
DATA SCIENCE REPORT SERIES

Basics of R for Data Analysis
Ehssan Ghashim1, Patrick Boily1,2,3

Abstract
R has become one of the world’s leading languages for statistical and data analysis. In this report, we
provide a short description of its core functionality.
Keywords
R, R Studio, data manipulation, data wrangling, simple graphics, common statistical procedures

1Centre for Quantitative Analysis and Decision Support, Carleton University, Ottawa
2Department of Mathematics and Statistics, University of Ottawa, Ottawa
3Idlewyld Analytics and Consulting Services, Wakefield, Canada
Email: patrick.boily@carleton.ca

Contents

1 Introduction 1

2 First Steps 2

3 Data Manipulation 5

4 Simple Data Visualizations 9

5 Common Statistical Procedures 18

1. Introduction

R is a powerful language that is widely-used for data anal-
ysis and statistical computing. It was developed in the
early 90s by Ross Ihaka and Robert Gentleman. Since then,
continuous efforts have been made to improve R’s user in-
terface. The journey of R language from a rudimentary text
editor to interactive R Studio and more recently Jupyter
Notebooks has engaged many data science communities
across the world.

This was made possible in part because of generous con-
tributions by R users. The inclusion of sophisticated pack-
ages (such as dplyr, tidyr, readr, data.table,
SparkR, ggplot2, etc.) has made R both more power-
ful and more useful, allowing for smart data manipulation,
visualization, and computation.

Why Use R?
Here are some benefits that potential users might note:

the style of coding is intuitive;
R is open source and free;
more than 7800 packages, customized for various
computation tasks, are available (as of October 2017);
the R community is overwhelmingly welcoming and
useful to new users and experienced users alike (you
can browse and ask questions at StackOverflow, and

consult worked-out examples on R-bloggers, for in-
stance);
high performance computing experience is possible
(with the appropriate packages), and
is is one of the highly sought skills by analytics and
data science companies.

Installing R / R Studio
You can download and install the vanilla version of R, but
RStudio provides a much better coding experience, in our
opinion. It is available to Windows user from Vista onward.

The following steps will allow you to install R Studio:

1. Visit rstudio.com/products/rstudio/download/
2. In the ’Installers for Supported Platforms’ section,

select the R Studio installer based on your operating
system. The download should begin as soon as you
click.

3. Follow the instructions until the download is com-
plete.

4. Start R Studio by clicking on the desktop icon or
use ‘search windows’ to access the program. Once
opened, the R Studio GUI will display 4 windows (see
Figure 1).

Console: this area shows the output of code
that has been run (either from the command
line in the console or from the script window).
Script: as the name suggests, this is the window
one would typically use to write code. Lines can
be run by first selecting them (right-clicking)
and pressing ‘Ctrl + Enter’ simultaneously. Al-
ternatively, you can click on the little ‘Run’ but-
ton located at the top right corner of the script
window.
Environment: this space displays the set of ex-
ternal elements that have been added. This

https://www.rstudio.com/products/rstudio/download/

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

Figure 1. The R Studio GUI.

includes data set, variables, vectors, functions
etc. This area allows the user to verify that data
has been loaded properly.
Graphical Output: this space display the graphs
created during exploratory data analysis, or em-
bedded help on package functions from R’s offi-
cial documentation.

2. First Steps

Installing R Packages
To install a package, simply type:

install.packages(‘‘package name’’)

You can type this code directly in the console, followed by
a carriage return, or enter it in the R Script window and
click Run in the menu at the top.

The base distribution already comes with some high-priority
add-on packages, namely

KernSmooth MASS boot class

foreign lattice mgcv nlme
rpart spatial survival base
grDevices graphics grid methods
stats stats4 tcltk tools

cluster nnet datasets splines

The packages listed here implement standard statistical
functionality, for example linear models, classical tests, a
huge collection of high-level plotting functions, and tools
for survival analysis.

Computations in R
Let’s begin with basics. To get familiar with the R coding
environment, start with some basic calculations. R Console
can be used as an interactive calculator too.

Type the first line of each group in your console, followed
by a carriage return to confirm that R works as one would
expect of a calculator:

> 2 + 3
5

> (3*8)/(2*3)
4

> log(12)
1.07

> sqrt(121)
11

Similarly, you can experiment with various combinations
of calculations and get the results.

Should you want to modify or repeat a prior calculation,
press the ‘Up Arrow’ when in R Console to cycle through
previously executed commands. Pressing ‘Enter’ re-runs
the selected computation.

On the other hand, you can avoid scrolling through a
wall of computations by creating a variable.

In R, this is done using the variable assignment symbols <-
or =. Once a variable exists in memory, the output does not
get printed directly unless you call the variable or surround
the variable assignment with a pair of parentheses.

> x <- 8 + 7
> x

15

> (x <- 8 + 7)
15

Variables can be named using any combination of alphanu-
meric symbols, but the name has to start with a letter (a-z,
A-Z) and cannot contain spaces and punctuation marks
(except for periods and dashes).

R Essentials
Everything you see or create in R is an object: vectors,
matrices, data frames, even variables are objects. R allows
5 basic classes of objects:

Character
Numeric (real numbers)
Integer (whole numbers)
Complex
Logical (True / False)

Each of these classes has attributes. Think of attributes as
their ’identifier’, a name or number which aptly identifies
them. An object can have the following attributes:

names, dimension names
dimensions

E.Gashim, P.Boily, 2017 Page 2 of 23

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

class
length
etc.

An object’s various attributes can be accessed using the
attributes() function. We will have more to say on
this topic.

The most basic R object is the vector. An empty vector
can be created using vector(). A vector contains vari-
ous objects all of the same class.1

Vectors are often created using the concatenate operator
c() (which makes it a singularly bad idea to use c as a
variable name).

> a <- c(1.8, 4.5) # numeric
> b <- c(1 + 2i, 3 - 6*i) # complex
> d <- c(23, 44) # integer
> e <- vector("logical", length = 5) #

logical
> f <- c("abc","def") # character

Comments can be introduced in R code via the # symbol: all
characters following a pound (or sharp) symbol is ignored
by R until the next line of code.

R Data Types
Vector A vector contains objects of the same class. You
may have the need to mix objects of different classes in a
list – this can be done by coercion. This has the effect of
‘converting’ objects of different types to the same class. For
instance:

> qt <- c("Time", 24,"October", TRUE,
3.33) # coercion to character

> ab <- c(TRUE, 24) # coercion to numeric
> cd <- c(2.5,"May") # coercion to

character

To check the class of any object, use theclass(‘name’)
function.

> class(qt)
"character"

To convert the class of a vector, you can use the as. com-
mand.

> bar <- 0:5 # create a vector of 6
inteers

> class(bar) # find bar’s class
"integer"

> as.numeric(bar) # convert to numeric
> class(bar)

1That can cause unforeseen difficulties as it is not always easy to
distinguish between real numbers and integer visually. Furthermore, the
digits of a number can be represented as character strings in some cases.

