P Boily, J Schellinck, S Hagiwara (DRAFT)

Contents
1 Survey of Quantitative Methods 2
1.8 Optimisation v it e e e e e e e e e e e 3
1.8.1 Single-Objective Optimisation Problem 4
1.8.2 Calculus Sidebar and Lagrange Multipliers 6
1.8.3 Classification of Optimisation Problems and Types of Algorithms 9
1.8.4 Linear Programmingt ittt ittt e e 11
1.8.5 Mixed-Integer Linear Programming (MILP) 16
1.8.6 A Sample of Some Useful Modeling Techniques 19
1.8.7 Software Solvers e 20
1.8.8 Data Envelopment Analysis, 21
1.8.9 Case Study: Resource Utilisation and Re-allocation in Barcelona Schools . . 24
1.8.10 Case Study: Security Officer Profiles 28

List of Figures

1 Critical points for continuous functions of areal variable 7
2 Graphical solution for the lemonade and lemon juice problem 12
3 Results of the re-allocation process in the Barcelona public school dataset. 27
List of Tables
3 Simple input/output data for a fictional organisation. 21
4 Double input/output data for a fictional organisation. 22
5 Excel’s numerical solver forunit D. e e e 24
6 Sample from the Barcelona public schooldata.o.o... 25

(DRAFT)

INTRODUCTION TO QUANTITATIVE CONSULTING P Boily, J Schellinck, S Hagiwara (DRAFT)

1 Survey of Quantitative Methods

The bread and butter of quantitative consulting is the ability to apply quantitative methods to
business problems in order to obtain actionable insight. Clearly, it is impossible (and perhaps
inadvisable, in a more general sense) for any given individual to have expertise in every field of
mathematics, statistics, and computer science.

We believe that the best consulting framework is reached when a small team of consultants
possesses expertise in 2 or 3 areas, as well as a decent understanding of related disciplines, and
a passing knowledge in a variety of other domains: this includes keeping up with trends, im-
plementing knowledge redundancies on the team, being conversant in non-expertise areas, and
knowing where to find detailed information (online, in books, or through external resources).

In this section, we present an introduction for 9 “domains” of quantitative analysis:

= survey sampling and data collection;
= data processing;

= data visualisation;

= statistical methods;

= queueing models;

= data science and machine learning;
= simulations;

= optimisation, and

* trend extraction and forecasting;

Strictly speaking, the domains are not free of overlaps. Large swaths of data science and time
series analysis methods are quite simply statistical in nature, and it’s not unusual to view opti-
misation methods and queueing models as sub-disciplines of operations research. Other topics
could also have been included (such as Bayesian data analysis or signal processing, to name but
two), and might find their way into a second edition of this book.

Our treatment of these topics, by design, is brief and incomplete. Each module is directed at
students who have a background in other quantitative methods, but not necessarily in the topic
under consideration. Our goal is to provide a quick “reference map” of the field, together with
a general idea of its challenges and common traps, in order to highlight opportunities for appli-
cation in a consulting context. These subsections are emphatically NOT meant as comprehensive
surveys: they focus on the basics and talking points; perhaps more importantly, a copious number
of references are also provided.

We will start by introducing a number of motivating problems, which, for the most part, we
have encountered in our own practices. Some of these examples are reported on in more details
in subsequent sections, accompanied with (partial) deliverables in the form of charts, case study
write-ups, report extract, etc.).

As a final note, we would like to stress the following: it is IMPERATIVE that quantitative consul-
tants remember that acceptable business solutions are not always optimal theoretical solutions.
Rigour, while encouraged, often must take a backseat to applicability. This lesson can be difficult
to accept, and has been the downfall of many a promising candidate.

(DRAFT) 2

P Boily, J Schellinck, S Hagiwara (DRAFT) 1.8 OPTIMISATION

1.8 Optimisation

Optimisation problems seen in a typical first-year calculus course are often solved using differ-
ential calculus. In this whirlwind tour of optimisation, we consider problems that do not lend
themselves to a calculus approach. In this subsection, we look at some of the most common
types of single-objective optimisation problems that arise in practice, and popular techniques
for solving them.

We consider two toy problems to introduce some fundamental ideas in optimisation.

1. Let S be the set of all the four-letter English words. What is the maximum number of £’s a
word in S can have?

There are numerous four-letter words that contain the letter £ — for example, “line”, “long”,
“tilt”, and “full”. From this short list alone, we know the maximum number of {’s is at least
2 and at most 4. As “IllI” is not an English word, the maximum number cannot be 4. Can
the maximum number be 3? Yes, because “lull” is a four-letter word with three £’s.

This example illustrates some fundamental ideas in optimisation. In order to say that 3 is
the correct answer, we need to

= search for a word that has three {’s, and
= provide an argument that rules out any value higher than 3.

In this example, the only possible value higher than 3 is 4 which was easily ruled out. Un-
fortunately, life is not always this easy. For instance, if the question asked for the maximum
number of y’s instead of ¢’s, what would you do?

2. A pirate lands on an island with a knapsack that can hold 50kg of treasure. She finds a cave
with the following items:

Item Weight Value Value/kg

Iron shield 20kg $2800 $140/kg
Gold chest ~ 40kg $4400 $110/kg
Brass sceptre 30kg $1200 $40/kg

Which items can she bring back home in order to maximise her reward without breaking
the knapsack?

If the pirate does not take the gold chest, he can take both the iron shield and the brass
sceptre for a total value of $4000. If he takes the gold chest, he cannot take any of the
remaining items. However, the value of the gold chest is $4400, which is larger than the
combined value of the iron shield and the brass sceptre. Hence, the pirate should take just
the gold chest.

Here, we performed a case analysis and exhausted all the promising possibilities to arrive
at our answer. Note that a greedy strategy that chooses items in descending value per weight
would give us the sub-optimal solution of taking the iron shield and brass sceptre.

3 (DRAFT)

INTRODUCTION TO QUANTITATIVE CONSULTING P Boily, J Schellinck, S Hagiwara (DRAFT)

Even though there are problems for which the greedy approach would return an optimal solution,
the second example is not such a problem. In fact, the general version of this problem is the
classic binary knapsack problem and is known to be NP-hard (informally, NP-hard optimisation
problems are problems for which no algorithm that runs in polynomial number of steps in the size
of the problem is known).

Many optimisation problems coming from real-world applications are NP-hard. Despite the
theoretical difficulty, practitioners often devise methods that return good-enough solutions using
approximation methods and heuristics. There are also ways to obtain bounds to gauge the quality
of the solutions obtained. We will be looking at these issues later on in this section.

1.8.1 Single-Objective Optimisation Problem

A typical single-objective optimisation problem consists of a domain set 2, an objective function
f : 9 — R, and predicates 6; on 2, where i = 1,...,m for some non-negative integer m, called
constraints; one seeks to find, if possible, an element x € 9 such that ;(x) holds fori =1,...,m
and the value of f(x) is either as high (in the case of maximisation) or as low (in the case of
minimisation) as possible.

Compactly, single-objective optimisation problem are written down as:

min f(x)
st. 6(x) i=1,...,m
XeE 9.
in the case of minimising f (x), or
max f(x)
st. 6(x) i=1,...,m
XeE 9.

in the case of maximising f (x). Here, “s.t.” is an abbreviation for “subject to.”

To be technically correct, min should be replaced with inf (and max with sup) since the mini-
mum value is not necessarily attained. However, we will abuse notation and ignore the subtlety
in this document.

Some common domain sets include

= R" (the set of n-tuples of non-negative real numbers)
= Z!, (the set of n-tuples of non-negative integers)
= {0,1}" (the set of binary n-tuples)

The Binary Knapsack Problem (BKP) can be formulated using the notation we have just in-
troduced. Suppose that there are n items, with item i having weight w; and value v; > 0 for
i=1,...,n. Let K denote the capacity of the knapsack.

(DRAFT) 4

P Boily, J Schellinck, S Hagiwara (DRAFT) 1.8 OPTIMISATION

Then the BKP can be formulated as:

n

max . VX
i=1

n

st. Y.wix; <K
i=1
x;€{0,1} i=1,...,n.

Here, there is only one constraint given by the inequality modeling the capacity of the knapsack.
For the pirate example discussed previously, the formulation is:

max 2800x; +4400x, + 1200x,
s.t. 20x; +40x, + 30x53 < 50
X1, X9, X3 € {O, 1}

Feasible and Optimal Solutions An element x € 9 satisfying all the constraints (that is, %;(x)
holds for eachi = 1,...,m) is called a feasible solution and its objective function value is f (x).
For a minimisation (resp. maximisation) problem, a feasible solution x* such that f(x*) < f(x)
(resp. f(x*) = f(x)) for every feasible solution x is called an optimal solution. The objective
function value of an optimal solution, if it exists, is the optimal value of the optimisation problem.

If an optimal value exists, it is by necessity unique, but the problem can have multiple optimal
solutions. Consider, for instance, the following example:

min x+Yy

s.t. x+y=>1
[x]eRz
y

This problem has an optimal solution [;] = [1 ; t] for every t € R, but a unique optimal value
of 1.

Infeasible and Unbounded Problems It is possible that there exists no element x € 2 such that
%;(x) holds for alli = 1,...,m. In such a case, the optimisation problem is said to be infeasible.

The following problem, for instance, is infeasible:

min Xx

s.t. x<-—1
x>0
x€R

Indeed, any solution x must be simultaneously non-negative and smaller than —1, which is
patently impossible.

5 (DRAFT)

INTRODUCTION TO QUANTITATIVE CONSULTING P Boily, J Schellinck, S Hagiwara (DRAFT)

An optimisation problem that is not infeasible can still fail to have an optimal solution, however.
For instance, the problem
max X
s.t. xe€R

is not infeasible, but the max / sup does not exist since the objective function can take on values
larger than any candidate maximum. Such a problem is said to be unbounded.

The problem
min e
s.t. x €R,
on the other hand has a positive objective function value for every feasible solution. Even though
the objective function value approaches zero as x approaches infinity, there is no feasible solution
with an objective function value of 0. Note that this problem is not unbounded as the objective

function value is bounded below by O.

Possible Tasks Involving Optimisation Problems Given an optimisation problem, the most
natural task is to find an optimal solution (provided that one exists) and to demonstrate that it is
optimal. However, depending on the context of the problem, one might be tasked to find

= 3 feasible solution or show that none exists;

a local optimum;

a good bound on the optimal value;

all global solutions;

a “good” (but not necessarily optimal) solution, quickly;

a “good” solution that is robust to small changes in problem data, and/or
the N best solutions.

In the consulting context, the last three tasks listed above are often more important. For example,
if the problem data comes from measurements or forecasts, one needs to have a solution that is
still feasible when deviations are taken into account. Multiple “good” solutions allow decision
makers to choose a solution that has desirable properties that are not represented by, or difficult
to be represent with, problem constraints (such as political or traditional requirements).

