data can be broken down as follows:

Time Series

Irregular

Seasonal & Cyclical

Trend Seasonality & Cycles

Calendar

Moving Holiday Trading Day



Breaks
Before carrying out seasonal adjustment, it is important to identify and pre-adjust for
structural breaks (using the Chow test, for instance), as their presence can give rise to
severe distortions in the estimation of the Trend and Seasonal effects.

§ Seasonal breaks occur when the usual seasonal activity level of a particular time reporting unit
changes in subsequent years.

§ Trend breaks occurs when the trend in a data series is lowered or raised for a prolonged period,
either temporarily or permanently.

Sources of these breaks may come from changes in government policies, strike actions,
exceptional events, inclement weather, etc.



Models
Traditionally, the decomposition follows one of three models:

§ Multiplicative
§ Additive
§ Pseudo-Additive

The choice of a model is driven by data behaviour and choice of assumptions.

The X12 model automates some of the aspects of the decomposition, but manual
intervention and diagnostics are still required. X12 is implemented in SAS and R, among
other platforms. Consult the references for more information.



Models – Multiplicative 
This modeling approach assumes that

§ the magnitude of the seasonal spikes/troughs increases when the trend increases (and vice-
versa);

§ the trend !" has the same dimensions as the original series #", and the seasonal component
$" and the irregular component %" are dimensionless and centered around 1;

§ the seasonal fluctuation ∑'()* $"+' = -, where - = 365 for daily series, - = 12 for monthly
series, - = 4 for quarterly series, etc., and

§ the original series #" does not contain zero values.

Mathematically, the model is expressed as

#" = !"×$"×5"×%",
where 5" is the trading day component due to calendar effects. All components share units.  



Models – Multiplicative 
After seasonality adjustment, the seasonality adjusted series is 

!"# = %&
'&×)&

= *#×+#.

After a log transformation, the multiplicative model becomes an additive model:
log 0# = log *# + log !# + log 2# + log +#



Models – Additive 
This modeling approach assumes that

§ the seasonal component !" and the irregular component #" are independent of the trend
behaviour $";

§ the seasonal component !" remains stable from year to year, and
§ the seasonal fluctuation ∑&'() !"*& = 0, where - = 365 for daily series, - = 12 for monthly
series, - = 4 for quarterly series, etc.

Mathematically, the model is expressed as

4" = $" + !" + 6" + #".
where 6" is the trading day component due to calendar effects. All components share units 
and dimensions.  

After seasonality adjustment, the seasonality adjusted series is 
!8" = 4" − !" − 6" = $" + #".



Models – Pseudo-Additive
This approach assumes that some of the values of the original series !" are 0 and that

§ the seasonal component #" and the irregular component $" are both dependent on the trend
level %", but independent of each other, and

§ the trend %" has the same dimensions as the original series !", and the seasonal component
#" and the irregular component $" are dimensionless and centered around 1.

Mathematically, the model is expressed as
!" = %" + %"×(#"−1) + %"×(-"−1) + %"×($"−1) = %"×(#"+-" + $" − 2).

where -" is the trading day component due to calendar effects. All components share units.  

After seasonality adjustment, the seasonality adjusted series is 
#0" = !" − %"×(#"−1) − %"×(-"−1) = %"×$".



Calendar Effects
A number of monthly and quarterly time series include calendar effects due to the varying
lengths of the months, day-of-the week effects and holidays, fixed or moving:

§ The trading day effect is related to the monthly differences in the numbers of each day of the
week from one year to the next (there may be more weekend sales in a month with five
weekends). In each month, some days of the week may occur 5 times. The type of theses
extra days affect the data for the month. Without an appropriate correction, it becomes
impossible to compare monthly estimates from year to year.

§ Easter is a moving holiday which occurs either in March or April between March 22 and April
25, or in the first or second quarter. Industrial production is lower in months in which Easter
falls due to fewer working days. As a result, it needs to be removed before seasonality
adjustment. If the Easter moving holiday effect is not corrected, the peaks and troughs due to
its effects will be reflected in the final seasonal adjusted series.

§ Canada Day is a fixed holiday that falls on each year on July 1 (unless July 1 is a Sunday in
which case Canada Day is held on July 2). As a consequence, there is always an additional
day in the first week of July where businesses are closed and the overwhelming majority of
Canadians have the day off, usually modifying their regular activities. An adjustment must be
made when looking at daily rates instead of absolute monthly numbers, say.



