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Abstract
R has become one of the world’s leading languages for statistical and data analysis. While the base R
installation does support simple visualizations, its plots are rarely of high-enough quality for publication.
Enter Hadley Wickam’s ggplot2, an aesthetically pleasing and logical approach to data visualization. In
this short report, we introduce ggplot2’s graphic grammar elements, and present a number of examples.
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1. Introduction

There are currently four graphical systems available in R.

1. The base graphics system, written by Ross Ihaka, is
included in every R installation. Most of the graphs
produced in the ‘Basics of R‘ report rely on base graph-
ics functions.

2. The grid graphics system, written by Paul Murrell in
2011, is implemented through the grid package,
which offers a lower-level alternative to the standard
graphics system. The user can create arbitrary rectan-
gular regions on graphics devices, define coordinate
systems for each region, and use a rich set of drawing

primitives to control the arrangement and appearance
of graphic elements.

This flexibility makes grid a valuable tool for soft-
ware developers. But the grid package doesn’t pro-
vide functions for producing statistical graphics or
complete plots. As a result, it is rarely used directly
by data analysts and won’t be discussed further (see
Dr. Murrell’s Grid website at http://mng.bz/C86p).

3. The lattice package, written by Deepayan Sarkar in
2008, implements trellis graphs, as outlined by Cleve-
land (1985, 1993). Basically, trellis graphs display the
distribution of a variable or the relationship between
variables, separately for each level of one or more
other variables. Built using the grid package, the
lattice package has grown beyond Cleveland’s orig-
inal approach to visualizing multivariate data and
now provides a comprehensive alternative system for
creating statistical graphics in R.

4. Finally, the ggplot2 package, written by Hadley Wick-
ham [2], provides a system for creating graphs based
on the grammar of graphics described by Wilkinson
(2005) and expanded by Wickham [3]. The intention
of the ggplot2 package is to provide a comprehensive,
grammar-based system for generating graphs in a uni-
fied and coherent manner, allowing users to create
new and innovative data visualizations. The power
of this approach has led to ggplot2 becoming one of
the most common R data visualization tool.

Access to the four systems differs: they are all included in
the base installation, except for ggplot2, and they must all
be explicitly loaded, except for the base graphics system.

http://mng.bz/C86p
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2. How ggplot2 Works

As we saw in Basics of R for Data Analysis, visualization
involves representing data using various elements, such as
lines, shapes, colours, etc.. There is a structured relation-
ship – some mapping – between the variables in the data
and their representation in the displayed plot. We also saw
that not all mappings make sense for all types of variables,
and (independently), that some representations are harder
to interpret than others.

ggplot2 provides a set of tools to map data to visual
display elements and to specify the desired type of plot,
and subsequently to control the fine details of how it will
be displayed. Figure 1 shows a schematic outline of the
process starting from data, at the top, down to a finished
plot at the bottom.

The most important aspect of ggplot2 is the way it can
be used to think about the logical structure of the plot.
The code allows the user to explicitly state the connections
between the variables and the plot elements that are seen
on the screen – items such as points, colors, and shapes.

In ggplot2, these logical connections between the data
and the plot elements are called aesthetic mappings, or
simply aesthetics.

After installing and loading the package, a plot is created
by telling the ggplot() function what the data is, and
how the variables in this data logically map onto the plot’s
aesthetics.

The next step is to specify what sort of plot is desired (scat-
terplot, boxplot, bar chart, etc), also known as a geom.
Each geom is created by a specific function:

geom_point() for scatterplots
geom_bar() for barplots
geom_boxplot() for boxplots,
and so on.

These two components are combined, literally adding them
together in an expression, using the “+” symbol.

At this point, ggplot2 has enough information to draw a plot
– the other components (see Figure 1) provide additional
design elements.

If no further details are specified, ggplot2 uses a set of
sensible default parameters; usually, however, the user will
want to be more specific about, say, the scales, the labels of
legends and axes, and other guides that can improve the
plot readability.

These additional pieces are added to the plot in the
same manner as the geom_function() component,
with specific arguments, again using the “+” symbol. Plots
are built systematically in this manner, piece by piece.

Figure 1. ggplot2’s graphics grammar [5].
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Figure 2. Artificial data - visualization.

3. Basics of ggplot2’s Grammar

Let’s look at some illustrative ggplot2 code:

library("ggplot2")
theme_set(theme_bw()) # use the black

and white theme throughout
# artificial data:
d <- data.frame(x = c(1:8, 1:8), y =

runif(16),
group1 = rep(gl(2, 4, labels = c("a",

"b")), 2),
group2 = gl(2, 8))

head(d)
## R output
## x y group1 group2
## 1 1 0.8683116 a 1
## 2 2 0.1934542 a 1
## 3 3 0.1131743 a 1
## 4 4 0.9260514 a 1
## 5 5 0.9476787 b 1
## 6 6 0.2949107 b 1
ggplot(data = d) + geom_point(aes(x, y,

colour = group1)) +
facet_grid(~group2)

The data is plotted in Figure 2.