1.8.2 Calculus Sidebar and Lagrange Multipliers

Optimisation is quite possibly the most-commonly used application of the derivative. You will
recall that a differentiable function f : [a,b] — R has a critical point at x* € (a, b) if either
f(x*)=0or f’(x*) is undefined (see Figure 1). If additionally f is continuous, then the optimal
solution of the problem

max f(x)
s.t. x<b
x=a
x €R

is found at one (or possibly, many) of the following feasible solutions: x = a, x = b, or x = x*
where x* is a critical point of f in (a, b).

(DRAFT) 6

P Boily, J Schellinck, S Hagiwara (DRAFT) 1.8 OPTIMISATION

Figure 1: Critical points for continuous functions of a real variable.

This can be extended fairly easily to multi-dimensional domains, with the following theorem.

Theorem let f : .o/ € R" — R be a continuous function, where .¢/ is a closed subset of R".
Then f reaches its maximum (resp. minimum) value either at a critical point of f in the interior
of ./, or somewhere on d.</, the boundary of .</.

Consider, for instance, a company that sells gadgets and gizmos. Let’s say that the company’s
monthly profits are expresses (in 1000$s of dollars) according to

flx,y)=81+16xy —x*—y*,

where x and y represent, respectively, the number of gadgets and gizmos sold monthly (in 10,000s
of units). What is the optimal number of each items that the company must sell in order to max-
imise its profits?

Since f is continuous, the maximum value is reached at a critical value in
«°=1(0,3)x(0,3)
or somewhere on the boundary
od ={(x,y)lx=0orx=30ory=0o0ry=3}

But f is smooth; the gradient Vf(x,y) is thus always defined, and the only critical points are
those for which V£ (x,y) = (16y — 4x3,16x —4y>) = (0,0). At such a point, 4x = y*, which,
upon substitution in f, yields

1 1 1
0=16y——y°’ = —y(256—y®) = —y(y —2)(y +2)(y* +) (y* + 16),
Y—1¢¥ 16y(y°) 16y(y Xy +2)"+ 4y)

which is to say y = —2,0,2. Only y = 2 can potentially yield a critical point in .«/°, however.
When y =2, x = %23 = 2: the only critical point of f in .&/° is thus (x*, y*) = (2,2), and the
function value at that point is

f(x*, y*)=81+16(2)(2) —2*—2%=113.

7 (DRAFT)

INTRODUCTION TO QUANTITATIVE CONSULTING P Boily, J Schellinck, S Hagiwara (DRAFT)

On the boundary d.«/, the objective function reduces to one of the following four forms

f(0,y)=g(y)=81—y* on0<y<3
fB,y)=gs(y)=48y—y*, on0<y<3
f(x,0)=hy(x)=81—x* on0<x<3
f(x,3)=hy(x)=48x—x*, on0<x<3

These functions are easy to optimise, being continuous functions of a single real variable; g, and

h, are maximised at the origin, with the objective function taking the value 81 there, while g,
and h, are maximised at 12'/%, with the objective function taking the value ~ 82.42 there.

Combining all this information, we conclude that the company will maximise its profits if it sells
20,000 units of both the gadgets and the gizmos.

While the approach we just presented works in this case, there are many instances for which it
can be substantially more difficult to find the optimal value on d</. The method of Lagrange
multipliers can simplify the computations, to some extent.

Consider the problem
min/max f(x)
st. g(x)<aq; i=1,....m
XE9,

where f and g are continuous and differentiable on the (closed) region .o/ described by the
constraints g; < a; (strictly speaking, differentiability is not required on all of .&/). If the problem
is feasible and bounded, then the optimal value is reached either at a critical point of f in .e/° or
at a point x € d«/ for which

vf(x) = A'1vg1(x) +eet A'mvgm(x):

where A,,...,A,, € R are the Lagrange multipliers of the problem.

For instance, consider a factory that produces deluxe pickle jars. The monthly number of jars Q
that can be produced at the factory is given by Q(K,L) = 900K*®L%#, where K is the monthly
available capital, and L is the factory’s workforce monthly pay. Each deluxe pickle jar requires
100$ in workforce pay, and 200$ in capital (the pickles are extra deluxe, apparently). If the fac-
tory owners want to maintain monthly production at 36,000, what combinations of capital and
workforce pay will minimise the total production costs?

The optimisation problem is

min f(K,L)= 200K + 100L
s.t. K°°L%4 =40
K,L>0.

(DRAFT) 8

P Boily, J Schellinck, S Hagiwara (DRAFT) 1.8 OPTIMISATION

The objective function is linear and so has no critical point. The feasability region .« can be
described by the constraints g;(K,L) = K*°L%* < 40 and g,(K,L) = —K*°L%* < —40. Points of
interest on the boundary d.«/ are obtained by solving the Lagrange equation

1\04 K06 1\04 K\06
(200,100):/11(0.6(—) ,0.4(—))—A2(0.6(—) ,0.4(—))
K L K L
L 0.4 K 0.6
=A(0.6(—) ,0.4(—)) since Vg, =—Vg,,
K L

with K%¢L%* = 40. Numerically, there is only one solution, namely
(K., LX)~ (35.65,47.54,297.10).
The objective function at that point takes on the value
F(K.,L,) ~ 200(35.65) + 100(47.54) ~ 11884.02,

and we know that this value must either be the maximum or the minimum of the objective function
subject to the constraints of the problem. We know, however, that the point (K, L;) = (1,40*°)
belongs to d.<f; since

f(Ky,Ly) =200(1) + 100(40*°) > f(K,, L,),

then (K,, L,) is indeed the minimal solution of the problem, and the minimal value of the objective
function is ~ 11,884.023.

Given how straightforward the method is, it might seem that there is no real need to say anything
else — why would anybody ever use something other than Lagrange multipliers to solve optimi-
sation problems? One of the issues is that when the number of constraints is too high relative to
the dimension of 2, which is usually the case in real-life situations, then there may not be a finite
number of candidates solutions on d«/, which makes this approach useless.

1.8.3 Classification of Optimisation Problems and Types of Algorithms

The computational difficulty of optimisation problems, then, depends on the properties of the
domain set, constraints, and the objective function.

Classification Problems without constraints are said to be unconstrained. For example, least-
squares minimisation in statistics can be formulated as an unconstrained problem, and so can

min x?—3x
s.t. xe€R

Problems with linear constraints g; (that is, linear inequalities or equalities) and a linear objective
function f form an important class of problems in linear programming. Linear programming
problems are by far the easiest to solve in the sense that efficient algorithms exist both in theory
and in practice. Linear programming is also the backbone for solving more complex models [2].

9 (DRAFT)

INTRODUCTION TO QUANTITATIVE CONSULTING P Boily, J Schellinck, S Hagiwara (DRAFT)

Convex problems are problems with a convex domain set — a set 2 such that
tx, +(1—t)x, € 9, Vxy,x, € 9,Vt €[0,1],
convex constraints g; and a convex objective function f —i.e.
h(tx; + (1 —t)x,) < th(x;) + (1 —t)h(x,), Vx,X, € 2,Vt €[0,1],h € {f, g;}.

Convex optimisation problems have the property that every local optimum is also a global op-
timum. Such a property permits the development of effective algorithms that could also work
well in practice. Linear programming is a special case of convex optimisation.

Nonconvex problems (such as problems involving integer variables and/or nonlinear constraints
that are not convex) are the hardest problems to solve. In general, nonconvex problems are NP-
hard. Such problems often arise in scheduling and engineering applications.

In the rest of this section, we will primarily focus on linear programming and nonconvex problems
whose linear constraints g; and objective function f are linear, but with domain set 2 C R x Zi‘k.
These problems cover a large number of applications in operations research, which are often dis-
crete in nature.

We will not discuss optimisation problems that arise in statistical learning and engineering ap-
plications that are modeled as nonconvex continuous models since they require different sets of
techniques and methods — more information is available in [1].

Algorithms We will not go into the details of algorithms for solving the problems discussed, as
consultants are expected to be using off-the-shelf solvers for the various tasks, but it could prove
useful for the analyst to know the various types of algorithms or methods that exist for solving
optimisation problems.

Algorithms fall into two families: heuristics and exact methods.

= Heuristics are normally quick to execute but do not provide guarantees of optimality. For
example, the greedy heuristic for the Knapsack Problem is very quick but does not always
return an optimal solution. In fact, there is no guarantee on how good a solution is. Other
heuristics methods include ant colony, particle swarm, and evolutionary algorithms, just
to name a few. There are also heuristics that are stochastic in nature and have proof of
convergence to an optimal solution. Simulated annealing and multiple random starts are
such heuristics. Unfortunately, there is no guarantee on the running time to reach optimality
and there is no way to identify when one has reached an optimum.

= Exact methods return a global optimum after finite time. However, most exact methods only
guarantee that constraints are approximately satisfied though the violation is below some
pre-specified tolerance. It is therefore possible for the returned solutions to be infeasible for
the actual problem. There also exist exact methods that fully control the error. When using
such a method, an optimum is usually given as a box guaranteed to contain an optimal

(DRAFT) 10

P Boily, J Schellinck, S Hagiwara (DRAFT) 1.8 OPTIMISATION

solution rather than a single element. Returning boxes rather than single elements are
needed in cases, for example, where the optimum cannot be expressed exactly as a vector
of floating point numbers. Such exact methods are used mostly in academic research and
in areas such as medicine and avionics where the tolerance for errors is practically zero.

1.8.4 Linear Programming

Linear programming was initially developed independently by George B. Dantzig and Leonid Kan-
torovich in the first half of the 20 century to solve resource planning problems. Even though
linear programming is insufficient for many modern-day applications in operations research, it
was useful in many economic and military contexts in the early days. To motivate some key ideas
in linear programming, we begin with a small example.

Say you are a vendor of lemonade and lemon juice. Each unit of lemonade requires 1 lemon and
2 litres of water to prepare, and each unit of lemon juice requires 3 lemons and 1 litre of water to
prepare. Each unit of lemonade gives a profit of 3$ dollars upon selling, and each unit of lemon
juice gives a profit of 2$ dollars, upon selling. You have 6 lemons and 4 litres of water available.
How many units of lemonade and lemon juice should you prepare in order to maximise profit?

If we let x and y denote the number of units of lemonade and lemon juice, respectively, to
prepare, then the profit is the objective function, given by 3x+2y $. Note that there are a number
of constraints that x and y must satisfy:

= x and y should be non-negative;

* the number of lemons needed to make x units of lemonade and y units of lemon juice is
x + 3y and cannot exceed 6;

= the number of litres of water needed to make x units of lemonade and y units of lemon
juice is 2x + y and cannot exceed 4;

Hence, to determine the maximum profit, we need to maximise 3x + 2y subject to x and y satis-
fying the constraints x +3y <6,2x +y <4, x >0, and y > 0.