"numeric"
> as.character(bar) # convert to

character
> class(bar)

"character"

Similarly, you can change the class of any vector. But, you
should pay attention here – you can convert a numeric vec-
tor a character one, but going the other way will introduce
NAs.

List A list is a special type of vector which contain ele-
ments of different data types.

> my_list <- list(22,"ab", TRUE, 1 + 2*i)
> my_list

[[1]]
[1] 22

[[2]]
[1]‘‘ab’’

[[3]]
[1] TRUE

[[4]]
[1] 1+2*i

As you can see, the output of a list differs from that of
a vector, since all the objects are of different types. The
double bracket [[1]] shows the index of the first element
and so on. The elements of lists can be extracted by using
the appropriate index:

> my_list[[3]]
[1] TRUE

The single single bracket [] also has a role: it returns
the list element with its index number, instead of the result
above.

> my_list[3]
[[1]]

[1] TRUE

Matrices A vector for which rows and columns are explic-
itly identified is a matrix, a 2-dimensional data structure.
All the entries of a matrix have to be of the same class.

The following code produces a 3 by 2 matrix.

> my_matrix <- matrix(1:6, nrow=3,
ncol=2)

> my_matrix
[,1] [,2]

[1,] 1 4
[2,] 2 5
[3,] 3 6

> dim(my_matrix)
[1] 3 2

E.Gashim, P.Boily, 2017 Page 3 of 23

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

> attributes(my_matrix)
[1] 3 2

The dimensions of a matrix can be obtained using either the
dim() or attributes() commands. To extract a par-
ticular element from a matrix, simply use the appropriate
indices. What might you expect to see from the following
commands?

> my_matrix[,2] #extracts second column
> my_matrix[,1] #extracts first column
> my_matrix[2,] #extracts second row
> my_matrix[1,] #extracts first row

As an aside, it is straightforward to create a matrix from a
vector, by assigning the dimensions using dim().

> age <- c(23, 44, 15, 12, 31, 16) #
read in a vector of ages

> age
[1] 23 44 15 12 31 16

> dim(age) <- c(2,3) # reshape the
vector as a 3 x 2 matrix

> age
[,1] [,2] [,3]

[1,] 23 15 31
[2,] 44 12 16

> class(age)
[1] "matrix"

Matrices can also be created by joining two vectors (with
matching dimensions) using cbind() or rbind()

> x <- c(1, 2, 3, 4, 5, 6)
> y <- c(20, 30, 40, 50, 60)
> cbind(x, y)

x y
[1,] 1 20
[2,] 2 30
[3,] 3 40
[4,] 4 50
[5,] 5 60
[6,] 6 70

> rbind(x,y)
[,1] [,2] [,3] [,4] [,5] [,6]

x 1 2 3 4 5 6
y 20 30 40 50 60 70

> class(cbind(x, y))
[1] "matrix"

> class(rbind(x, y))
[1] "matrix"

Data Frame: This is the most commonly used data type.
It is used to store tabular data, but it is different from a

matrix. In a matrix, every element must have the same
class. A data frame can accommodate lists of vectors of
different classes. In other words, each column of a data
frame acts like a list. Every time data is read into R, it is
first stored as a data frame.

> df <- data.frame(name =
c("ash","jane","paul","mark"), score
= c(67,56,87,91)) # create a data
frame with columns "name" and "score"

> df
name score

1 ash 67
2 jane 56
3 paul 87
4 mark 91

> dim(df)
[1] 4 2

> str(df)
’data.frame’: 4 obs. of 2 variables:
$ name : Factor w/ 4 levels "ash",

"jane", "mark", ..: 1 2 4 3
$ score: num 67 56 87 91

> nrow(df)
[1] 4

> ncol(df)
[1] 2

In the code above, df is the name of data frame, dim()
returns the dimension of the data frame as 4 rows and 2
columns, str() returns the structure of the data frame
(i.e. the list of variables stored in the data frame), and
nrow() and ncol() return the number of rows and
number of columns in the data frame, respectively.

Exercises

1. Calculate the following quantities:

The sum of 10.01, 25.003, and 37.5
The square root of 121
Calculate the 10-based logarithm of 90, and
multiply the result with the cosine of π. Hint:
see ?log and ?pi.

2. Type the following code, which assigns numbers to
objects x and y.

x<-25
y<-55

Calculate the product of x and y
Store the result in a new object called z
Inspect your workspace by typing ls(), and by
clicking the Environment tab in Rstudio, and
find the three objects you created

E.Gashim, P.Boily, 2017 Page 4 of 23

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

Make a vector of the objects x, y, and z. Use this
command,

myvec<-c(x,y,z)

3. You have measured five cylinders. Their lengths are:
3.5, 5.6, 6.9, 7.8, 2.8, and the diameters are: 0.3,
0.9, 0.6, 0.1, 0.2. Read these data points into two
vectors (give the vectors appropriate names). Calcu-
late the volume of each cylinder(V = length× π×
(diameter/2)2).

4. Input the following data, on space shuttle launch
damage prior to the Challenger explosion. The set
covers 6 launches out of 24 that were included in the
pre-launch charts used to decide whether to proceed
with the launch or not

Temp Erosion Blowby Total
53 3 2 5
57 1 0 1
63 1 0 1
70 1 0 1
70 1 0 1
75 0 2 1

Enter these data into a data frame, with (for example)
column names temperature, erosion, blowby and
total.

3. Data Manipulation

Reading data into a statistical system for analysis, and ex-
porting the results to some other system for report writing,
can be frustrating tasks that take far more time than the
statistical analysis itself, even though most readers will find
the latter far more appealing.

This section describes the import and export facilities avail-
able either in R itself or via packages available from CRAN.

Reading Data
R comes with a few data reading functions:

read.table, read.csv for tabular data
readLines for lines of a text file
source, dget to read R code files (inverse ofdump
and dput, respectively)
load to read-in saved workspaces
unserialize to read single R objects in binary
form

There are, of course, numerous R packages that have been
developed to read in all kinds of other datasets, and you
may need to resort to one of these packages if you are
working in a specific area.

read.table() Theread.table() function is one
of the most commonly used functions for reading data. The
help file is worth reading (run ?read.table in the con-
sole) in its entirety if only because the function gets so
much use.