A basic display call contains the following elements:

ggplot(): start an object and specify the data
geom_point(): we want a scatter plot; this is
called a “geom”
aes(): specifies the “aesthetic” elements; a legend
is automatically created
facet_grid(): specifies the “faceting” or panel
layout

Other components include statistics, scales, and annotation
options. At a bare minimum, charts require a dataset, some
aesthetics, and a geom, combined, as above, with “+” sym-
bols! This non-standard approach has the advantage of
allowing ggplot2 plots to be proper R objects, which can
modified, inspected, and re-used.

ggplot2’s main plotting functions are qplot() and
ggplot(); qplot() is short for “quick plot” and is
meant to mimic the format of base R’s plot(); it requires
less syntax for many common tasks, but has limitations – it’s
essentially a wrapper for ggplot(), which is not itself
that complicated to use.

We will focus on this latter function.
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Function Adds Options

geom_bar() Bar chart color, fill, alpha
geom_boxplot() Box plot color, fill, alpha, notch, width
geom_density() Density plot color, fill, alpha, linetype
geom_histogram() Histogram color, fill, alpha, linetype, binwidth
geom_hline() Horizontal lines color, alpha, linetype, size
geom_jitter() Jittered points color, size, alpha, shape
geom_line() Line graph colorvalpha, linetype, size
geom_point() Scatterplot color, alpha, shape, size
geom_rug() Rug plot color, side
geom_smooth() Fitted line method, formula, color, fill, linetype, size
geom_text() Text annotations Many; see the help for this function
geom_violin() Violin plot color, fill, alpha, linetype
geom_vline() Vertical lines color, alpha, linetype, size

Option Specifies

color colour of points, lines, and borders around filled regions
fill colour of filled areas such as bars and density regions
alpha transparency of colors, ranging from 0 (fully transparent) to 1 (opaque)
linetype pattern for lines (1 = solid, 2 = dashed, 3 = dotted, 4 = dotdash, 5 = longdash, 6 = twodash)
size point size and line width
shape point shapes (same as pch, with 0 = open square, 1 = open circle, 2 = open triangle, and so on)
position position of plotted objects such as bars and points. For bars, “dodge” places grouped bar charts

side by side, “stacked” vertically stacks grouped bar charts, and “fill” vertically stacks grouped
bar charts and standardizes their heights to be equal; for points, “jitter” reduces point overlap

binwidth bin width for histograms
notch indicates whether box plots should be notched (TRUE/FALSE)
sides placement of rug plots on the graph (“b” = bottom, “l” = left, “t” = top, “r” = right, “bl” = both

bottom and left, and so on)
width width of box plots

Table 1. Commonly-used geom functions (top); common options for the various geom functions (bottom).

4. Specifying Plot Types With geoms

Whereas ggplot() specifies the data source and vari-
ables to be plotted, the various geom functions specify
how these variables are to be visually represented (using
points, bars, lines, and shaded regions). There are currently
37 available geoms. Table 1 lists the more common ones,
along with frequently used options (most of the graphs
shown in this report can be created using those geoms).

For example, the next bit of code produces a histogram
of the heights of singers in the 1979 edition of the New
York Choral Society (Figure 4), and a display of height by
voice part for the same data (Figure 5).

library("ggplot2")
data(singer, package="lattice")
ggplot(singer, aes(x=height)) +

geom_histogram()
ggplot(singer, aes(x=voice.part,

y=height)) + geom_boxplot()

From Figure 5, it appears that basses tend to be taller and
sopranos tend to be shorter. Although the singers’ gender
was not recorded, it probably accounts for much of the
variation seen in the diagram.

Note that only the x variable (height) was specified when
creating the histogram, but that both the x (voice part) and
the y (height) variables were specified for the box plot –
indeed, geom_histogram() defaults to counts on the
y−axis when no y variable is specified (each function’s
documentation contains details and additional examples,
but there’s a lot of value to be found in playing around with
data in order to determine their behaviour).

Let’s examine the use of some of these options using the
Salaries dataset (from package “car”). The dataframe
contains information on the salaries of university professors
collected during the 2008–2009 academic year. Variables
include rank (AsstProf, AssocProf, Prof), sex (Female, Male),
yrs.since.phd (years since Ph.D.), yrs.service (years of ser-
vice), and salary (nine-month salary in dollars). The next
code produces the plot in Figure 3.

data(Salaries, package="car")
library(ggplot2)
ggplot(Salaries, aes(x=rank, y=salary)) +

geom_boxplot(fill="cornflowerblue",
color="black", notch=TRUE)+
geom_point(position="jitter",

color="blue", alpha=.5)+
geom_rug(side="l", color="black")
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Figure 3 displays notched box plots of salary by academic
rank. The actual observations (teachers) are overlaid and
given some transparency so they don’t obscure the box plots.
They’re also littered to reduce their overlap. Finally, a rug
plot is provided on the left to indicate the general spread of
salaries. From Figure 3, we see that the salaries of assistant,
associate, and full professors differ significantly from each
other (there is no overlap in the box plot notches).