A more compact way to write the problem is as follows:

max 3x + 2y

st. x + 3y < 6
2x + y < 4

X > 0

y = 0.

x , y € R

It is customary to omit the specification of the domain set in linear programming since the vari-
ables always take on real numbers. Hence, we can simply write

max 3x + 2y

st. x + 3y < 6
2x + y < 4

X > 0

y = 0.

11 (DRAFT)

INTRODUCTION TO QUANTITATIVE CONSULTING P Boily, J Schellinck, S Hagiwara (DRAFT)

Direction of improvement

(1.2,1.6)

Figure 2: Graphical solution for the lemonade and lemon juice optimisation problem; the feasible region
is shown in yellow, and level curves of the objective function in red.

We can solve the above maximisation problem graphically, as follows. We first sketch the set of

T . : . .
|:x, y] satisfying the constraints, called the feasible region, on the (x, y)-plane.

We then take the objective function 3x +2y and turn it into the equation of a line 3x +2y =c¢
where c is a parameter. Note that as the value of c increases, the line defined by the equation

3x+2y = ¢ moves in the direction of the normal vector [3, Z]T. We call this direction the direction
of improvement.

Determining the maximum value of the objective function, called the optimal value, subject to
the contraints amounts to finding the maximum value of ¢ so that the line defined by the equation
3x + 2y = c still intersects the feasible region.

Figure 2 shows the lines with ¢ = 0,4,6.8. We can see that if ¢ is greater than 6.8, the line
defined by 3x + 2y = ¢ will not intersect the feasible region. Hence, the profit cannot exceed 6.8
dollars.

As the line 3x + 2y = 6.8 does intersect the feasible region, 6.8 is the maximum value for the
objective function. Note that there is only one point in the feasible region that intersects the line

3x + 2y = 6.8, namely [x*,y*]T = |:1.2, 1.6:|T. In other words, to maximise profit, we want to
prepare 1.2 units of lemonade and 1.6 units of lemon juice.

(DRAFT) 12

P Boily, J Schellinck, S Hagiwara (DRAFT) 1.8 OPTIMISATION

This solution method can hardly be regarded as rigorous because we relied on a picture to con-
clude that 3x +2y < 6.8 for all |:x, y]T satisfying the constraints.

But we can actually obtain this result algebraically. Note that multiplying both sides of the
constraint x +3y < 6 by 0.2 gives 0.2x + 0.6y < 1.2, and multiplying both sides of the constraint
2x +y < 4 by 1.4 gives 2.8x + 1.4y < 5.6. Hence, any [x,y]T that satisfies both x +3y < 6
and 2x + y < 4 must also satisfy (0.2x +0.6y) + (2.8x + 1.4y) < 1.2 + 5.6, which simplifies to
3x +2y < 6.8, as desired!

It is always possible to find an algebraic proof like the one above for linear programming problems,
which adds to their appeal. To describe the full result, it is convenient to call on duality, a central
notion in mathematical optimisation.

Linear Programming Duality Let (P) denote following linear programming problem:

min ¢'x
s.t. Ax>Db

where c€ R" b € R™ A € R™". (Here, inequality on tuples is applied component-wise.) Then for
every y € R (that is, all components of y are non-negative), the inferred inequality y'Ax>y'b
is valid for all x satisfying Ax > b. Furthermore, if y'A = c¢', the inferred inequality becomes
c'x > y'b, making y'b a lower bound on the optimal value of (P). To obtain the largest possible
bound, we can solve

max y'b
st. yTA=c'
y=0.

This problem is called the dual problem of (P) and (P) is called the primal problem.

A remarkable result relating (P) and its dual (P’) is the Duality Theorem for Linear Program-
ming: if (P) has an optimal solution, then so does its dual problem (P’). Furthermore, the optimal
values of the two problems are the same.

A weaker result follows easily from the discussion above: the objective function value of a feasi-
ble solution to the dual problem (P’) is a lower bound on the objective function value of a feasible
solution to (P).

This result is known as Weak Duality. Despite the fact that it is a simple result, its significance in
practice cannot be overlooked because it provides a way to gauge the quality of a feasible solution
to (P). For example, suppose we have at hand a feasible solution to (P) with objective function
value 3 and a feasible solution to the dual problem (P’) with objective function value 2. Then we
know that the objective function value of our current solution to (P) is within 1.5 times the actual
optimal value since the optimal value cannot be less than 2.

13 (DRAFT)

INTRODUCTION TO QUANTITATIVE CONSULTING P Boily, J Schellinck, S Hagiwara (DRAFT)

mxn

In general, a linear programming problem can have a more complicated form. Let A € R™",
beR"™, ceR". Let a(i)T denote the ith row of A, A; denote the jth column of A, and (P) denote

the minimisation problem, with variables in the tuple x = [xl, e xn] , given as follows by:

= the objective function to be minimised is ¢"x;

= the constraints are a® ' x U; b;, where LJ; is <, >, or =fori=1,...,m, and

= for each j € {1,...,n}, X; is constrained to be non-negative, nonpositive, or free (i.e. not
constrained to be non-negative or nonpositive.)

Then the dual problem (P’) is defined to be the maximisation problem, with variables in the tuple
y= [J’p e ,ym]T given as follows:

= the objective function to be maximised is y'b;
= for j =1,...,n, the jth constraint is

yTAj <c; if x; is constrained to be non-negative

yTAj = ¢; if x; is constrained to be nonpositive
T . . .

y'A;=c; if x; is free.

= and for each i € {1,...,m}, y; is constrained to be non-negative if LI; is >; y; is constrained
to be nonpositive if LI; is <; y; is free if Li; is =.

The following table can help remember the correspondences:

Primal (min)

Dual (max)

> constraint
< constraint
= constraint
> 0 variable
< 0 variable
free variable

> 0 variable
< 0 variable
free variable
< constraint
> constraint
= constraint

Below is an example of a primal-dual pair of problems based on the above definition: Consider
the primal problem:

min x; — 2x, + 3x;
s.t. —Xx; + 4x3 = 5
2x;, + 3x, — 5x3 = 6
7x, < 8
X, > 0
X, free
x3 < 0
-1 0 4 5 1
Here, A=| 2 3 —5|,b=|6]|,andc=|—2
0O 7 O 8 3

(DRAFT) 14

P Boily, J Schellinck, S Hagiwara (DRAFT) 1.8 OPTIMISATION

The primal problem has three constraints. So the dual problem has three variables. As the first
constraint in the primal is an equation, the corresponding variable in the dual is free. As the
second constraint in the primal is a >-inequality, the corresponding variable in the dual is non-
negative. As the third constraint in the primal is a <-inequality, the corresponding variable in the
dual is nonpositive. Now, the primal problem has three variables. So the dual problem has three
constraints. As the first variable in the primal is non-negative, the corresponding constraint in the
dual is a <-inequality. As the second variable in the primal is free, the corresponding constraint
in the dual is an equation. As the third variable in the primal is nonpositive, the corresponding
constraint in the dual is a >-inequality. Hence, the dual problem is:

max 5y; + 6y, + 8y,

s.t. —y; + 2y, <1
3y, + 7y; = —2

4y, — 5Y, = 3
V1 free

Yo = 0

y3 < 0.

In some books, the primal problem is always a maximisation problem - in that case, what we
have considered to be a primal problem is their dual problem and vice-versa. Note that the Duality
Theorem for Linear Programming remains true for the more general definition of the primal-
dual pair of linear programming problems.

Methods for Solving Linear Programming Problems There are currently two families of meth-
ods used by modern-day linear programming solvers: simplex methods and interior-point meth-
ods. The algorithms in either family are iterative. There is no known simplex method that runs
in polynomial time. In contrast, polynomial-time interior-point methods that are also efficient in
practice abound. We will not get into the technical details of these methods.

You might wonder why anyone would want to use simplex methods, even though they are not
polynomial-time methods. Simplex methods are in general more memory-efficient than interior-
point methods, and they tend to return solutions that have few nonzero entries. More concretely,
suppose that we want to solve the following:

T

min c¢'x
s.t. Ax=Db
x=>0.

For ease of exposition, we assume that A has full row rank. Then, each iteration of a simplex
method maintains a current solution x that is basic; that is, the columns of A corresponding to
the nonzero entries of x are linearly independent. In contrast, interior-point methods will main-
tain x > 0 throughout (whence the name “interior point”).

When one uses an off-the-shelf linear programming solver, the choice of method is usually not
too important since solvers have good defaults. Simplex methods are typically used in settings
when a problem needs to be resolved after minor changes in the problem data or in problems
with additional integrality constraints discussed in the next section.

15 (DRAFT)

INTRODUCTION TO QUANTITATIVE CONSULTING P Boily, J Schellinck, S Hagiwara (DRAFT)

1.8.5 Mixed-Integer Linear Programming (MILP)

For many real-life applications, the modeling power of linear programming is insufficient. For
example, there is no simple linear programming formulation of the BKP Fortunately, allowing
the domain set to restrict one or more variables to only integer values drastically extends the
modeling power. The price we pay is that there is no guarantee that the problems can be solved
in polynomial time. We now consider an example.

Recall the problem on lemonade and lemon juice mentioned earlier: the problem has a unique

-
optimal solution at [x, y] = |:1.2, 1.6:| for a profit of 6.8. But this solution requires us to prepare
fractional units of lemonade and lemon juice. What if we require the number of units we prepare
to be integers? We simply add integrality constraints to the variables:

max 3x + 2y

st. x + 3y < 6
2x + y < 4

b > 0

y =2 0

x , Yy € Z

We no longer have a linear programming problem. Instead, we have an integer linear program-
ming problem. Note that we can solve this problem via a case analysis. The second and third
inequalities tell us that the possible values for x are 0, 1, and 2.

= If x = 0, the first inequality gives 3y < 6, implying that y < 2. Since we are maximising
3x + 2y, we want y to be as large as possible. Note that [x, y]T = [O, Z]T satisfies all the
constraints with an objective function value of 4.

= If x = 1, the first inequality gives 3y <5, implying that y < 1. Note that |:x, y]T = |:1, 1:|T
satisfies all the constraints with an objective function value of 5.

= If x = 2, the second inequality gives y < 0. Note that |:x, y]T = [2,0]T satisfies all the
constraints with an objective function value of 6.

Thus, [x*, y*]T = [2, O]T is an optimal solution.

A mixed-integer linear programming problem (MILP) is a problem of minimising or maximising
a linear function subject to finitely many linear constraints such that the number of variables are
finite and at least one of which is required to take on integer values.

If all the variables are required to take on integer values, the problem is called a pure integer
linear programming problem or simply an integer linear programming problem. Normally,
we assume the problem data to be rational numbers to rule out pathological cases.