Seasonal/Cyclical Adjustment Methodology
1. Choice of seasonal decomposition model

§ Includes checking the need for data transformation as well as the selection of a
specific decomposition model (multiplicative, additive or pseudo-additive) based on
the data.

§ Graphical inspection: the multiplicative model should be used when the time series
plot in continuous years shows that the size of the seasonal peaks and troughs
changes as the trend changes; otherwise, the additive model should be used.

§ AICC Comparison: the log transformation should be selected if the Akaike Information
Criterion ("#$$) satisfies "#$$nolog − "#$$log > 2 (these values can be computed
using SAS’s proc X12, for instance).



Seasonal/Cyclical Adjustment Methodology
2. Adjusting and testing for trading-day effects (if applicable)

§ Series should be adjusted to remove trading day effects from the final seasonally
adjusted series when they are found to be statistically significant (unless the results
are counterintuitive and do not match realistic day-to-day operations).

§ Testing for these effects includes looking for peaks in spectral plots (either the first
differences of the adjusted time series or in the final irregular component, both
adjusted for extreme values), the ! −test or the #$ −test (significance of trading day
effect regressors)

§ Significant trading-day regressors should be included in the model (X12
documentation).



Seasonal/Cyclical Adjustment Methodology
3. Adjusting and testing for trading day effects (continued)

§ There are instances when a series should NOT be adjusted for trading day effects: if
the data-recording year is not divided in the same way as the calendar period
described by months; if the data is collected at a point in time rather than (every day,
say), or if the data is not collected in strict calendar months.

4. Adjusting and testing for moving holiday effects (if applicable)
§ Moving-holiday effects are identified using an !"## test (picking the model which
gives the smallest AICC value for various moving holiday regressors) or graphical
inspection (without adjustment for moving-holidays effects, the Seasonal Irregular
component ratios or the month-to-month/quarter-to-quarter percentage change in the
original series will not be consistent from year to year).

§ Significant moving-holiday regressors should be included in the model (more details
are available in the X12 documentation).



Seasonal/Cyclical Adjustment Methodology
5. Identifying and adjusting for trend level shifts

§ Level shifts are abrupt but sustained changes in the underlying level of the time series
associated with an unchanged seasonal pattern.

§ Without accounting for trend level shifts, there may be an increased level of
irregularity for the seasonally adjusted series around the level shifts, increasing the
volatility of the seasonally adjusted series.

§ These shifts can be identified using month-to-month/quarter-to-quarter percentage
changes in original and seasonally adjusted estimates according to the following
criterion: a sudden large increase which is not followed by a corresponding decrease,
or vice-versa.



Seasonal/Cyclical Adjustment Methodology
6. Identifying and adjusting for outliers

§ Outliers are extreme values that fall outside of the general pattern of the trend and
seasonal components, which can be caused by an extreme random effect or an
identifiable reason.

§ Outliers found at the end of the time series may have a large impact on revisions
when new data become available.

§ These can be identified using the table of final weights for the irregular component
and the table of residual patterns of the irregular component, according to the
following criterion: one or more of the values are 0.



Data Quality Issues
Known data quality issues could affect the results of time series analyses:

§ the method of data collection may lead to unusual effects, especially if collection is made
on a non-calendar basis or if there is a lag between activity and measurement;

§ any change to the method or timing of data collection could lead to the false
identification of trend or seasonal breaks;

§ some series are sensitive to events such as extreme weather, strikes, wars, etc., which
could cause breaks or outliers of large magnitude;

§ at least 5 years worth of data are required to insure stability on future updates, and
§ at least 10 years worth of data are required to insure that the adjustment of the first year

is unlikely to be revised.



ILLUSTRATION
Shanghai → Vancouver Marine Transit



Illustration
Shanghai → Vancouver

Let us illustrate the process
of decomposition with the
time series recording the CV
fluidity index for the Marine
Transit between Shanghai
and Vancouver; the values
are shown in the year-by-
year plot to the right.

What trend(s) can be found
in this data (if any)?

Are there months where the
value of CV is “unexpected”?