Here are its main arguments:

file, the name of a file, or a connection
header, logical indicating if the file has a header
line
sep, string indicating how the columns are separated
colClasses, character vector indicating the class
of each column in the dataset
nrows, number of rows in the dataset (by default
read.table() will read the entire file)
comment.char, character string indicating the
comment character (this defaults to “#”; if there are
no commented lines in your file, it’s worth setting
this to be the empty string “”)
skip, the number of lines to skip from the beginning
stringsAsFactors, should character variables
be coded as factors? (this defaults to TRUE because
back in the old days, strings represented levels of a
categorical variable; now that text mining is an every
day occurrence, that’s not always the case)

For small to moderately sized datasets, you can usually
call read.table() without specifying any other argu-
ments

> data <- read.table("foo.txt")

In this case, R will automatically

skip lines that begin with a #
figure out how many rows there are (and how much
memory needs to be allocated)
figure what type of variable is in each column of the
table

Telling R all these things directly makes R run faster and
more efficiently. The read.csv() function is identical
to read.table except that some of the defaults are set differ-
ently (like the sep argument).

With much larger datasets, there are a few things that
can be done to prevent R from choking on the data:

read the help page for read.table, which con-
tains many hints
make a rough calculation of the memory required to
store your dataset (see the next section for an exam-
ple of how to do this). If the dataset is larger than
the amount of RAM on your computer, you should
probably stop right here
set comment.char = "" if there are no com-
mented lines in your file

E.Gashim, P.Boily, 2017 Page 5 of 23

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

use the colClasses argument; specifying this op-
tion can make read.table run MUCH faster, of-
ten twice as fast (in order to use this option, you have
to know the class of each column in your data frame;
if all of the columns are “numeric”, for example, then
you can just set colClasses = "numeric")
A quick way to figure out the classes of each column
is to use the following code:

> initial <-
read.table("datatable.txt",
nrows = 100)

> classes <- sapply(initial, class)
> tabAll <-

read.table("datatable.txt",
colClasses = classes)

set nrows – this doesn’t make R run faster but it
helps with memory usage (a mild overestimate is
okay, you can use the Unix tool wc to calculate the
number of lines in the file).

In general, when using R with larger datasets, it’s also useful
to know a few things about your system:

How much memory is available on your system?
What other applications are in use? Can you close
any of them?
Are there other users logged into the same system?
What operating system are you using? Some operat-
ing systems can limit the amount of memory a single
process can access

For example, suppose you have a data frame with 1,500,000
rows and 120 columns, all of which are numeric data.
Roughly speaking, how much memory is required to store
this data frame? Well, on most modern computers double
precision floating point numbers are stored using 64 bits
of memory, or 8 bytes. Given that information, you can do
the following calculation

1,500, 000× 120× 8 bytes= 1, 440,000,000 bytes

= 1, 440,000,000/220 bytes/MB

= 1, 373.29 MB

= 1.34 GB.

Reading in a large dataset for which one does not have
enough RAM is an easy way to freeze your computer (or at
the very least your R session). This is usually an unpleasant
experience that requires one to kill the R process, in the best
case scenario, or reboot the computer, in the worst case.
It’s always a good idea to do a rough memory requirements
calculation before reading in a large dataset.

txt, csv, and Other Formats

Fixed format text files

ds =
read.table("dir_location\\file.txt",
header=TRUE) # Windows only

ds =
read.table("dir_location/file.txt",
header=TRUE) # all OS
(including # Windows)

Forward slash is supported as a directory delimiter
on all operating systems; a double backslash is sup-
ported under Windows. If the first row of the file
includes the name of the variables, these entries will
be used to create appropriate names (reserved char-
acters such as ’$’ or ’[’ are changed to ’.’) for each of
the columns in the dataset. If the first row doesn’t
include the names, the header option can be left off
(or set to FALSE), and the variables will be called
V1, V2,..., Vn. A limit on the number of lines to
be read can be specified through the nrows option
The read.table() function can support reading
from a URL as a filename or browse files interactively
using read.table(file.choose()).

Sometimes data arrives in irregularly-shaped data
files (there may be a variable number of fields per
line, or some data in the line may describe the re-
mainder of the line). In such cases, a useful generic
approach is to read each line into a single charac-
ter variable, then use character variable functions to
extract the contents.

ds = readLines("file.txt")
ds = scan("file.txt")

The readLines() function returns a character
vector with length equal to the number of lines read.
A limit on the number of lines to be read can be
specified through the nrows option. The scan()
function returns a vector, with entries separated by
white space by default. These functions read by de-
fault from standard input, but can also read from a
file or URL.
Comma-separated value (CSV) files

ds =
read.csv("dir_location/file.csv")

Read sheets from an Excel file

library(gdata)
ds =

read.xls("http://www.amherst.edu/
~nhorton/r2/datasets/help.xlsx",

sheet=1)

The sheet can be provided as a number or a name.
Reading datasets in other formats

E.Gashim, P.Boily, 2017 Page 6 of 23

https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

library(foreign)
ds = read.dbf("filename.dbf") # DBase
ds =

read.epiinfo("filename.epiinfo")
Epi Info

ds = read.mtp("filename.mtp") #
Minitab portable worksheet

ds = read.octave("filename.octave")
Octave

ds = read.ssd("filename.ssd") # SAS
version 6

ds = read.xport("filename.xport") #
SAS XPORT file

ds = read.spss("filename.sav") # SPSS
ds = read.dta("filename.dta") # Stata
ds = read.systat("filename.sys") #

Systat

The foreign package can read Stata, Epi Info,
Minitab, Octave, SPSS, and Systat files (with the
caveat that SAS files may be platform dependent).
The read.ssd() function will only work if SAS is
installed locally

Manual Data Entry The data.entry() function in-
vokes a spreadsheet that can be used to edit or otherwise
change a vector or data frame.

In this example, an empty numeric vector of length 10
is created to be populated. The data.entry() function
differs from the edit() function, which leaves the objects
given as unchanged arguments, returning a new object with
the desired edits.

x = numeric(10)
data.entry(x)

or

x1 = c(1, 1, 1.4, 123)
x2 = c(2, 3, 2, 4.5)

Writing Data
There are analogous functions for writing data to files

write.table, to write tabular data to text files
(i.e. CSV) or connections
writeLines, to write character data line-by-line
to a file or connection
dump, for dumping a textual representation of mul-
tiple R objects
dput, for outputting a textual representation of an
R object
save, for saving an arbitrary number of R objects in
binary format (possibly compressed) to a file.
serialize, for converting an R object into a bi-
nary format for outputting to a connection (or file).

Using Textual for Data Storage There are numerous ways
to store data, including structured text files like CSV or
tab-delimited, or more complex binary formats. However,
there is an intermediate format that is textual, but not as
simple as something like CSV. The format is native to R and
is somewhat readable because of its textual nature.

One can create a more descriptive representation of
an R object by using the dput() or dump() functions.
The dump() and dput() functions are useful because
the resulting textual format is editable, and in the case
of corruption, potentially recoverable. Unlike writing out
a table or CSV file, dump() and dput() preserve the
metadata (sacrificing some readability), so that another
user doesn’t have to specify it all over again. For example,
we can preserve the class of each column of a table or the
levels of a factor variable.

dput() and dump() One way to pass data around is
by deparsing the R object with dput() and reading it
back in (parsing it) using dget().