Many solution methods for solving MILPs have been devised and some of them first solve the
linear programming relaxation of the original problem, which is the problem obtained from the
original problem by dropping all the integrality requirements on the variables.

(DRAFT) 16

P Boily, J Schellinck, S Hagiwara (DRAFT) 1.8 OPTIMISATION

For instance, if (MP) denotes the following mixed-integer linear programming problem:

min X, + X3
s.st.. —x; + x9 + x5 = 1
—X; — Xy + 2x3 = O
—x; + 5x;, — x3 = 3
Xy, Xy , Xx3 = 0
X3 € Z.

then the linear programming relaxation (P1) of (MP) is

min X, + X3
st. —x; + xy + x3 =1
—x; — X, + 2x3 =2 O
—X; + 5xy — x3 = 3
X, , Xy , x3 = 0.

Observe that the optimal value of (P1) is a lower bound for the optimal value of (MP) since the
feasible region of (P1) contains all the feasible solutions to (MP), thus making it possible to find
a feasible solution to (P1) with objective function value which is better than the optimal value of
(MP).

Hence, if an optimal solution to the linear programming relaxation happens to be a feasible
solution to the original problem, then it is also an optimal solution to the original problem.

Otherwise, there is an integer variable having a nonintegral value v. What we then do is to
create two new sub-problems as follows:

= one requiring the variable to be at most the greatest integer less than v,
= the other requiring the variable to be at least the smallest integer greater than v.

This is the basic idea behind the branch-and-bound method. We now illustrate these ideas on
(MP).

Solving the linear programming relaxation (P1), we find that x’ = %[O, 2, 1]T is an optimal so-
lution to (P1). Note that X’ is not a feasible solution to (MP) because xé is not an integer. We
now create two sub-problems (P2) and (P3) such that (P2) is obtained from (P1) by adding the
constraint x; < |x;] and (P3) is obtained from (P1) by adding the constraint x5 > [x;]. (For a
number a, | a | denotes the floor of a and [a] denotes the ceiling of a.) Hence, (P2) is the problem

min = x; + X3
st. —x; + xy + x3 =1
—X; — Xy + 2x3 =2 O
—X; + 5xy — x3 = 3
x3 < 0
X1 , X9 , X3 = 0,

17 (DRAFT)

INTRODUCTION TO QUANTITATIVE CONSULTING P Boily, J Schellinck, S Hagiwara (DRAFT)

and (P3) is the problem

min X, + X3
st. —x; + xy + x3 =1
—X; — Xy + 2x3 =2 O
—X; + S5xy — x3 = 3
x3 = 1
X, Xy , Xx3 = 0.

Note that any feasible solution to (MP) must be a feasible solution to either (P2) or (P3). Using
the help of a solver, one sees that (P2) is infeasible. The problem (P3) has an optimal solution at

x* = % [O, 4, S]T, which is also feasible for (MP). Hence, x* is an optimal solution of (MP).

There is often a choice on which variable to branch on and a choice on which sub-problem to solve
next. It turns out that such choices can have an impact on the total computation time. However,
there are no hard-and-fast rules that work well all the time. This in area of ongoing research.

Cutting Planes Difficult MILP problems often cannot be solved by branch-and-bound methods
alone. A technique that is typically employed in solvers is to add valid inequalities to strengthen
the linear programming relaxation. Such inequalities, known as cutting planes, are known to be
satisfied by all the feasible solutions to the original problem but not by all the feasible solutions
to the initial linear programming relaxation.

To illustrate the ideas, consider the following example:

min 3x + 2y

st. 2x + y = 1
x + 2y = 4
x , y € Z.

An optimal solution to the linear programming relaxation is [x™, y“L]T =1[-2, 7]T. Note that
adding the inequalities 2x + y > 1 and x + 2y > 4 gives 3x + 3y > 5, or equivalently, x + y > %

But x + y is an integer for every feasible solution [x, y]T. Thus, x +y > 2 is a valid inequality for

the original problem, but is violated by |:x+, y+:|T. Hence, x + y > 2 is a cutting plane. Adding
this to the linear programming relaxation, we have

min 3x + 2y
sst. 2x + y =21
x + 2y = 4
x + y = 2

T T
which, upon solving, yields [x*, y*] = [—1, 3] as an optimal solution. Since all the entries are
integers, this is also an optimal solution to the original problem.

(DRAFT) 18

P Boily, J Schellinck, S Hagiwara (DRAFT) 1.8 OPTIMISATION

Note that we have been lucky in the sense that adding one cutting plane solved the problem. In
practice, one often needs to add numerous cutting planes and then continue with branch-and-
bound to solve nontrivial MILP problems. Many methods for generating cutting planes exist — the
problem of generating effective cutting planes efficiently is still an active area of research [3].

1.8.6 A Sample of Some Useful Modeling Techniques

We have so far discussed the kinds of optimisation problems that can be solved and what is avail-
able for solving them. Practical success, however, depends upon the effective translation and
formulation of a problem description into a mathematical programming problem, which is often
an art as it is a science. We will not be discussing formulation techniques in this module (see [4]
for details) — rather, we will highlight a few techniques that often arise in business applications,
which our examples have not covered so far.

Activation Sometimes, one may want to set a binary variable y to 1 whenever some other
variable x is positive. Assuming that x is bounded above by M, the inequality

x<My

will model the condition. Note that if there is no valid upper bound on x, the condition cannot
be modelled using a linear constraint.

Disjunction Sometimes, one wants X to satisfy at least one of a list of inequalities; that is,
T T T
a’'x>b,va® x>b,v---va® x> b,.

To formulate such a disjunction using linear constraints, we assume that, fori =1, ..., k, there is
a lower bound M; on a''x for all x € 9. Note that such bounds exist when 2 is a bounded set
which is often the case in applications. The disjunction can now be formulated as the following
system where y; is a new 0-1 variable fori =1,...,k:

a(l)TX > by, +M;(1—y,)
a®'x > byy, + My(1—y,)

LT
a® x> by, + M (1—y)
Vit oy > 1.

T T T
Note that a' x > b;y; + M;(1 — y;) reduces to a' x > b; when y; = 1, and to a' x > M; when
y; = 0, which holds for all x € 9. Therefore, y; is an activation for the i constraint, and at least
one is activated because of the constraint y; +---+ y; > 1.

Soft Constraint Sometimes, one is willing to pay a price for a constraint to be violated. Such
a constraint is called a soft constraint. There are situations in which having soft constraints are
advisable (e.g. when having an infeasible problem as a result of enforcing all the constraints is
not an option.) We illustrate the idea on a modified BKP As usual, there are n items and item i

19 (DRAFT)

INTRODUCTION TO QUANTITATIVE CONSULTING P Boily, J Schellinck, S Hagiwara (DRAFT)

has weight w; and value v; > 0 for i = 1,...,n. The capacity of the knapsack is denoted by K.
Now, suppose that we prefer not to take more than N items, but that the preference is not an
actual constraint. We assign a penalty for its violation and use the following formulation:

n
max Y. Vv;X;—pYy
=1

n
s.t. Ywix; <K
i=1

n

2. xi—y<N

i=1

x;€{0,1} i=1,...,n
y=0.

Here, p is a non-negative number of our choosing. As we are maximising

n
Z ViX;i —=DPY,
i=1
y is pushed towards O when p is relatively large. Therefore, the problem will be biased towards
solutions that try to violate x; +---+ x,, < N as little as possible.

What value to choose for p requires experimentation; the general rule is that if violation is
costly in practice, we should set p to a high value. Otherwise, set it to a moderate value relative
to the coefficients of the variables in the objective function value. Note that when p is set to zero,
the constraint x; + -+ + x,, < N has no effect because y can take on any positive value without
incurring a penalty.

1.8.7 Software Solvers

A wide variety of solvers exist for all kinds of optimisation problems. The NEOS Server is a free
online service that hosts many solvers and is a great resource for experimenting with different
solvers on small problems.

For large or computationally challenging problems, it is advisable to use a solver installed on
a dedicated private machine. Note that Microsoft Excel and SAS include a very capable solver for
various kinds of optimisation problems (more on the former in the next section). They can often
be sufficient for many purposes.

For bigger problems, commercial solvers can be useful:

= IBM ILOG Cplex
= Gurobi
= FICO Xpress Optimisation

There are popular open-source solvers as well:

= CBC

= GLPK

= SCIP (requires a commercial licence for consulting work)
= JuliaOpt

We mention in passing that learning how to use of any of these solvers effectively requires a sig-
nificant time investment. In addition, it is common to build optimisation models using a modeling
system such as GAMS and LINDO, or a modeling language such as AMPL, ZIMPL, or JuMP.

(DRAFT) 20

https://neos-server.org/neos/
https://www.ibm.com/analytics/cplex-optimiser
http://www.gurobi.com/
http://www.fico.com/en/products/fico-xpress-optimisation
https://projects.coin-or.org/Cbc
https://www.gnu.org/software/glpk/
http://scip.zib.de/
http://www.juliaopt.org/
https://www.gams.com/
https://lindo.com/
https://ampl.com/
http://zimpl.zib.de/
https://jump.readthedocs.io/en/latest/

P Boily, J Schellinck, S Hagiwara (DRAFT) 1.8 OPTIMISATION

1.8.8 Data Envelopment Analysis

Operations Research (OR) is a mish-mash of various
mathematical methods often used to solve complex
industrial problems, especially optimisation problems,

. . . Unit Input Output Efficienc
which are now being tackled in management and other A :'0 15 T00% L
non-industrial contexts. Data envelopment analysis : T = e
(DEA), baseq on linear programming, is used t(? mea- c 5 15 300%
sure the relative performance of units in an organisation D 15 10 67%

such as a government department, a school, a company,
etc.

Table 3: Simple input/output data for a
Typically, a unit’s efficiency is defined as the quotient of fictional organisation.
its outputs (activities of the organisation such as service
levels or number of deliveries) by its inputs (the resources supporting the organisation’s opera-
tions, such as wages or value of the in-store stock). In an organisation with only one type of input
and one type of output, the comparison is simple (see for instance the data provided in Table 3).
However, if there are more than one input or output, the comparisons are less obvious: in Table 4,
is Unit A more efficient than Unit B? Unit A has fewer total inputs than Unit B (as well as fewer
outputs of type 1), but it has a substantially larger outputs of type 2. Without a system in place
to measure the relative efficiency, comparison between (potentially incommensurable) units is
unlikely to be fruitful. The relative efficiency of unit k is defined by

> i Wi jOkj
Diviilii

where {O, ;|j = 1,...,n} represent the n outputs from unit k, {I, ;[i = 1,...,m} represent the m
inputs from unit k, and {w, ;|j = 1,...,n} and {v;|i = 1,...,m} are the associated unit weights.