Model Selection 

The continuous plot shows
that the size of the peaks
and troughs does not seem
to change with changing
trends: the additive model is
thus selected.

SAS’ proc X12 agrees, and 
suggests no further data 
transformation. 



Trading-Day and Easter Effects, Level Shifts 
and Outliers 
A spectral plot (not included)
suggests that no trading-day
effects are found.

At default critical values, the SAS
procedure X12 further identifies
an Easter effect but no leap year
effect, as well as a suspected
level shift in October of 2010.

Outliers were not detected.



Diagnostic Plots

The diagnostic plots are shown
on the next few slides: the
2010 CV series is prior-
adjusted from the beginning
until OCT2010 after the
detection of a level shift.



Diagnostic Plots
The SI chart shows that there
are more than one irregular
component which exhibits
volatility.



Diagnostic Plots
The adjusted time series is
shown here.

Note the shift.



Diagnostic Plots
Now the trend and irregular 
components are shown 
separately.

What months should be
audited?



Comparison (Vancouver to Toronto BI)



CONSULTING 
POST-MORTEM

Shanghai → Vancouver Marine Transit



Consulting Post-Mortem
Not enough data available (would have needed 5+ years), but OK since the focus was on the methodology;
with data slated to come in indefinitely, the problem will eventually evaporate.

Transit dwelling time available only for a sample of all containers going through the supply chain;
representativeness was questioned (no sampling design, inconsistent methods).

No overarching results that applied to all indicator time series, for each segment, except for the lack of a
Chinese New Year effect, which was unexpected (given the origin of the chains).

Supply chain reliability is a function of the total transit time from its origin to its destination. End-to-end data 
was unavailable at the time. 

Data security issues meant that consultants could not bring the data outside of TC’s offices. 

The client asked for an executive summary of the report but still hired another consultant to explain the
report and the code; we failed to recognize that the client was not understanding, in part because of our
frustration at severely undercharging the project ($4,424.73 for 250 hours). That’s not a valid excuse.



ADDITIONAL NOTES
Forecasting Models, Missing Data, Automated Trend Extraction



Basic Notions
Primary focus of forecasting is to try to predict the future using available data (time series or
other).

Forecasts tend to be wrong: aggregated forecasts are usually more accurate.

Emphasis should not be placed on a single estimate (the mean): forecasts should also
include the standard deviation and an accuracy range.

Accuracy usually decreases when the prediction horizon lies further into the future.

Time series forecasts require the isolation of various patterns in the data: trend, seasonality,
cycles, level shifts, irregular components and outliers.



Basic Notions – Methods
Data does not need to exhibit periodicity or time series characteristics, in which case a
regular regression model could be appropriate.

In the presence of structure time series noise, a Fourier transform can help identify the
number of distinct cycles (as well as their respective frequencies).

Most of the other time series method require the series to be stationary (i.e. the expected
value of the series stays constant over time). Such a series can be represented by a model of
the form

!" = $ + &"
where  &"~( 0, +, for some distribution with mean 0 and variance +,. 

Most time series forecasting methods assume stationarity: if the series is not stationary, it
must first be decomposed (detrended, deseasonalized) into its constituents components.



De-trending Time Series Data
Identification of trend in time series is subjective because what appears to be a trend over a
short time period may prove to simply be a small fluctuation which could form part of a cycle
over the long-term horizon of the series.

Regression models of various complexity levels can be fitted (against time and/or auxiliary
variables) to identify possible trends. At long horizons, polynomial response functions
explode: if such models must be used, we recommend using linear or quadratic response
functions, as slope and concavity might be the best we can hope to detect in light of the
previous remark.

In combination with appropriate data transformations (e.g. logarithm, square root, inverse,
Box-Cox, etc.), the low order regression models can achieve good results.

Fourier transforms can help identify potential trend and cycles (as well as their respective
frequencies), so can a variety of statistical tests (like the Mann-Kendall test, for instance).