> ## Create a data frame
> y <- data.frame(a = 1, b = "a")
> ## Print ’dput’ output to console
> dput(y)
structure(list(a = 1, b = structure(1L,

.Label = "a", class = "factor")),

.Names\
= c("a","b"), row.names = c(NA, -1L),

class = "data.frame")

Notice that the dput() output is in the form of R code and
that it preserves metadata like the class of the object, the
row names, and the column names. The output of dput()
can also be saved directly to a file.

> ## Send ’dput’ output to a file
> dput(y, file = "y.R")
> ## Read in ’dput’ output from a file
> new.y <- dget("y.R")
> new.y
a b
1 1 a

Multiple objects can be deparsed at once using the dump
function and read back in using source().

> x <- "foo"
> y <- data.frame(a = 1L, b = "a")

We can dump() R objects to a file by passing a character
vector of their names.

> dump(c("x", "y"), file = "data.R")
> rm(x, y)

E.Gashim, P.Boily, 2017 Page 7 of 23

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

Year NSW Vic. Qld SA WA Tas. NT ACT Aust.
1917 1904 1409 683 440 306 193 5 3 4941
1927 2402 1727 873 565 392 211 4 8 6182
1937 2693 1853 993 589 457 233 6 11 6836
1947 2985 2055 1106 646 502 257 11 17 7579
1957 3625 2656 1413 873 688 326 21 38 9640
1967 4295 3274 1700 1110 879 375 62 103 11799
1977 5002 3837 2130 1286 1204 415 104 214 14192
1987 5617 4210 2675 1393 1496 449 158 265 16264
1997 6274 4605 3401 1480 1798 474 187 310 18532

Table 1. Australian population figures

Figure 2. Editor window, showing the data frame austpop.

The inverse of dump() is source().

> source("data.R")
> str(y)
’data.frame’: 1 obs. of 2 variables:
$ a: int 1
$ b: Factor w/ 1 level "a": 1
> x

[1] "foo"

Example
Consider the population figures for Australian states and ter-
ritories (at various times since 1917) found in Table 1. The
following code reads in the data from the fileaustpop.txt
on the c: drive.2

> austpop <-
read.table("c:/austpop.txt",
header=TRUE)

The <- is a left diamond bracket (<) followed by a minus
sign (-). It means "is assigned to". Use of header=TRUE
causes R to use the first line to get header information for
the columns. If the column headings are not included in

2Of course, that’s not where your copy of the file might be saved.

the file, this argument can be omitted.
Now type in austpop at the command line prompt,

displaying the object on the screen:

> austpop
Year NSW Vic Qld SA WA Tas NT ACT Aust

1 1917 1904 1409 683 440 306 193 5 3 4941
2 1927 2402 1727 873 565 392 211 4 8 6182
. . .

To edit the data frame in a spreadsheet-like format, simply
type, as can be seen in Figure 2.

> austpop<-edit(austpop)

Exercises

1. Read the following data into R (number of honeyeaters
seen at the EucFACE site in a week). Give the result-
ing data frame a reasonable name. Type it into Excel
or text file and save it as a CSV file or txt.

Day nrbirds Day nrbirds
Sunday 3 Thursday 8
Monday 2 Friday 1
Tuesday 5 Saturday 2
Wednesday 0

E.Gashim, P.Boily, 2017 Page 8 of 23

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

Enter the following data as new observations of a
different week starting on Sunday: 4, 3, 6, 1, 9, 2, 0.

2. Read the data from the space shuttle launch data into
R, as in the above exercise.

4. Simple Data Visualizations

Whenever we analyze data, the first thing we should do is
look at it. For each variable, what are the most common
values? How much variability is present? Are there any
unusual observations?

Producing graphics for data analysis is relatively sim-
ple. Producing graphics for publication is relatively more
complex and typically requires a great deal of tweaking to
achieve the desired appearance.

Our intent is to provide sufficient guidance so that most
effects can be achieved, but further investigation of the
documentation and experimentation will doubtless be nec-
essary for specific needs.

R provides a number of functions for visualizing data.
Table 2 summarizes a few important plot types. Advanced
functionality is provided by Hadley Wickham’s ggplot2
(which is not covered in this bried outline).

The plot() Function
The most common plotting function in R is the plot()
function. It is a generic function, meaning, it calls various
methods according to the type of the object passed which
is passed to it.

In the simplest case, we can pass in a vector and we get a
scatter plot of magnitude vs index. More generally, we can
pass in two vectors and a scatter plot of the points formed
by matching coordinates is displayed.

For example, the commandplot(c(1,2),c(3,5))
would plot the points (1,3) and (2,5).

Here is a more concrete example where we plot the sine
function in the range from −π to π.

x <- seq(-pi,pi,0.1)
plot(x, sin(x))

The result is shown in Figure 3. We can add a title to our
plot with the parameter main. Similarly, xlab and ylab
can be used to label the x-axis and y-axis respectively (see
Figure 4. The curve is made up of circular black points.
This is the default setting for shape and colour. This can
be changed by using the argument type. It accepts the
following strings (with given effect)

p – points
l – lines
b – both points and lines
c – empty points joined by lines

o – overplotted points and lines
s – stair steps
h – histogram-like vertical lines
n – does not produce any points or lines

Similarly, we can specify the colour using the argument
col. For instance, the following code produces the display
found in Figure 5.

plot(x, sin(x),
main="The Sine Function",
ylab="sin(x)",
type="l",
col="blue")

Calling plot() multiple times will have the effect of plot-
ting the current graph on the same window, replacing the
previous one.

However, we may sometimes wish to overlay the plots
in order to compare the results. This is made possible by
the functions lines() and points(), which add lines
and points respectively, to the existing plot.

plot(x, sin(x),
main="Overlaying Graphs",
ylab="",
type="l",
col="blue")
lines(x,cos(x), col="red")
legend("topleft",

c("sin(x)","cos(x)"),
fill=c("blue","red")

)

Thelegend() function allows for the appropriate display
in Figure 6 display the legend.

The barplot() Function
Bar plots can be created in R using the barplot() func-
tion. We can supply a vector or matrix to this function,
and it will display a bar chart with bar heights equal to the
magnitude of the elements in the vector.

Let us suppose, we have a vector of maximum tempera-
tures for seven days, as follows.

max.temp <- c(22, 27, 26, 24, 23, 26, 28)

Now we can make a bar plot out of this data using a simple
R command (see Figure 7

barplot(max.temp)

This function can take on a lot of arguments, which you
can read about by querying for help in R: ?barplot.
Frequently-used arguments include:

main to specify the title
xlab and ylab to provide labels for the axes

E.Gashim, P.Boily, 2017 Page 9 of 23

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

Figure 3. Sine curve.

Figure 4. Fancy sine curve.

E.Gashim, P.Boily, 2017 Page 10 of 23

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

Figure 5. Fancier sine curve.