REk ==

For a specific unit k, the DEA model maximises the weighted sum of outputs for a fixed weighted
sum of inputs (usually set to 100), subject to the weighted sum of outputs of every unit being
at most equal to the weighted sum of its inputs when using the DEA weights of unit k (in other
word, the optimal set of weights for a given unit could not give another unit a relative efficiency
greater than 1). This is equivalent to solving the following linear program for each unit k:

n
max E :Wko,joko,j
j=1
m
S.t. E vko,ilko,i ==].00

m

i=1

n
Zwko,jof,j _kao,iIl,i <0, 1<(<K
j=1

i=1
Wi js Vi) =6 1<j<n, 1<i<m

where ¢ > 0 is a parameter vector to be modified by the user. If we define w,, v,, O, and I, as
the vectors of output weights, input weights, outputs and inputs, respectively, for unit £, while O

21 (DRAFT)

INTRODUCTION TO QUANTITATIVE CONSULTING P Boily, J Schellinck, S Hagiwara (DRAFT)

Unit Inputl Input2 Outputl Output2
A 10 5 10 20
B 10 15 20 5
C 5 15 15 15
D 15 5 10 20

Table 4: Double input/output data for a fictional organisation.

and I represent the row matrix of outputs and the row matrix of inputs for all the units, then the
linear problem can be re-written simply as

.
max wy Oy,

T _ T T
stV [, =100, w, O—v 1<0, —(w,v)<—¢

This problem can be solved by the method of Lagrange multipliers or by using dedicated nu-
merical solvers.

For the data from Table 4, the DEA program for unit A, for instance, becomes

max 10w, ; +20w,,
s.t. 10v,; +5v,, =100
10w, ; +20w,, —10v,; —5w,, <0
20wy q + 5wy, — 10V, — 15w, 5, <0
15wy 1 + 15wy 5 — 5V, — 15w, 5, <0
10w, ; +20wy, —15v,; —5w,, <0

Wa1,Wa2,Va1, Va2 = €

Notes, Challenges and Pitfalls

= By allowing non-universal (unit-specific) weights, DEA allows each unit to present itself in
the best possible light, which could potentially lead most units to be deemed efficient. This
issue is mitigated when the number of units K is greater than the product of the number of
outputs by the number of inputs n - m.

= When the number of units is small, lack of differentiation among units is uninformative
since all units could benefit from the best-case scenario described above. When there is dif-
ferentiation, on the other hand, it can be quite telling: units with low DEA relative efficiency
have achieved a low score even when given a chance to put their best foot forward.

= Another concern is that a unit could artificially seem efficient by completely eliminating
unfavourable outputs or inputs (i.e. if their associated weights are 0). Constraining the
weights to take values in some fixed range can help avoid this issue. In the example that
was discussed above, when we set ¢ = 0, all units have a relative efficiency of 100. If we
set ¢ = 2, however, the relative efficiencies are RE, = 100, RE; = 67.7, RE. = 100, and
RE,, = 90. Evidently, insisting that all the factors be considered changes the results.

(DRAFT) 22

P Boily, J Schellinck, S Hagiwara (DRAFT) 1.8 OPTIMISATION

= External factors can easily be added to the model as either inputs or outputs. Available

resources are classified as inputs; activity levels or performance measures are classified as
outputs.

= When units can also be assessed according to some other measure (such as profitability,

average rate of success for a task, or environmental cleanliness, say), it can be tempting
to use that other metric to rank the units. However, the combination of efficiency and
profitability (or of any two measures, really) can offer insights and suggestions.

Flagships are units who score high on both measures and that can provide examples of
good operating practices (as long as it is recognized that they are also likely beneficia-
ries of favorable conditions).

Sleepers score low on efficiency but high on the other measure, which is probably more a
consequence of favourable conditions than good management; as such, they become
candidates for efficiency drives.

Dogs score high on efficiency but low on the other measure, which indicates good man-
agement but unfavourable conditions. In extreme case, these units are candidates for
closures, their staff members could be re-assigned to other units.

Question Marks are units who score low on both measures; they are subject to unfavourable
conditions, but this could also be a consequence of bad management. Attempts should
be made to increase the efficiency of these units so that they become Sleepers or Flag-
ships.

The linear program to be solved (or its dual) gets complicated fairly quickly and sophisti-
cated software can be required to obtain a solution.

= Advantages: no need to explicitly specify a mathematical form for the production function;

proven to be useful in uncovering relationships that remain hidden for other methodologies;
capable of handling multiple inputs and outputs; capable of being used with any input-
output measurement; the sources of inefficiency can be analysed and quantified for every
evaluated unit.

Disadvantages: results are sensitive to the selection of inputs and outputs; cannot test for
the best specification; the number of efficient units on the frontier tends to increase with
the number of inputs and output variables.

Excel and SAS Solvers As an illustration, consider the problem of finding the relative efficiency
of unit D, in the example of the first section, that is, we are looking for the solution to

max 10wp; +20wp ,
s.t. 15vp, +5vp, =100
10wp ; +20wp 5 —10vp; —5Swp 5, <0
20wp 1 +5wp 5 —10vp; — 15wy, <0
15wy, +15wp 5 —5vp ; — 15w, , <0
10wy, +20wp , —15vp; —5Swp, <0

Wp1,Wpa,Vp1,Vpa = 2

23

(DRAFT)

INTRODUCTION TO QUANTITATIVE CONSULTING P Boily, J Schellinck, S Hagiwara (DRAFT)

Outputs Inputs Solver Parameters lﬁ
Wa1 Way Va1 Vaz
Unit Values Set Objective: SHSI" %
. | DEA Weights 2.0 20 14.0
Solution .
Efficiency Te: @ Max Min Value Of:
Standardization|Constraint 1 0 0 15 5 " 100 By Changing Variable Cells:
Constraint 2 10 20 -10 -5 % 0 SHEG:SKS6 E3
N .. |Constraint 3 20 5 -10 -15| & 0
Constraints on Other Units| =
Constraint 4 15 15 5 -15| © 0| Subject to the Constraints:
o
Constraint 5 10 20 -15 -5| » 0 H19 = §M39 < Add
" = H20 <= M10
Constraint 6 -1 0 0 0l s 2 §HEZ1 <= SMS11 ———————
! Constraint 7 0 =) 0 ol B[-2 H22 <= SM$12 Lhange
Bounds on the Weights| it 8 7 7 q . 5 3 $HS23 <= SMS513 —
onstraint ~ o §H$24 <= MS14 Delete
Constraint 9 0 0 0 =il -2 §H$25 <= M1S
$HE26 <= IMS16 R
Constraint 1 100.0 H27 <= SM$17 Reset All
Constraint 2 0.0 u ———————
Constraint3 -120.0| LeadiSag
Constraintd -115.0| | Make Unconstrained Variables Non-Negative
Verification of Constraints |Constraint5 -10.0) Select a Solving Method: GRG Nonlinear E Options
Constraint 6 -5.0|
Constraint 7 -2.0] Solving Method
Constraint 8 -2.0| Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear. Select the LP Simplex
. engine for linear Solver Problems, and select the Evolutionary engine for Solver problems that are
C 9 14.0|
onstraint e non-smooth.
Help Solve I ‘ Clase

Table 5: Excel’s numerical solver for unit D.

This is a small problem, and Excel’s numerical solver can thankfully be used (see Table 5) to yield
a relative efficiency of 90%. There are some issues with the solver, including the fact that a dif-
ferent worksheet has to be created for every single unit. There is presumably a way to set up the
problem in order to compute the relative efficiency of all units simultaneously, but it’s unlikely to
be very flexible. With larger datasets, this approach may not be practical.

SAS’s proc optmodel, available in versions 9.2 as part of the OR(R) suite can also be used;
some work may have to be done to determine a way to automate the descriptions of the programs
to be solved.

1.8.9 Case Study: Resource Utilisation and Re-allocation in Barcelona Schools

In this section, we present a illustration of a resource utlisation model which uses a DEA-like
approach to illustrate that some flexibility is available.

= Title: On centralized resource utilisation and its re-allocation by using DEA

= Authors: Cecilio Mar-Molinero, Diego Prior, Maria-Manuela Segovia, Fabiola Portillo
= Date: 2012

= Methods: Data envelopment analysis, simulations

Abstract The standard DEA model allows different Decision-Making Unite (DMUs) to set their
own priorities for the inputs and outputs that form part of the efficiency assessment. In the case of
a centralized organisation with many outlets, such as an education authority that is responsible for
many schools, it may be more sensible to operate in the most efficient way, but under a common
set of priorities for all DMUs. The centralized resource allocation model does just this; the optimal

(DRAFT) 24

P Boily, J Schellinck, S Hagiwara (DRAFT)

1.8 OPTIMISATION

School # Vi A) X1d X24 X34 X1nd
1 260.65 378.00 44.00 3.00 8 384.00
2 195.18 213.00 32.01 3.00 18 225.00
3 242.75 429.70 56.98 4.00 84 446.00
4 283.02 350.00 49.50 3.00 39 356.00
5 376.76 650.80 77.50 5.50 61 657.00
6 252.19 429.00 49.40 2.00 56 440.00
7 225.50 247.34 33.15 1.50 43 248.00
8 363.85 364.34 45.90 2.00 36 381.00
9 261.87 272.00 44.37 2.00 24 288.00
10 235.40 251.00 35.49 1.50 51 259.00
I8! 198.63 223.34 42.00 1.50 46 227.00
12 159.78 248.00 36.96 2.00 2 250.00
13 98.09 193.00 35.20 1.50 55 203.00
14 214.92 219.00 33.60 1.50 32 229.00
15 136.07 269.20 33.80 1.50 54 271.00
16 214.68 346.00 54.39 2.00 33 347.00
17 117.12 196.00 29.00 1.50 7 212.00
18 261.89 334.00 42.40 2.00 47 339.00

Table 6: Sample from the Barcelona public school data set used to with the radial and simplified models.

resource reallocation is found for Spanish public schools and it is shown that the most desirable

operating unit is a by-product of the estimation.

Data The data consists of 54 secondary public schools in Barcelona during the year 2008, each
with three discretionary inputs (teaching hours per week, x;; specialized teaching hours per week,
X,; capital investments in the last decade, x;), one non-discretionary input (total number of
students present at the beginning of the academic year, X) and two outputs (number of students
passing their final assessment, y;, and number of students continuing their studies at the end of
the academic year, y,). A subset of the data is shown in Table 6.

Challenges and Pitfalls

* The machinery of DEA cannot be brought to bear directly since the models under consider-

ation are at best DEA-like.

* The number of unknowns to be estimated in the original model is quadratic in the number
of units. Consequently, the original model must be simplified to avoid difficulties when
the number of units is large. Fortunately, the proposed simplifications can be interpreted
logically in the context of re-allocation of resources.

