
NLP - Python Regular Expressions and More
based on K. Jarmul's Natural Language Processing Fundamentals.

Regular expressions are strings with specific syntax, which facilitate pattern matching.

Applications: find web links in documents, remove special characters, etc.

CONTENTS
1. Initialize the Environment
2. Common Regular Expression Patterns
3. re Functions
4. Regular Expressions Group and Ranges with OR
5. Python Charts
6. Word Counts and Pre-processing

1. INITIALIZE ENVIRONMENT

In [1]:

Let's take a look at some basics.

In [2]:

In [3]:

Out[2]:

<_sre.SRE_Match object; span=(0, 5), match='super'>

import re # python module for regular expressions
from nltk.tokenize import word_tokenize, regexp_tokenize # NLTK word tokenizer
from matplotlib import pyplot as plt # python charts

re.match('super','supercalifragilisticexpialidocious') # match pattern, from the beginning of a string

re.match('super','Supercalifragilisticexpialidocious') # what happens here?

In [4]:

2. COMMON REGULAR EXPRESSION PATTERNS
\w+: word
\d: digit
\s: space
.: wildcard
+ or *: greedy match
\W: not word
\D: not digit
\S: not space
[a-z]: lower case group
[A-Z]: upper case group

In Python, regular expression patterns must be prefixed with an "r" to differentiate between the raw string and
the string's interpretation.

3. re FUNCTIONS
split: split a string on a regular expression
findall: find all patterns in a string
search: search for a pattern
match: match an entire string based on a pattern

Pattern first, string second.

In [5]:

Out[4]:

<_sre.SRE_Match object; span=(0, 5), match='Hello'>

Out[5]:

['Can', 'you', 'do', 'the', 'split?']

w_regex = '\w+' # regular expression pattern for "word"
re.match(w_regex,'Hello World!') # matches the first word in the string

re.split('\s+','Can you do the split?') # splits on the spaces and removes them

In [6]:

In [7]:

In [8]:

In [9]:

We can also study seriously a silly sentence saved as a string.

In [10]:

Out[6]:

['Can you do the ', 'plit?']

Out[7]:

['Can', 'you', 'do', 'the', 'split?']

Out[8]:

['', ' ', ' ', ' ', ' ', '?']

Out[9]:

['Can', 'you', 'do', 'the', 'split', '']

Out[10]:

'Oh they built the built the ship Titanic. It was a mistake. It cost m
ore than 1.5 million dollars. Never again!'

re.split('s+','Can you do the split?') # splits on the "s" and removes it

re.split('\s','Can you do the split?') # splits on the spaces and removes them

re.split('\w+','Can you do the split?') # splits on the words and removes them

re.split('\W+','Can you do the split?') # splits on the non-words and removes them

test_string = 'Oh they built the built the ship Titanic. It was a mistake. It cost more than 1.5 million dollars. Never again!'
test_string

In [11]:

In [12]:

In [13]:

In [14]:

The main difference between search vs match is that match tries to match from the beginning while search
doesn't.

['Oh they built the built the ship Titanic', ' It was a mistake', ' It
cost more than 1', '5 million dollars', ' Never again', '']
6

['Oh', 'Titanic', 'It', 'It', 'Never']
5

['Oh', 'they', 'built', 'the', 'built', 'the', 'ship', 'Titanic.', 'It
', 'was', 'a', 'mistake.', 'It', 'cost', 'more', 'than', '1.5', 'milli
on', 'dollars.', 'Never', 'again!']
21

['1', '5']
2

sent_ends = r"[.?!]" # these are the characters that could end a sentence in English
print(re.split(sent_ends,test_string)) # split the string into sentences
print(len(re.split(sent_ends,test_string))) # how many such sentences are there?

cap_words = r"[A-Z]\w+" # Upper case characters
print(re.findall(cap_words,test_string)) # find all the words with an uppercase inital letter
print(len(re.findall(cap_words,test_string))) # how many such words are there?

spaces = r"\s+" # spaces
print(re.split(spaces,test_string)) # split on spaces
print(len(re.split(spaces,test_string))) # how many tokens does that yiels?

numbers = r"\d+" # numbers
print(re.findall(numbers,test_string)) # find all the numeric characters
print(len(re.findall(numbers,test_string))) # how many such numerics are there?

4. REGULAR EXPRESSIONS GROUPS () and RANGES [] with OR
|

"[a-zA-Z]+": lower and upper case English/French (unaccented) alphabet
"[0-9]": numbers from 0 to 9 (as digits)
"[a-zA-Z'\.\-]+": lower and upper case English/French (unaccented) alphabet, ', . and -
"(a-z)": the characters a, -, and z
"(\s+|,)": spaces or commas
"(\d+|\w+)": words or numerics

In [15]:

In [16]:

5. PYTHON CHARTS
requires matplotlib
can create histograms, bar charts, scatter plots, etc.

['On', 'the', '1', 'st', 'day', 'of', 'xmas', 'my', 'boat', 'sank']
[' ', ' ', ' ', ' ', ' ', ',', ' ', ' ', ' ']