Figure 6. Overlaid fancier trigonometric curves.

E.Gashim, P.Boily, 2017 Page 11 of 23

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

Function Graph type

plot() Scatter plots and various others
barplot() Bar plot (including stacked and grouped bar plots)
hist() Histograms and (relative) frequency diagrams
curve() Curves of mathematical expressions
pie() Pie charts (for less scientific uses)
boxplot() Box-and-whisker plots

Table 2. R plotting functions.

Figure 7. Barchart of daily temperature maximum.

names.arg to provide a name for each bar
col to define colour, etc.

We can also transpose the plot to have horizontal bars by
providing the argument horiz = TRUE. The barchart
produced by the following code is shown in Figure 8.

barchart with added parameters
barplot(max.temp,
main = "Maximum Temperatures in a

Week",
xlab = "Degree Celsius",
ylab = "Day",
names.arg = c("Sun", "Mon", "Tue",

"Wed", "Thu", "Fri", "Sat"),
col = "darkred",
horiz = TRUE)

Sometimes we may be interested in displaying the count
or magnitude for each category. For instance, consider the
following vector of age measurements for 10 college frosh.

age <- c(17,18,18,17,18,19,18,16,18,18)

Simply calling barplot(age) will not provide the re-
quired plot. It will plot 10 bars with appropriate heights
(the students’s age), but the display will not be available
for each category. The values can be quickly found using
the table() function, as shown below.

> table(age)
age
16 17 18 19
1 2 6 1

Now plotting this data will produce the required barchart
(see Figure 9). In the code below, the argument density
is used to shade the bars.

barplot(table(age),
main="Age Count of 10 Students",
xlab="Age",
ylab="Count",
border="red",
col="blue",
density=10

)

E.Gashim, P.Boily, 2017 Page 12 of 23

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

Figure 8. Fancy barchart of daily temperatures maximum.

Histograms

Histograms display the distribution of a continuous variable
by dividing the range of scores into a specified number of
bins on the x-axis and displaying the frequency of scores
in each bin on the y-axis.

You can create histograms with the function hist().
The option freq=FALSE creates a plot based on probabil-
ity densities rather than frequencies. The breaks option
controls the number of bins. The default produces equally
spaced breaks when defining the cells of the histogram.

For illustrative purposes, we will use several of the variables
from the Motor Trend Car Road Tests (mtcars) dataset
provided in the base R installation. The following listing
provides the code for four variations on a histogram; the
results are plotted in Figure 10.

par(mfrow=c(2,2))
hist(mtcars$mpg)
hist(mtcars$mpg,

breaks=12,
col="red",
xlab="Miles Per Gallon",
main="Colored histogram with 12

bins")
hist(mtcars$mpg,

freq=FALSE,
breaks=12,

col="red",
xlab="Miles Per Gallon",

main="Histogram, rug plot, density
curve")

rug(jitter(mtcars$mpg))
lines(density(mtcars$mpg), col="blue",

lwd=2)
x <- mtcars$mpg
h<-hist(x,

breaks=12,
col="red",
xlab="Miles Per Gallon",
main="Histogram with normal curve

and box")
xfit<-seq(min(x), max(x), length=40)
yfit<-dnorm(xfit, mean=mean(x), sd=sd(x))
yfit <- yfit*diff(h$mids[1:2])*length(x)
lines(xfit, yfit, col="blue", lwd=2)
box()

The first histogram demonstrates the default plot with no
specified options: five bins are created, and the default axis
labels and titles are printed.

In the second histogram, 12 bins have been specified,
as well as a red fill for the bars, and more attractive and
informative labels and title.

The third histogram uses the same colours, number
of bins, labels, and titles as the previous plot but adds a

E.Gashim, P.Boily, 2017 Page 13 of 23

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

Figure 9. Fancier barchart of college frosh ages.

density curve and rug-plot overlay. The density curve is a
kernel density estimate and is described in the next section.
It provides a smoother description of the distribution of
scores. The call to function lines() overlays this curve
in blue and a width twice the default line thickness; a rug
plot is a one-dimensional representation of the actual data
values. If there are multiple repeated values, something
like the following code will jitter the data, adding a small
random value to each data point (a uniform random variate
between ± amount) in order to avoid overlapping points.

rug(jitter(mtcars$mpag, amount=0.01))

The fourth histogram is similar to the second but with a
superposed normal curve and a box around the figure. The
code for superposing the normal curve comes from a sug-
gestion posted to the R-help mailing list by Peter Dalgaard.
The surrounding box is produced by the box() function.

The curve Function
Given an expression for a function y(x), we can plot the
values of y for various values of x in a given range. This
can be accomplished using an R library function called
curve(). We now plot the simple polynomial function
y = 3x2 + x in the range x = [1, 10], as follows:

curve(3*x^2 + x, from=1, to=10, n=300,
xlab="xvalue", ylab="yvalue",

col="blue", lwd=2, main="Plot
of (3x^2 + x)")

This command produces the display found in Figure 11.

The important parameters of the curve() function are:

the first parameter is the mathematical expression of
the function to plot, written in the format for writing
mathematical operations in or LATEX;
two numeric parameters (from and to) that repre-
sent the endpoints of the range of x;
the integer n that represents the number of equally-
spaced values of x between the from and to points;
the other parameters (xlab, ylab, col, lwd, main)
have their usual meaning.

Box Plots
A box-and-whiskers plot describes the distribution of a
continuous variable by plotting its five-number summary:
the minimum, lower quartile Q1 (25th percentile), me-
dian (50th percentile), upper quartile Q3 (75th percentile),
and the maximum. It display observations which may be
identified as potential outliers (values outside the range of
[5/2Q1 − 3/2Q3, 5/2Q3 − 3/2Q1] for normally distributed
variables). For example, the following statement produces
the plot shown in Figure 12.

boxplot(mtcars$mpg, main="Box plot",
ylab="Miles per Gallon")

Exercises Use the Australian data to to do the following

Graph the New South Wales (NSW) population with
all defaults usingplot(). Redo the graph by adding
a title, a line to connect the points, and some colour.
Compare the population of New South Wales (NSW)
and the Australian Capital Territory (ACT) by using
the functions plot() and lines(), then add a
legend to appropriately display your graph.
Use a bar chart to graph the population of Queens-
land (QLD), add an appropriate title to your graph,
and display the years from 1917 to 1997 on the ap-
propriate bars.
Create a light blue histogram for the population of
South Australia (SA).

E.Gashim, P.Boily, 2017 Page 14 of 23

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

Figure 10. Histogram variations for mtcars

E.Gashim, P.Boily, 2017 Page 15 of 23

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

Figure 11. Polynomial curve: y = 3x2 + x .

E.Gashim, P.Boily, 2017 Page 16 of 23

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

Figure 12. Box plot of mtcars’s mpg, with manual annotations.