= There are situations where a solution to the simplified problem can be obtained even when
the constraints on the total number of units is relaxed, allowing for the possibility of reaching
the similar output levels with fewer inputs, in effect advocating for the closure of some units,

25

(DRAFT)

INTRODUCTION TO QUANTITATIVE CONSULTING P Boily, J Schellinck, S Hagiwara (DRAFT)

but there are limitations: experiments show that this cannot be achieved with fewer than
32 schools (or with more than 81 schools).

Project Summary and Results In the standard DEA model, each unit sets its own priorities, and
is evaluated using unit-specific weights. In a de-centralized environment, the standard approach
is reasonable, but under a central authority where a common set of priorities needs to be met by
all units (such as the branches of a bank, or recycling collection vehicles in a city), that approach
needs to be modified. In a school setting, school board administrators may wish to evaluate teach-
ers in a similar manner independently of the school at which they work.

Centralized assessment imposes a common set of weights. For weakly centralized management, it
is a further assumption that any input excess of inefficient units can be re-allocated among the ef-
ficient units, but only as long as this does not contravene the built-in inflexibilities of the system,
which may make re-allocation rather difficult. Strongly centralized management, on the other
hand, allow for re-allocation of the majority of inputs and outputs among all the units (inefficient
or efficient) with the aim of optimizing the performance of the entire system.

The original radial model of Lozano and Villa is not, strictly speaking, a data envelopment model:

min 6
54 54
s.t. ZZAJ P X in,j <0, fori=1,2,3 (discretionary inputs)
r=1 j=1 j=1
54 54
ZZA X ZX <0 (non-discretionary input)
r=1 j=1
54 54
Zykr ZZA] Vi <0, fork=1,2 (outputs)

r=1 j=1

ZAJ.J=54, forr=1,...,54
j=1
—2;,<0, forj,r=1,...,54, 0 free

Indeed, this model is not asking every unit to select the weights that make it look as good as
possible when comparing itself to the remaining units under the same assessment: rather, the
model is asking for the system as a whole to find the weights that present it in the best possible
light possible, then it assesses the performance of the units separately, using the optimal system
weights.

The main drawback of the radial model is the large number of weights to estimate. A simpli-
fication is proposed: if some of the units can be cloned, or equivalently, if some of the units can be
closed and their resources re-allocated to other units, then the radial model becomes substantially
simpler, and the number of weights to estimate is linear in the number of units (as opposed to
quadratic).

(DRAFT) 26

P Boily, J Schellinck, S Hagiwara (DRAFT) 1.8 OPTIMISATION

1.2

N\

0.6

Aouanpiyye dnosd

0.4

0.2

0

30 40 50 60 70 80
number of schools

Figure 3: Results of the re-allocation process in the Barcelona public school dataset.

The new problem is DEA-like:

min 6

54 54
s.t. ijx,-,j —0 in)j <0, fori=1,2,3 (discretionary inputs)
j=1 j=1

54 54

Z AjX i ZX ;<0 (non-discretionary input)
j=1 j=1

54 54
Zyk —Z Aiyi; <0, fork=1,2 (outputs)
r=1 j=1

54
j=1
—A;<0, forj=1,...,54, 0 free

The numerical solution to the radial model shows a group efficiency of 66%, meaning that the
outputs of the system could be produced while reducing the discretionary inputs by 6 = 34%.
The simplified model reaches the same group efficiency by cloning units 25 (24.26 times), 26
(20.02 times), 36 (4.71 times), 17 (2.69 times), and 44 (1.70 times). The re-allocation of inputs
and outputs among the 54 schools would produce the aforementioned reduction of the 34% in
discretionary inputs.

A simulation experiment shows the effect of dropping the constraint on the number of units:
the group efficiency obtained by solving the simplified system for various values of n from 32 to
81 is seen in Figure 3. Sure enough, the original solution is good, appearing near the minimum,
which reaches 8 = 0.64 at n = 50.36. This group efficiency corresponds to cloning units 25
(23.96 times), 26 (17.62 times), and 29 (7.87 times), Obviously, schools (and their resources)
cannot be cloned, so what are we to make of this result? It could be argued that unit 25 and 26,
for instance, are ideal schools under the common priorities imposed by the system: should new
schools have to be built, attempts could be made to emulate the stars.

27 (DRAFT)

INTRODUCTION TO QUANTITATIVE CONSULTING P Boily, J Schellinck, S Hagiwara (DRAFT)

1.8.10 Case Study: Security Officer Profiles

At airfields across the country, Borealian Airship Safety Authority’s (BASA) security screening of
passengers and their belongings is conducted by screening officers (SO). The threat detection
ability of a checkpoint is partially dependent on the skills of the SOs that operate it.

Consequently, BASA and its Screening Contractors must continuously train (and maintain)
SOs to a high level of security screening proficiency. This training includes ‘foundational’ training
and ongoing training, such as recurrent learning and y—ray training (yRT) programs. System
and SO performance are assessed through routine covert tests, competency assessment sessions and
through the use of a threat-image projection system (TIPS). Training and assessment serves a dual
purpose: to maintain and improve the threat detection abilities of the screening workforce while
also assessing individual SO performance.

To confirm that SOs continue to meet the certification standard, BASA is preparing to conduct
a certification maintenance review involving all 12,000+ SOs nationwide. Resources are limited
and assessment cannot be conducted personally for all SOs; as such BASA is seeking an approach
which would allow to target the certification maintenance towards SOs who work primarily in
pre-board screening (PBS) and who have demonstrated a lower propensity for detecting potential
threats.

Given the varying types and quantities of data generated for each SO from their mandatory
training and assessment results, BASA wishes to have an SO Indexing Tool developed to support
the SO certification maintenance program.

Project Scope and Considerations In a preliminary stage, BASA has selected data envelop-
ment analysis (DEA) as the technique with which the Indexing Tool is to be developed. The
main difficulties in that case remains to determine

which variables are inputs, and which are outputs;

which ones are discretionary and which ones are necessary;

what the lower bounds on the weights should be, and

whether we want to present the system in the best light and find out which units best
represent it, or whether we are looking to present each unit in the best light and care little
for the system as a whole.

These are not trivial questions to answetr.

Data BASA data comes in various flavours. Some of the data elements that may be used by the
Tool for PBS are outlined below:

= Verification Testing (VT) Data: covert tests are performed monthly at PBS checkpoints of
Class A airfields — all Class A sites conduct roughly the same number of tests each month;
SOs at smaller airfields are re-tested more frequently and tend to have higher pass rates
compared to SOs at larger airfields;

= Competency Session (CS) Data: off-line timed tests conducted at Class A airfields. The
number of monthly CS assessments conducted at a site is roughly proportional to the air-
field’s SO workforce;

(DRAFT) 28

P Boily, J Schellinck, S Hagiwara (DRAFT) 1.8 OPTIMISATION

= Threat-Image Projection System (TIPS) Data: SO-specific y-ray machine-based test. TIPS
records the decision made by the SO at the X-ray station, the decision time, the type of threat
projected, date/time/location of TIP events, and non-TIP false alarm counts;

= Advanced Threat Identification y—ray (aTiX) Data: since June 2X15, aTiX scanners run
software which assist the SOs with detection of liquids and explosives. These units record
data from each scanned item (e.g. scan timestamp, potential threat messages, operator
decision) and the data is SO-specific (i.e., machines require SO login/logout). Processing
rate, decision times and decision time-out frequencies can be derived from the available
data;

» gamma—ray Tutor (yRT) Training Data: mandatory lab-based educational program to
which all SOs must dedicate a portion of their time. Data includes level-specific results (e.g.
% pass on various threat types, like Improvised Explosive Devices (IED)), and start and end
dates, total time, and number of images viewed at each level.

= Performance-Related (Breach) Events (PE) Data: breach- and SO-specific data available
through the Learning Management System (LMS) database. May warrant consideration and
or inclusion into the Tool.

= Recurrent Learning Program (RLP) Data: results from the knowledge exam following
basic screening training. May warrant consideration and inclusion into the Tool.

= Additional Assessment Data: additional SO-specific data may become available in the
future (such as a new mandatory national y—ray exam to begin in 2X16). The Tool should
allow for the inclusion of new variables.

Other factors to consider include the number of hours and passengers processed by SOs, the
salaries (?), the fact that certain SOs have been tested substantially more often than other SOs;
that the tool should be flexible to the number of variables to consider, and the number and class
of SOs to include, and finally that an SOs total time of service should have a role to play in the
index’s determination.

One of the challenges facing policy makers in their decision process is that not every single SO has
been tested to the same extent. Furthermore, those SOs who have been tested are by necessity
only tested a small number of times, and as such their success rate may not be representative of
their SO skills. Consequently, any DEA approach used in this context will need to incorporate
features dealing with missing values, and uncertainty in some of the features.

Preliminary review suggests that missing values can be dealt with in one of three ways:

= by splitting the SOs according to which tests they have undertaken and running DEA models
separately on each group;

= by comparing each unit to all units who have undertaken the same tests (and possibly more,
but without involving the supplemental information), or

* by using an interval modifications.

Similarly, a literature review suggests that uncertainty can be tackled using modified accuracy
formulas, or discrete methods.

Inputs, Outputs, Identifiers, Auxiliary Variables Upon discussion with BASA stakeholders and
SMEs, a list of potential input and output variables for the DEA model was established.

29 (DRAFT)

INTRODUCTION TO QUANTITATIVE CONSULTING P Boily, J Schellinck, S Hagiwara (DRAFT)

The basic assumptions are that output measures should reflect real-world security effective-
ness and efficiency (or situations taking place on the front lines, so to speak), whereas input
measures should reflect any resource expenditures that are undertaken to improve security
effectiveness and efficiency.

* Identifiers: LMS ID, airfield, Region, (airfield class), Length of employment (LMS), Average
hours worked per active day (aTiX), Proportion of number of active days in the period of
interest (or since employment began)* (SITT).

= Filters: yRT data, TIPS data, RLP data must all be non-empty.

» Auxiliary Variables (for output adjustements): VT count, TIPS count, Breach count (PEs),
CS count.

= Inputs: Highest level obtained, Overall success rate at last completed attempt (yRT); Total
bags screened, Avg. number of bags screened per hour (aTiX); Total hours worked (PBS);
Highest RLP exam score (LMS).

= Outputs (prior to adjustments): % Pass rate (VT); % Pass rate, % ’False Negatives rate
(TIPS); Breach score (derived rate from breaches and total bag screens — PEs, TIPS); % Pass
rate (CS).

It was ultimately decided that the RLP exam score should be removed from the list of inputs.
Understandably, some fine-tuning will be required to determine any and all constraints on the
weights (including removing a variable, or using linear combinations of variables): the nature of
the data will determine the exact form of the DEA programs to solve for each airfield, region, or
nationally.

Small Sample Sizes and Missing Data Only a fraction of SOs have data on all the measures.
If the situation was that all of the selected input and output measures had data, then running
DEA for different groupings of SOs (e.g. airfield, regional or national) would be straightforward.
However, having variables that have nulls for some SOs and not others presents a problem.