De-trending Time Series Data – Methods
There are 4 main approaches to de-trending:

§ finite differences: iterated differences between subsequent time series observations, which
can remove polynomial trends; useful if exact shape of trend cannot be estimated; too high
an order may introduce variance inflation; ignores the potential effect of any variable over the
trend, save for the passage of time;

§ curve fitting: regression against time itself, or more complicated models involving auxiliary
variables; prior knowledge of the situation can be used to provide an acceptable model which
naïve analysis of the data might not be able to suggest; simple regression models may be
unrealistic;

§ filtering and smoothing: various weighted averages of the time series data can be used to
compute a filtered series; advantages and disadvantages discussed in the next slides; the
trend component output of the X12 procedure on the CV time series in the first section is an
example; an explicit functional form for the trend is unlikely to be found;

§ cubic splines: a separate cubic polynomial is fit continuously to every sequence of three
points in the series; the first and second derivatives are continuous at each point; a “spline
parameter,” which depends on the relative importance given to “smoothness” and “goodness-
of-fit” of the curve, is required to specify the spline flexibility.



Notation and Forecast Evaluation
Let !", !$,⋯ , !&,⋯ be the past values of the time series. In order to make a forecast at time
', we need to know !(, !()",⋯ , !".

The forecast +(,(,- is the prediction for !(,- made at time '; we use the shorthand notation
+(,(," ≔ +( for the next step prediction of !(," made at time '.

The forecast error /( at time ' is the difference between the forecast at time ' and the actual
value of the time series at time ' :

§ For a multiple step forecast: /( = +()-,( − !(
§ For a next step forecast: /( = +( − !(

The mean absolute deviation MAD = 5)" ∑7 /7 and the mean square error (
)

MSE =
5)" ∑7 /7$ can be used to compare the relative forecasting merits of various models.



Filtering Methods
Moving average of order !: arithmetic average of the most recent " observations:

#$%& =
1
")

*+,

-.&
/$.*

§ MA " provides stable forecasts; bad data (e.g. irregular points, bad stretches) is eventually
removed from the prediction process

§ requires saving a lot of past data points; lags behind the actual trend; ignores complex
relationships in data

Weighted moving average of order !: attaches importance to certain observations in the
form of weights (recent observations could have more influence than older observations, for
example):

#$%& = )
*+,

-.&
2$.*/$.*

§ WMA " may reduce the lag shown by MA " but there is no obvious way to introduce a
weighing scheme ∑* 2$.* = 1.



Filtering Methods
Exponential smoothing with parameter !: weighted moving average with declining weights
for past data: "#$% = '(# + (1 − ')"#.

§ By iterating the above relation, we see that ES ' carries the entire past history of the series,
without the need to save past data points.

§ Small values of ' produce stable forecasts with low variability, but they increase the lag.

Double exponential smoothing with parameters ! and 0 (Holt’s Method): requires separate
smoothing for the slope and the intercept if a linear trend is present:

1# = '(# + 1 − ' 1#2% + 3#2% , 3#= 5 1# − 1#2% + 1 − 5 3#2%
§ HM ', 5 makes multi-step predictions which can be quickly revised: "#,#$8 = 1# + 93#.

Triple exponential smoothing (Winter’s Method) also incorporates a smoothing factor for
seasonal factors: "#,#$8 = 1# + 93# :8.

§ Winter’s Method requires two complete cycles to provide initial estimates, and a third cycle for
fine-tuning.



Other Considerations
Methods that are too sophisticated can be unreliable over the long-term.

Another family of methods to consider: Box-Jenkins, which require substantial data history,
use the correlation structure of the data (none of the filtering methods do) and can provide
much-improved forecasts in some situations.

Bayesian inference and Monte-Carlo Markov Chains could also be used if we have some prior
information/belief regarding the structure of the time series and the auxiliary variables, but
there is some controversy regarding non-frequentist approaches.



Automated Trend Extraction  
Ideally, trend extraction should not be automated. There are ways to program the methods
(such as proc X12 in SAS in R) to automatically select the model (additive, multiplicative,
etc.), to search for outliers and level shifts, etc., but the tests that are used are NOT perfect
and visual examination is typically needed to confirm the procedure’s decisions.

That being said, it is possible to provide an algorithm that one would expect to de-trend and
de-seasonalize a time series most of the time (the caveat being that unless one verifies the
results on a given time series, one cannot be sure that the assumptions built into the
algorithms applied to that time series).

MATLAB has a time series module; some of the documentation gives suggestions as to how
to automate trend extraction. But MATLAB is not a native time-series environment: SAS or R
are preferred alternatives.

A possible algorithm can be prepared once specific time series are exhibited.