E.Gashim, P.Boily, 2017 Page 17 of 23

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

5. Common Statistical Procedures
Once the data is properly organized and visual exploration
has begun in earnest, the typical next step is to describe the
distribution of each variable numerically, followed by an
exploration of the relationships among selected variables.
The objective is to answer questions such as:

What kind of mileage are cars getting these days?
Specifically, what’s the distribution of miles per gallon
(mean, standard deviation, median, range, and so on)
in a survey of automobile makes and models?
After a new drug trial, what is the outcome (no im-
provement, some improvement, marked improve-
ment) for drug versus placebo groups? Does the
gender of the participants have an impact on the out-
come?
What is the correlation between income and life ex-
pectancy? Is it significantly different from zero?
Are you more likely to receive imprisonment for a
crime in different regions of Canada? Are the differ-
ences between regions statistically significant?

Basic Statistics
When it comes to calculating descriptive statistics, R can ba-
sically do it all. Let’s start with functions that are included
in the base installation. We will then look for extensions
that are available through the use of user-contributed pack-
ages.

For illustrative purposes, we will again use several of the
variables from the Motor Trend Car Road Tests (mtcars)
dataset provided in the base installation. We will focus
on miles per gallon (mpg), horsepower (hp), and weight
(wt):

> myvars <- c("mpg", "hp", "wt")
> head(mtcars[myvars])

mpg hp wt
Mazda RX4 21.0 110 2.62
Mazda RX4 Wag 21.0 110 2.88
Datsun 710 22.8 93 2.32
Hornet 4 Drive 21.4 110 3.21
Hornet Sportabout 18.7 175 3.44
Valiant 18.1 105 3.46

Let’s first look at descriptive statistics for all 32 models. We
will then examine descriptive statistics by transmission type
(am) and number of cylinders (cyl). Transmission type
is a dichotomous variable coded 0=automatic, 1=manual,
while the number of cylinders can be 4, 5, or 6.

In the base installation, you can use the summary()
function to obtain descriptive statistics. An example is
presented in the following listing.

> myvars <- c("mpg", "hp", "wt")
> summary(mtcars[myvars])

mpg hp wt

Min. :10.4 Min. : 52.0 Min. :1.51
1st Qu.:15.4 1st Qu. : 96.5 1st Qu. :2.58
Median :19.2 Median :123.0 Median :3.33
Mean :20.1 Mean :146.7 Mean :3.22
3rd Qu.:22.8 3rd Qu. :180.0 3rd Qu. :3.61
Max. :33.9 Max. :335.0 Max. :5.42

The summary() function provides the minimum, max-
imum, quartiles, and mean for numerical variables, and
the respective frequencies for factors and logical vectors.
The functions apply() or sapply() can be used to
provide any descriptive statistics. The format in use is:

> sapply(x, FUN, options)

where x is the data frame (or matrix) and FUN is an arbi-
trary function. If options are present, they’re passed toFUN.

Typical functions that can be plugged here are

mean()
sd()
var()
min()
max()
median()
length()
range()
quantile()
fivenum()

The example in the next listing provides several descriptive
statistics using sapply(), including skew and kurtosis.

> mystats <- function(x, na.omit=FALSE){
if (na.omit)

x <- x[!is.na(x)]
m <- mean(x)
n <- length(x)
s <- sd(x)
skew <- sum((x-m)^3/s^3)/n
kurt <- sum((x-m)^4/s^4)/n -

3
return(c(n=n, mean=m,

stdev=s, skew=skew,
kurtosis=kurt))

}

> myvars <- c("mpg", "hp", "wt")
> sapply(mtcars[myvars], mystats)

mpg hp wt
n 32.000 32.000 32.0000
mean 20.091 146.688 3.2172
stdev 6.027 68.563 0.9785
skew 0.611 0.726 0.4231
kurtosis -0.373 -0.136 -0.0227

For cars in this sample, the mean mpg is 20.1, with a stan-
dard deviation of 6.0. The distribution is skewed to the

E.Gashim, P.Boily, 2017 Page 18 of 23

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

right (+0.61) and is somewhat flatter than a normal distri-
bution (–0.37). This is most evident if you graph the data.
Note that if you wanted to omit missing values, you could
use

> sapply(mtcars[myvars], mystats,
na.omit=TRUE).

The Hmisc and pastecs packages Several packages
offer functions for descriptive statistics, including Hmisc
and pastecs. Because these packages are not included
in the base distribution, they need to be installed on first
use. Hmisc’s describe() function returns the number
of variables and observations, the number of missing and
unique values, the mean, quantiles, and the five highest
and lowest values. An example is provided in Table 3.

The pastecs package includes the function stat.desc()
that provides a wide range of descriptive statistics. The for-
mat is

> stat.desc(x, basic=TRUE, desc=TRUE,
norm=FALSE, p=0.95)

where x is a data frame or a time series. If basic=TRUE
(the default), the number of values, null values, missing
values, minimum, maximum, range, and sum are provided.

If desc=TRUE (also the default), the median, mean,
standard error of the mean, 95% confidence interval for
the mean, variance, standard deviation, and coefficient of
variation are also provided.

Finally, if norm=TRUE (not the default), normal dis-
tribution statistics are returned, including skewness and
kurtosis (with statistical significance) and the Shapiro–Wilk
test of normality. A p−value option is used to calculate the
confidence interval for the mean (.95 by default). The next
listing gives an example.

> library(pastecs)
> myvars <- c("mpg", "hp", "wt")
> stat.desc(mtcars[myvars])

mpg hp wt
nbr.val 32.00 32.000 32.000
nbr.null 0.00 0.000 0.000
nbr.na 0.00 0.000 0.000
min 10.40 52.000 1.513
max 33.90 335.000 5.424
range 23.50 283.000 3.911
sum 642.90 4694.000 102.952
median 19.20 123.000 3.325
mean 20.09 146.688 3.217
SE.mean 1.07 12.120 0.173
CI.mean.0.95 2.17 24.720 0.353
var 36.32 4700.867 0.957
std.dev 6.03 68.563 0.978
coef.var 0.30 0.467 0.304

Correlations
Correlation coefficients are used to describe relationships
among quantitative variables. The sign ± indicates the di-
rection of the relationship (positive or inverse), and the
magnitude indicates the strength of the relationship (rang-
ing from 0 for no linear relationship to 1 for a perfectly
predictable linear relationship).

In this section, we look at a variety of correlation co-
efficients, as well as tests of significance. We will use the
state.x77 dataset available in the base R installation.
It provides data on the population, income, illiteracy rate,
life expectancy, murder rate, and high school graduation
rate for the 50 US states in 1977. There are also temper-
ature and land-area measures, but we drop them to save
space. In addition to the base installation, we’ll be using
the psych and ggm packages.