One solution could be to cluster SOs into ‘data availability’ groups and run separate DEAs for
each group. The problem here is that we would get DEA rankings that are not necessarily com-
patible from one cluster to another (an 85 in one group could mean anything from 0 to 100 in
another group, for instance). Furthermore, the groups will contain a smallish number of SOs; the
DEA rankings within a group might not be able to do provide much in the way of differentiation.
This is a big enough problem to warrant looking at alternatives which, while still not perfect, have
fewer drawbacks.

Another solution is to collapse groups in a top-down manner: SOs with no missing variable only
get compared to other SOs with no missing variable, but SOs with 1 specific missing variable get
compared to all SOs with that 1 specific missing variable AND all SOs with no missing variable
(for whom we drop the specific variable). There are a few problems with this approach: chiefly,
not every unit is compared to every other unit, so that units with many tests may find themselves
at a disadvantage (or at an advantage, it is hard to tell before running the DEA programs).

Yet another solution may to be drop variables that have no data points. For example, roughly
50% of SOs had no VTs in the given data set. Dropping that variable may allow for the use of
a single DEA model that could cover all SO groupings. The problem with this approach is that
valuable SO-specific information would be dropped - in this case, VT results.

(DRAFT) 30

P Boily, J Schellinck, S Hagiwara (DRAFT) 1.8 OPTIMISATION

Linked to the issue of data availability is the issue of data accuracy: test results are used as proxy
for SOs true abilities, but the sample sizes are (out of necessity) quite small. We can view missing
data essentially as a sample of size 0. We would not trust a test result of 100% to represent the
true ability of the SO if only one test was given; rather, we should look for the expected value of
the true ability, given the test results obtained so far, AND given the passing rate for the test in the
SOs cohort. This correction allows us to dull the effects caused by small sample size, and to handle
samples of size 0 with the same approach — having no test score does not mean that we have NO
information about the projected score based on other factors. Imputation by the corrected mean
is suggested as a sound alternative to grouping SOs on the basis of their data availability:

n+k

E (test score|n successes in m trials) = ——,
m+k+1

where the specific value of k is depends on the expected success rate of the SOs entire cohort.

A general regression model to impute likely values for an SO score relative to its cohort (e.g.
based on their location, experience, etc.) could also be used, and corrected as above, to represent
the best guess of what the SOs actual score could be had the SO performed a sufficient number
of tests.

Multiple imputation could also be considered, if the tool’s running time permits it — we com-
pute DEA scores for each iteration of the imputed dataset, and combine the DEA rankings to
produce a final DEA ranking. The imputed values may or may not add much to the overall DEA
ranking of an SO (i.e. a corrected mean value may water down a SOs efficiency ranking, or it
could substantially modify it); ideally, imputed values would play a role analogous to that of a
place holder — they make it possible to run a single family of DEA programmes on the entire (ap-
plicable) SO population. However, since imputed values can potentially affect the overall ranking
of the SOs, instances where imputed values are used by a DEA model should be flagged to allow
for an assessment of the weight assigned to the imputed measure by the model. If only a small
number of SO DEA scores rely too heavily on the imputed measures, those SOs would be taken
aside for further investigation. This would help ensure that imputed measures do not overly direct
the outcome of the model.

The final decision on this should, of course, be driven by the data: if this approach does not
yield acceptable results, we may have no better option than to separate SOs into groups based
on data availability and run separate DEA programs on these groups, with the caveats mentioned
above.

DEA Model Ultimately, 5 inputs and 5 outputs were suggested:

Inputs i, — average YRT, in minutes spent per level; i, — reversed yRT, in pass percentage i; —
aTiX, in raw number of screened bags; i, — reversed aTiX, in bags per hour; is — SITT, in PBS
hours.

Outputs o; — VT, in pass percentage; o, — TIPS, in pass precentage; o5 — TIPS, in true negative
percentage; o, — percent PE; o; — CS, in pass percentage.

All variables have been scaled on a scale from O to 1. For each SO (indexed by £ € {1,...,N}),
the suggested DEA problem was, for a fixed & > 0:

31 (DRAFT)

P Boily, J Schellinck, S Hagiwara (DRAFT) REFERENCES

5

_ I

max f, = E w, ;0;
j=1

5
S.t. wa’kif; =100 (cg
5
_Zwlkk+zwokok = (Cfn,m=1,...,N)
_Wf it Wf,zp —Wﬁ,z,—Wf),g <—¢/2 (00015 €00045 €0007> Co008)
—wf) 1,—Wi S —¢€ (C0006> C0010)
Wf2’ Wf 3> Wg f;,s =0 (C0006> C00105 C0011)
4wy 5,W€ = max{o"f; m=1,...,N} (00055 €0009)

—wt,,—w! <0, forjk=1,..,5 >0

There are thus N DEA problems to solve. The additional weight constraints were designed by
BASA experts ; as the consultants did not have access to the real data — a falsified dataset mimick-
ing the structure of the real data was used to construct SAS code which was then used by BASA.
That code is shown in the next few pages, but it has been uncommented, for the most part — how
important is it to document such code?

References

[1] Bertsekas, D.P [2016], Nonlinear Programming, Athena Scientific Optimisation and Compu-
tation Series, Athena Scientific.

[2] Bertsimas, D.P, Tsitsiklis, J. [1997], Introduction to Linear Optimisation (1st ed.), Athena
Scientific.

[3] Cornuéjols, G. [2007], “Valid Inequalities for Mixed Integer Linear Programs,” Math. Pro-
gram. 112 (1), Secaucus, NJ, USA, Springer, 3—-44.

[4] Williams, H.P [2013], Model Building in Mathematical Programming, Wiley.

[5] Zhu, J., Performance Evaluation and Benchmarking Using DEA.

[6] C.Mar-Molinero, D. Prior, M.-M. Segovia, E Portillo, On Centralized Resource Utilization And
Its Reallocation By Using DEA, 18 February 2012.

[7] M. Laguna, J. Marklund, Business Process Modeling, Simulation and Design, Chapter 11.
[8] M. Trick, Data Envelopment Analysis notes.
[9] Wikipedia article on Data Envelopment Analysis.
[10] R. M. Hayes, Data Envelopment Analysis, 2005.
[11] R. Markovits-Somogy, Ranking Efficient and Inefficient Decision Making Units In Data Envel-

opment Analysis, 2011.

[12] H. D. Sherman, J. Zhu, Service Productivity Management: Improving Service Performance
using Data Envelopment Analysis (DEA), 2006.

[13] J. Fiallos, A Model for Performance Evaluation of Emergency Department Physicians, 2014

32 (DRAFT)

%let dataDEApath="C:\Users\pboily\Desktop\IACS\Projects\BASA\falsified.csv";

%let filename="DEAprogram.sas";
%$let filename2="DEAend.sas";
%let threshold=20;

%let max 04=10;

$let il reversal=1l;

$let i2 reversal=1l;

$let i3 reversal=1l;

%let 14 reversal=l1;

%let 15 reversal=1;

slet 11 expo=1;

slet 12 expo=1;

slet 13 _expo=1l;

slet 14 expo=1;

$let 15 expo=1;

slet ol expo=2;

slet 02 expo=2;

slet 03 expo=2;

slet o4 expo=2;

$let o5 expo=2;

PROC IMPORT OUT= SASUSER.Data
DATAFILE= &dataDEApath.
DBMS=CSV REPLACE;
GETNAMES=YES;
DATAROW=2;
RUN;

%macro prepare data(air,PTFT threshold, tips freq, DEAname, randomname, scenname) ;
data sasuser.data;

set sasuser.data;

TIPS TN Count=TIPS Count* (&tips freg.-1)-TIPS False Count;

TIPS 2nd Column=TIPS Count* (&tips freqg.-1);
run;

data data DEA;
set sasuser.data;
if filter=1 and (VT _SO Pass Count le VT SO Test Count) and (CS_ Session Pass Count
le CS Session Count) and (TIPS Pass Count le TIPS Count) and (TIPS TN Count le
TIPS 2nd Column);
run;

data data random;

set sasuser.data;

if filter=0 or (VT _SO Pass Count > VT SO Test Count) or (CS Session Pass_ Count >
CS _Session Count) or (TIPS Pass Count > TIPS Count) or (TIPS TN Count > TIPS 2nd Column);
run;

data data DEA(drop=Filter Start Date Cut off Length of Employment RLP_Exam A RLP Exam B
MAX RLP PE StartDate);

set data DEA;

il=Average Time Per Level;

12=GRT_Score;

13=aTIX Screened Bags;

id4=rev_aTIX Bags per Hour;

15=SITT PBS Hours Worked;
run;

data data DEA (keep=LMS Airfield Region Length of Employment Status SO Status PBS Status
il i2 i3 14 15 o4 VT SO _Test Count VT SO Pass Count CS Session Count
CS Session Pass Count TIPS Count TIPS Pass Count TIPS TN Count TIPS 2nd Column);

set data DEA;

if Avg PBS _Hours Per Active Day<&PTEFT threshold. then PBS Status="PT";

else if Avg PBS Hours Per _Active Day ge &PTFT threshold. then PBS _Status="FT";
if PE Count="" then PE_Count 0;

if i3 ne 0 then 04=1-PE Count/i3;

else o4d=.;
if VT _SO Test Count in (".","") then VT SO Test Count=0;
if VT _SO Pass Count in (".","") then VT SO Pass Count=0;
if CS _Session Count in (".","") then CS SeSSlOD Count=0;
if CS _Session Pass Count in (".","") then CS_ Se331on Pass_Count=0;
if TIPS Count in (".","") then TIPS Count=0;
if TIPS Pass_Count in (".","") then TIPS Pass Count=0;
if TIPS TN Count in (".","") then TIPS TN Count=0;
if TIPS 2nd Column in (".","") then TIPS 2nd Column=0;
run;
proc sort data=data DEA;
by Length of Employment Status PBS Status;
run;
proc means data=data DEA noprint sum;
by Length of Employment Status PBS Status;
var VI SO Test Count VT SO Pass Count CS Session Count CS Session Pass Count
TIPS Count TIPS Pass Count TIPS TN Count TIPS 2nd Column;
output out=data DEA sum sum= / autoname;
run;
proc means data=data DEA noprint sum;
var VI SO Test Count VT SO Pass Count CS Session Count CS Session Pass Count
TIPS Count TIPS Pass Count TIPS TN Count TIPS 2nd Column;
output out=data DEA sum2 sum= / autoname;
run;
data data DEA sum(keep=Length of Employment Status PBS Status k VT k CS k Tl k T2
unique) ;
set data DEA sum;
m VT=VT SO Pass Count Sum/VT SO Test Count Sum;
m CS=CS Se331on Pass Count Sum/CS Se331on Count_ Sum;
m Tl= TIPS Pass Count Sum/TIPS Count _ Sum;
m T2=TIPS TN Count Sum/TIPS 2nd Column ~ Sum;
k_VT=m VT/(l-m_VT);
k CS=m CS/(l—m_CS);
k_Tl =m T1/(1-m T1);
k T2=m T2/ (l-m_T2);
unique=1;
run;
data data DEA sum2 (keep=k VT2 k CS2 k T12 k T22 unique);

run;

set data DEA sum2;

m VT=VT SO Pass_Count Sum/VT_ SO Test Count_ Sum;

m CS=CS Session Pass Count Sum/CS Session Count Sum;
m Tl= TIPS Pass Count Sum/TIPS Count_Sum;

m _T2=TIPS TN Count_Sum/TIPS 2nd Column _Sum;

k_VT2=m VT/(1-m VT);

k_CSZ =m CS/(l-m CS);

k T12=m T1/(l-m _T1);
k T22=m T2/(1l-m _T2);
unique=1;