<_sre.SRE_Match object; span=(0, 42), match='will something happen aft
er the semi-colon'>
<_sre.SRE_Match object; span=(0, 36), match='will something happen aft
er the semi'>
<_sre.SRE_Match object; span=(0, 4), match='will'>
None

text = 'On the 1st day of xmas, my boat sank.'
numbers_or_words = r"(\d+|\w+)"
spaces_or_commas = r"(\s+|,)"

print(re.findall(numbers_or_words,text))
print(re.findall(spaces_or_commas,text))

What do you expect to see here?

text = "will something happen after the semi-colon; I don't think so"
print(re.match(r"[a-z -]+",text)) # once it hits the semi-colon, it can't match any more
print(re.match(r"[a-z]+",text)) # once it hits the dash, it can't match any more
print(re.match(r"[a-z]+",text)) # once it hits space, it can't match any more
print(re.match(r"(a-z-)+",text)) # what's happening here?

In [17]:

Let's revisit the text string from the NLTK Intro notebook. We'll plot the word length distribution for that text.

In [18]:

let's create a histogram out of the digits of pi
digits_of_pi=[3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3,2,3,8,4,6,2,6,4,3,3,8,3,2,7,9,5,0,2,
plt.hist(digits_of_pi)
plt.show()

text = re.sub(r'\n', ' ', '''
"Bravo, Jos!" said Mr. Sedley; on hearing the bantering of which well-known voice,
Jos instantly relapsed into an alarmed silence, and quickly took his departure.
He did not lie awake all night thinking whether or not he was in love with Miss Sharp;
the passion of love never interfered with the appetite or the slumber of Mr. Joseph
Sedley; but he thought to himself how delightful it would be to hear such songs as
those after Cutcherry—what a distinguee girl she was—how she could speak French better
than the Governor-General's lady herself—and what a sensation she would make at the
Calcutta balls. "It's evident the poor devil's in love with me," thought he. "She is
just as rich as most of the girls who come out to India. I might go farther, and fare
worse, egad!" And in these meditations he fell asleep.
''')

▾

In [19]:

6. WORD COUNTS AND PRE-PROCESSING
Frequent words in a text are perhaps more significant. Bag of words functionality in Python is provided by the
module collections.

Start by initializing the environment, import Meet the Elements by They Might Be Giants, and pre-process the
text.

In [20]:

words = word_tokenize(text) # tokenizes the text into words
word_lengths = [len(w) for w in words] # goes through all the words and compute the lengths
plt.hist(word_lengths)
plt.show() # is the appearance of the plot surprising?

import nltk
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer
from collections import Counter

stopwords = nltk.corpus.stopwords.words('english')
wordnet_lemmatizer = WordNetLemmatizer()

In [21]:

meet_the_elements_TMBG = """Iron is a metal, you see it every day
Oxygen, eventually, will make it rust away
Carbon in its ordinary form is coal
Crush it together, and diamonds are born
Come on come on and meet the elements
May I introduce you to our friends, the elements?
Like a box of paints that are mixed to make every shade
They either combine to make a chemical compound or stand alone as they are
Neon's a gas that lights up the sign for a pizza place
The coins that you pay with are copper, nickel, and zinc
Silicon and oxygen make concrete bricks and glass
Now add some gold and silver for some pizza place class
Come on come on and meet the elements
I think you should check out the ones they call the elements
Like a box of paints that are mixed to make every shade
They either combine to make a chemical compound or stand alone as they are
Team up with other elements making compounds when they combine
Or make up a simple element formed out of atoms of the one kind
Balloons are full of helium, and so is every star
Stars are mostly hydrogen, which may someday fill your car
Hey, who let in all these elephants?
Did you know that elephants are made of elements?
Elephants are mostly made of four elements
And every living thing is mostly made of four elements
Plants, bugs, birds, fish, bacteria and men
Are mostly carbon, hydrogen, nitrogen and oxygen
Come on come on and meet the elements
You and I are complicated, but we're made of elements
Like a box of paints that are mixed to make every shade
They either combine to make a chemical compound or stand alone as they are
Team up with other elements making compounds when they combine
Or make up a simple element formed out of atoms of the one kind
Come on come on and meet the elements
Check out the ones they call the elements
Like a box of paints that are mixed to make every shade
They either combine to make a chemical compound or stand alone as they are""" # """ """ are used to handle line breaks and paragraphs without having to resort to special characters

In [22]:

Out[22]:

[('element', 15),
 ('make', 12),
 ('come', 8),
 ('every', 7),
 ('compound', 6),
 ('combine', 6),
 ('meet', 4),
 ('alone', 4),
 ('one', 4),
 ('made', 4)]

meet_the_elements = word_tokenize(meet_the_elements_TMBG) # tokenizes the text along words
meet_the_elements = [t.lower() for t in meet_the_elements if t.isalpha() if t not
 # converts into lowercase
 # retains alpha characters
 # removes english stopwords
meet_the_elements = [wordnet_lemmatizer.lemmatize(t) for t in meet_the_elements] # lemmatizes the tokens
counters=Counter(meet_the_elements) # provides the word count
counters.most_common(10) # shows 10 most common terms

▾