R can produce a variety of correlation coefficients, including
Pearson, Spearman, Kendall, partial, polychoric, and poly-
serial. The Pearson product-moment correlation assesses
the degree of linear relationship between two quantitative
variables. Spearman’s rank-order correlation coefficient as-
sesses the degree of relationship between two rank-ordered
variables. Kendall’s tau is also a nonparametric measure of
rank correlation.

The cor() function produces all three correlation coef-
ficients, whereas the cov() function provides covariances.
There are many options, but a simplified format for produc-
ing correlations is

> cor(x, use= , method=)

Where x is a matrix or a data frame, and use specifies the
handling of missing data. The options are all.obs (as-
sumes no missing data), everything (any correlation
involving a case with missing values will be set to missing),
complete.obs (listwise deletion), and pairwise.
complete.obs (pairwise deletion). The method spec-
ifies the type of correlation. The options are pearson,
spearman, and kendall. The default options are use
="everything" and method= "pearson". An
example is provided in Table 4

The first call produces the variances and covariances.
The second provides Pearson product-moment correlation
coefficients, and the third produces Spearman rank-order
correlation coefficients. You can see, for example, that a
strong positive correlation exists between income and high
school graduation rate and that a strong negative correla-
tion exists between illiteracy rates and life expectancy.

A partial correlation is a correlation between two quantita-
tive variables, controlling for one or more other quantitative
variables. You can use the pcor() function in the ggm
package to provide partial correlation coefficients. Again,
this package is not installed by default, so be sure to install
it on first use. The format is

E.Gashim, P.Boily, 2017 Page 19 of 23

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

> library(Hmisc)
> myvars <- c("mpg", "hp", "wt")
> describe(mtcars[myvars])
3 Variables 32 Observations

mpg
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
32 0 25 20.09 12.00 14.34 15.43 19.20 22.80 30.09 31.30

lowest : 10.4 13.3 14.3 14.7 15.0, highest: 26.0 27.3 30.4 32.4 33.9

hp
n missing unique Mean .05 .10 .2 .50 .75 .90 .95
32 0 22 146.7 63.65 66.00 96.50 123.00 180.00 243.50 253.55

lowest : 52 62 65 66 91, highest: 215 230 245 264 335

wt
n missing unique Mean .05 .10 .25 .50 .75 .90 .95
32 0 29 3.217 1.736 1.956 2.581 3.325 3.610 4.048 5.293

lowest : 1.513 1.615 1.835 1.935 2.140, highest: 3.845 4.070 5.250 5.345 5.424

Table 3. Output from the decribe() function, mtcars.

> pcor(u, S)

where u is a vector of numbers, with the first two numbers
being the indices of the variables to be correlated, and the
remaining numbers being the indices of the conditioning
variables (that is, the variables being partialed out), and S
is the covariance matrix among the variables. An example
will help clarify this:

> library(ggm)
> colnames(states)
[1] "Population" "Income" "Illiteracy"

"Life Exp" "Murder" "HS Grad"
> pcor(c(1,5,2,3,6), cov(states))
[1] 0.346

In this case, 0.346 is the correlation between population
(variable 1) and murder rate (variable 5), controlling for
the influence of income, illiteracy rate, and high school
graduation rate (variables 2, 3, and 6 respectively). The
use of partial correlations is common in the social sciences.

Simple Linear Regression
In many ways, regression analysis is at the heart of statistics.
It is a broad term for a set of methodologies used to predict
a response variable (also called a dependent, criterion, or
outcome variable) from one or more predictor variables
(also called independent or explanatory variables).

In general, regression analysis can be used to identify
the explanatory variables that are related to a response vari-
able, to describe the form of the relationships involved, and

to provide an equation for predicting the response variable
from the explanatory variables.

For example, an exercise physiologist might use regression
analysis to develop an equation for predicting the expected
number of calories a person will burn while exercising on a
treadmill.

The response variable is the number of calories burned
(calculated from the amount of oxygen consumed), and
the predictor variables might include duration of exercise
(minutes), percentage of time spent at their target heart
rate, average speed (mph), age (years), gender, and body
mass index (BMI).

From a practical point of view, regression analysis would
help answer questions such as:

How many calories can a 30-year-old man with a BMI
of 28.7 expect to burn if he walks for 45 minutes at
an average speed of 4 miles per hour and stays within
his target heart rate 80% of the time?
What’s the minimum number of variables you need
to collect in order to accurately predict the number
of calories a person will burn when walking?

R has powerful and comprehensive features for fitting re-
gression models – the abundance of options can be confus-
ing as well.3 The basic function for fitting a linear model is
lm(). The format is

3For example, in 2005, Vito Ricci created a list of more than 205 func-
tions in R that are used to generate regression models (mng.bz/NJhu).

E.Gashim, P.Boily, 2017 Page 20 of 23

http://mng.bz/NJhu

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

> states<- state.x77[,1:6]
> cov(states)

Population Income Illiteracy Life Exp Murder HS Grad
Population 19931684 571230 292.868 -407.842 5663.52 -3551.51
Income 571230 377573 -163.702 280.663 -521.89 3076.77
Illiteracy 293 -164 0.372 -0.482 1.58 -3.24
Life Exp -408 281 -0.482 1.802 -3.87 6.31
Murder 5664 -522 1.582 -3.869 13.63 -14.55
HS Grad -3552 3077 -3.235 6.313 -14.55 65.24

> cor(states)
Population Income Illiteracy Life Exp Murder HS Grad

Population 1.0000 0.208 0.108 -0.068 0.344 -0.0985
Income 0.2082 1.000 -0.437 0.340 -0.230 0.6199
Illiteracy 0.1076 -0.437 1.000 -0.588 0.703 -0.6572
Life Exp -0.0681 0.340 -0.588 1.000 -0.781 0.5822
Murder 0.3436 -0.230 0.703 -0.781 1.000 -0.4880
HS Grad -0.0985 0.620 -0.657 0.582 -0.488 1.0000
> cor(states, method="spearman")

Population Income Illiteracy Life Exp Murder HS Grad
Population 1.000 0.125 0.313 -0.104 0.346 -0.383
Income 0.125 1.000 -0.315 0.324 -0.217 0.510
Illiteracy 0.313 -0.315 1.000 -0.555 0.672 -0.655
Life Exp -0.104 0.324 -0.555 1.000 -0.780 0.524
Murder 0.346 -0.217 0.672 -0.780 1.000 -0.437
HS Grad -0.383 0.510 -0.655 0.524 -0.437 1.000

Table 4. Various correlation coefficients for the state.x77 dataset.

> myfit <- lm(formula, data)

where formula describes the model to be fit and data
is the data frame containing the data to be used in fitting
the model. The resulting object (myfit, in this case) is
a list that contains extensive information about the fitted
model. The formula is typically written as

Y ∼ X1 + X2 + · · ·+ Xk

where the ∼ separates the response variable on the left
from the predictor variables on the right, and the predictor
variables are separated by + signs.