’

’

data data DEA sum(keep=Length of Employment Status PBS Status k VT k CS k Tl k T2);
merge data DEA sum data DEA sumZ;
by unique;
if k VI=. then k VT=k VT2;
if k CS=. then k CS=k CS2;
if k Tl=. then k Tl=k T12;
if k T2=. then k T2=k T22;
run;

data &DEAname. (keep=LMS Airfield Region Length of Employment Status SO Status PBS Status
il 12 i3 14 15 ol o2 o3 o4 05);

merge data DEA(in=a) data DEA sum(in=Db);

by Length of Employment Status PBS Status;

if a;

0l=(VT_SO Pass_Count+k VT)/(VT_SO Test Count+k VT+1);

02=(TIPS Pass_Count+k T1)/ (TIPS Count+k T1+1l);

03=(TIPS_TN Count+k T2)/ (TIPS 2nd Column+k T2+1);

05=(CS_Session Pass Count+k CS)/(CS_Session Count+k CS+1);
run;

/*=1 for switching the direction of inputs*/
data &DEAname.;

set &DEAname.;

il1=6&il reversal.*il;

12=612 reversal.*i2;

13=613 reversal.*i3;

i4=614 reversal.*i4;

15=61i5 reversal.*i5;

unique=1;
run;

proc means data=&DEAname. noprint;
var i1 i2 i3 i4 1i5 ol o2 o3 o4 o5;
output out=min max min= max= /autoname;
run;

data min max;
set min max;
unique=1;
/* comment out to get scale from real min to real max */
if &il reversal.=1 then il min=0;
else i1 max=0;
if &i2 reversal.=1 then i2 min=0;
else 12 max=0;
if &i3 reversal.=1 then i3 min=0;
else 13 max=0;
if &i4 reversal.=1 then i4 min=0;
else 14 max=0;
if &i15 reversal.=1 then i5 min=0;
else 15 max=0;
ol min=0;
02 min=0;
03 min=0;
/*04 min=0;*/ /* want to penalize poor performers on this front */
o5 min=0;
ol max=1;
04 max=1;
o5 max=1;

run;

/* scaling variables on a scale of 0 to 1 */

data &DEAname.

(drop=_TYPE

FREQ il min i2 min i3 min i4 min i5 min ol min 02 min o3 min

04 min o5 min il max i2 max i3 max i4 max 15 max ol max o2 max 03 max 04 max o5 max
unique) ;

run;

merge &DEAname. min_max;

by unique;

il=-(i1-il min) /(i1 min-il max);
i2=-(i2-i2 min)/(i2 min-i2 max);
i3=-(i3-i3 min) /(i3 min-i3 max);
i4=-(i4-i4 min)/(i4 min-i4 max);
i5=-(i5-1i5 min) /(15 min-i5 max);
ol=—(ol—ol_min)/(ol min-ol max);
02=—(02—02_min)/(02 min-o02 max);
03=-(03-03 min)/ (03 min-o03 max);
o4=-(04-04 min)/ (04 min-o4 max);
05=-(05-05 min)/ (05 min-o05 max);
if i1l = . then 11=0.5;

if i2 = . then 12=0.5;

if i3 = . then 13=0.5;

if 14 = then 14=0.5;

if i5 = . then 15=0.5;

if ol = . then 01=0.5;

if 02 = then 02=0.5;

if o3 = then 03=0.5;

if 04 = . then 04=0.5;

if o5 = . then 05=0.5;

data &DEAname.;

set &DEAname.;

il=i1**&il expo.
12=12**§1i2 expo.
13=13**§&1i3 expo.
14=14**§id4 expo.
15=15**§&1i5 expo.
ol=ol**&ol expo.
02=02**§&02 expo.;
03=03**&03 expo.;
04=04**&04 expo.;
05=05**&05 expo.;

run;
data sasuser.&randomname. ;
set data random;
run;
data testdata;
set &DEAname.;
run;
%macro DEA various constraints(eps);
data testdata;
set testdata;
Unit= N ;
optimand = "max £ =" || strip(ol) || strip("*x[6]+") || strip(o2) ||
strip("*x[7]1+") || strlp(oB) || strip("*x[8]+") || strip(o4) || strip("*x[9]+") |
strip(ob5) || strip("*x[10]1") || strip(";");
input constral t = "con cO: " || strip(il) || strip("*x[1]+") || strip(i2) ||
strip("*x[2]1+") || strip(i3) || strip("*x[3]+") || strip(id) || strip("*x[4]+") ||
strip(i5) || strip("*x[5]") || strip("™ = 100;"™);
constraint = strip("con c") || strip(n) [| ": " [| "=-" || strip(il) |
strip ("*x[1]=") || strip(i2) || strip("*x[2]-") || strip(i3) || strip("*x[3]-") |
strip(i4) || strip("*x[4]1-") || strip(i5) || strip("*x[5]+") || strip(ol) ||

strip("*x[6]+") || strip(o2)
strip(o4) || strip("*x[9]+")
Strip(",’") ;

|| strip("*x[7]+"
| [

strip (05)

score = "DEA Score = " ||
strip ("COL8*03+") ||
run;

strip ("COL9*04+") ||

data null ;
set testdata end=eof;
if eof then do;
call symput ("numobs", N);
end;
run;

$macro GenerateAndSolveDEA (index) ;

data testdata;
set testdata;

if Unit=&index. then indicator=0;

) || strip(o3)
strip("*x[10]")

strip ("COL6*0ol+")
strip ("COL10*05") ||

else indicator = Unit;
run;
proc sort data=testdata;
by indicator;
run;
data null ;
file &filename.;
set testdata end=eof;
if N =1 then do;
put "proc optmodel; "
/" var x{i in 1..10} >= 0;"
/ optimand
/ input constraint
/" con c0001: x[1] >= &eps./2;" /*
/" con c0002: x[2] = O;" /*
/" con c0003: x[3] = 0;" /*
/" con c0004: x[4] >= seps.;" /*
/" con c0005: x[5] = &max o4./4;"
/" con c0006: x[6] >= &eps.;" /*
/" con c0007: x[7] >= g&eps./2;" /*
/" con c0008: x[8] >= geps./2;" /*
/" con c0009: x[9] = smax o4.;" /*
/" con c0010: x[10] >= seps.;" /*
/" con c0011: x[7] - x[8] = 0;" /*
/ constraint;
end;
if N >1 then do;
put constraint;
end;
if eof then do;
put " solve with 1lp / solver
/" create data weights from
/ "quit;";
end;
run;

$include &filename.;

[1i]

strip ("*x[8]+") ||

I
[| strip("<=0") ||

|| strip ("COL7*02+") ||

strip(";");

il Average GRT time in
mins per level */
REVERSED GRT %Pass */
i3 aTiX screened bags */
i4 REVERSED aTiX bags/hr rate */

/* 15 SITT PBS hours */

ol
o2
o3

VT %Pass */

TIPS %Pass */

TIPS %TN */

o4 SPE */

o5 CS %Pass */

TIPS & TN set to equal weight */

ps presolver = basic;"
/*printfreq =
weights=x;"

1;mx/

proc transpose data=weights out=weights;
run;

data weights (drop= NAME);
set weights;
Unit=&index.;
if N >1 then output;
run;

proc sort data=testdata;
by Unit;
run;

data testdata;
merge testdata weights;
by Unit;

run;

$mend GenerateAndSolveDEA;

$macro TheWholeThing;

%do prob = 1 %to &numobs.;
%GenerateAndSolveDEA (&prob.) ;
%end;

$mend TheWholeThing;

% TheWholeThing;
data null ;

file &filename2.;
set testdata end=eof;
if N =1 then do;
put "data &DEAname. (drop=optimand input constraint constraint score);"

/" set testdata;"
/ score;
end;
if eof then do;
put "run;";
end;

run;
$include &filename?2.;

data &DEAname. &eps.;

set &DEAname.;

rename coll=wil é&eps.;

rename col2=wi2 &eps.;

rename col3=wi3 &eps.;

rename cold4=wi4 &eps.;

rename col5=wi5_ é&eps.;

rename colé=wol &eps.;

rename col7=woZ &eps.;

rename col8=wo3 &eps.;

rename col9=wo4 &eps.;

rename collO=wo5 é&eps.;

if DEA Score<0 then DEA Score=0;

else if DEA Score>100 then DEA Score=100;

rename DEA Score=DEA Scoreé&eps.;
run;

%mend DEA various constraints;

$DEA various constraints(&threshold.);

data sasuser.&DEAname.;
set &DEAname. &threshold.;
by Unit;

run;

data sasuser.&DEAname. (keep=LMS Airfield Region Length of Employment Status SO_Status
PBS Status 11-i5 ol-05 wil &threshold. wi2 &threshold. wi3 &threshold. wi4 &threshold.
wi5 &threshold. wol &threshold. wo2 &threshold. wo3 &threshold. wo4 &threshold.
wo5 &threshold. DEA Score&threshold. flag);

set sasuser.&DEAname.;

if ol+o02+03+04+05=0 then flag=-1;

else flag=0;

Filter=1l;
run;

data sasuser.&DEAname. rando;
set sasuser.&DEAname;
if flag=0 then output sasuser.&DEAname.;
else output rando;

run;

data sasuser.&randomname. (keep=LMS Airfield Region Filter);
set sasuser.&randomname. rando;
run;

%mend prepare data;

sprepare data('BYT',5,40,BYT DEA,BYT random);

	Survey of Quantitative Methods
	Optimisation
	Single-Objective Optimisation Problem
	Calculus Sidebar and Lagrange Multipliers
	Classification of Optimisation Problems and Types of Algorithms
	Linear Programming
	Mixed-Integer Linear Programming (MILP)
	A Sample of Some Useful Modeling Techniques
	Software Solvers
	Data Envelopment Analysis
	Case Study: Resource Utilisation and Re-allocation in Barcelona Schools
	Case Study: Security Officer Profiles