In addition to lm(), Table 5 lists several functions that
are useful when generating regression models. Each of
these functions is applied to the object returned by lm()
in order to generate additional information based on the
fitted model.

Example The dataset women in the base installation pro-
vides the heights and weights for a set of 15 women aged
30 to 39. Let’s say that you want to predict the weight from
the height.4 The analysis can be conducted as in Table 6.
From the output, you see that the prediction equation is

4Having an equation for predicting weight from height could help
identifying overweight or underweight individuals, or at least provide a
red flag.

ÚWeight= −87.52+ 3.45× Height.

Because a height of 0 is impossible, there is no sense in
trying to give a physical interpretation to the intercept – it
merely becomes an adjustment constant.

From the P(>|t|) column, we see that the regression
coefficient (3.45) is significantly different from zero (p <
0.001) which indicates that there’s an expected increase of
3.45 pounds of weight for every 1 inch increase in height.
The multiple R-squared coefficient (0.991) indicates that
the model accounts for 99.1% of the variance in weights.

Bootstrapping
Bootstrapping is a powerful and elegant approach to esti-
mating the sampling distribution of specific statistics. It
can be implemented in many situations where asymptotic
results are difficult to find or otherwise unsatisfactory. Boot-
strapping proceeds using three steps:

1. resample the dataset (with replacement) many times
over (typically on the order of 10,000);

2. calculate the desired statistic from each resampled
dataset;

3. use the distribution of the resampled statistics to esti-
mate the standard error of the statistic (normal ap-
proximation method) or construct a confidence in-
terval using quantiles of that distribution (percentile
method).

E.Gashim, P.Boily, 2017 Page 21 of 23

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

Function Action

summary() Displays detailed results for the fitted model
coefficients()Lists the model parameters (intercept and slopes) for the fitted

model
confint() Provides confidence intervals for the model parameters (95%

by default)
residuals() Lists the residual values in a fitted model
anova() Generates an ANOVA table for a fitted model, or an ANOVA

table comparing two or more fitted models
plot() Generates diagnostic plots for evaluating the fit of a model
predict() Uses a fitted model to predict response values for a new dataset

Table 5. Other useful R linear fitting functions.

There are several ways to bootstrap in R.

As an example, let’s say we want to estimate the standard
error and 95% confidence interval for the coefficient of
variation (CV), defined as σ/µ, for a random variable X .
We generate normal data with a mean and variance of 1.

> x = rnorm(1000, mean=1)

The user must provide code to calculate the statistic of
interest as a function.

> covfun = function(x) { # multiply CV
by 100

return(100*sd(x)/mean(x))
}

The replicate() function is the base R tool for re-
peating function calls. Here, we nest within it a call to
covfun() and a call to sample the data with replace-
ment using the sample() function.

> options(digits=4)
> res2 = replicate(2000,

covfun(sample(x, replace=TRUE)))
> quantile(res2, c(.025, .975))

2.5% 97.5%
98.85 116.07

The percentile interval is easy to calculate from the observed
bootstrapped statistics. If the distribution of the bootstrap
samples is approximately normally distributed, a t interval
could be created by calculating the standard deviation of the
bootstrap samples and finding the appropriate multiplier
for the confidence interval. Plotting the bootstrap sample
estimates is helpful to determine the form of the bootstrap
distribution.

Exercises
For this question, use the pupae data attached to this
report. This dataset comes from an experiment where lar-
vae were left to feed on Eucalyptus leaves, in a glasshouse

that was controlled at two different levels of temperature
and CO2 concentration. After the larvae pupated (that is,
turned into pupae), the body weight was measured, as well
as the cumulative ’frass’ (larvae excrement) over the entire
time it took to pupate. Data courtesy of Tara Murray, and
simplified for the purpose of this exercise.

T_treatment - Temperature treatments (’ambient’ and
’elevated’)
Co2_treatment - CO2 treatment (280 or 400 ppm).
Gender - The gender of the pupae : 0 (male), 1 (fe-
male)
PupalWeight - Weight of the pupae (g)
Frass - Frass produced (g)

Perform a simple linear regression of Frass on PupalWeight.
Produce and inspect the following:

Summary of the model.
Plots of the data.

References

[1] Kabacoff, R.I. [2011], R in Action, Second Edition: Data
analysis and graphics with R, Live.

[2] Horton, N.J., Kleinman, K. [2016], Using R and RStudio
for Data Management, Statistical Analysis, and Graphics
Second Edition, CRC Press.

[3] Peng, R.D. [2015], R Programming for Data Science,
Learnpub.

[4] Duursma, R., Powell, J., Stone, G. [2017], A Learning
Guide to R, Scribd.

[5] Maindonald, J.H. [2008], Using R for Data Analysis and
Graphics Introduction, Code and Commentary, Centre
for Bioinformation Science.

[6] Plot Parameters in R
[7] R Programming
[8] Complete Tutorial to Learn Data Science from

Scratch

E.Gashim, P.Boily, 2017 Page 22 of 23

http://www.countbio.com/web_pages/left_object/R_for_biology/R_fundamentals/plot_parameters_R.html
https://www.programiz.com/r-programming
https://www.analyticsvidhya.com/blog/2016/02/complete-tutorial-learn-data-science-scratch
https://www.analyticsvidhya.com/blog/2016/02/complete-tutorial-learn-data-science-scratch

DATA SCIENCE REPORT SERIES Basics of R for Data Analysis

> fit <- lm(weight ~ height, data=women)
> summary(fit)

Call:
lm(formula=weight ~ height, data=women)

Residuals:
Min 1Q Median 3Q Max

-1.733 -1.133 -0.383 0.742 3.117

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -87.5167 5.9369 -14.7 1.7e-09 ***
height 3.4500 0.0911 37.9 1.1e-14 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’’ 1

Residual standard error: 1.53 on 13 degrees of freedom
Multiple R-squared: 0.991, Adjusted R-squared: 0.99
F-statistic: 1.43e+03 on 1 and 13 DF, p-value: 1.09e-14

> women$weight

[1] 115 117 120 123 126 129 132 135 139 142 146 150 154 159 164

> fitted(fit)

1 2 3 4 5 6 7 8 9
112.58 116.03 119.48 122.93 126.38 129.83 133.28 136.73 140.18

10 11 12 13 14 15
143.63 147.08 150.53 153.98 157.43 160.88

> residuals(fit)

1 2 3 4 5 6 7 8 9 10 11
2.42 0.97 0.52 0.07 -0.38 -0.83 -1.28 -1.73 -1.18 -1.63 -1.08
12 13 14 15

-0.53 0.02 1.57 3.12

> plot(women$height,women$weight,
xlab="Height (in inches)",
ylab="Weight (in pounds)")

> abline(fit)

Table 6. Regression analysis of the women dataset.

E.Gashim, P.Boily, 2017 Page 23 of 23

	Introduction
	First Steps
	Data Manipulation
	Simple Data Visualizations
	Common Statistical Procedures