Additionally, the variance in salaries increases with
greater rank, with a larger range of salaries for full pro-
fessors. In fact, at least one full professor earns less than
all assistant professors. There are also three full professors
whose salaries are so large as to make them outliers (as
indicated by the black dots in the Prof box plot).

5. Aesthetics

Aesthetics refer to the displayed attributes of the data. They
map the data to an attribute (such as the size or shape of
a marker) and generate an appropriate legend. Aesthetics
are specified with the aes() function.

The aesthetics available for geom_point(), as an
example are:

x
y
alpha
color
fill
shape
size

Note that ggplot() tries to accommodate the user who’s
never “suffered” through base graphics before by using
intuitive arguments like color, size, and linetype,
but ggplot() also accepts arguments such as col, cex,
and lty. The documentation goes some way towards
explaining aesthetic options exist for each geom (they’re
generally self-explanatory).

Aesthetics can be specified within the data function or
within a geom. If they’re specified within the data function
then they apply to all specified geoms.

Note the important difference between specifying charac-
teristics like colour and shape inside or outside the aes()
function: those inside it are assigned colour or shape auto-
matically based on the data. If characteristics like colour or
shape are defined outside the aes() function, then they
will not be mapped to data.

Here’s an example, using the mpg dataset:

ggplot(mpg, aes(cty, hwy)) +
geom_point(aes(colour = class))

ggplot(mpg, aes(cty, hwy)) +
geom_point(colour = "red")

The outputs are shown in Figure 6.

6. Facets

In ggplot2 parlance, small multiples are referred to as facets.
There are two kinds:

facet_wrap()
facet_grid()

The former plots the panels in the order of the factor levels
– when it gets to the end of a column it wraps to the next
column (the number of columns and rows can be specified
with nrow and ncol. The grid layout facet_grid()
produces a grid with explicit x and y positions.

By default, the panels all share the same x and y axes.
Note, however, that the various y−axes are allowed to vary
via

facet_wrap(scales = "free_y"),

and that all axes are allowed to vary

via facet_wrap(scales = free).

To specify the data frame columns that are mapped to the
rows and columns of the facets, separate them with a tilde.
Usually, only a row or a column is fed to facet_wrap().
What happens if both are fed to that component?

Going back to the choral example, a faceted graph can be
produced using the following code:

data(singer, package="lattice")
library(ggplot2)
ggplot(data=singer, aes(x=height)) +

geom_histogram() +
facet_wrap(~voice.part, nrow=4)

The resulting plot (Figure 7) displays the distribution of
singer heights by voice part. Separating the height distri-
bution into their own small, side-by-side plots makes them
easier to compare.

As a second example, let’s create a graph that has faceting
and grouping; the resulting graph is presented in Figure 8.
It contains the same information, but separating the plot
into facets makes it somewhat easier to read.

library(ggplot2)
ggplot(Salaries, aes(x=yrs.since.phd,

y=salary,
color=rank, shape=rank)) +

geom_point() + facet_grid(.~sex)
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Figure 3. Notched box plots with superimposed points describing the salaries of college professors by rank. A rug plot is
provided on the vertical axis.

Figure 4. Histogram of singer heights Figure 5. Box plot of singer heights by voice part
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Figure 6. Visualizations of the mpg dataset – with aes() on the left, without on the right.

7. Multiple Graphs per Page

In basic R, the graphic parameter mfrow and the base
function layout() are used to combine two or more
base graphs into a single plot. This approach will not work
with plots created with the ggplot2 package, however. The
easiest way to place multiple ggplot2 graphs in a single
figure is to use the grid.arrange() function found in
the gridExtra package.

This code places three ggplot2 charts based on theSalaries
dataset onto a single graph.

data(Salaries, package="car")
library(ggplot2)
p1 <- ggplot(data=Salaries, aes(x=rank))

+ geom_bar()
p2 <- ggplot(data=Salaries, aes(x=sex))

+ geom_bar()
p3 <- ggplot(data=Salaries,

aes(x=yrs.since.phd, y=salary)) +
geom_point()

library(gridExtra)
grid.arrange(p1, p2, p3, ncol=3)

The resulting graph is shown in Figure 9. Each graph is
saved as an object and then arranged into a single plot
via grid.arrange(). Note the difference between
faceting and multiple graphs: faceting creates an array
of plots based on one or more categorical variables, but
the components of a multiple graph could be completely
independent plots arranged into a single display.

8. Themes

Themes allow the user to control the overall appearance
of ggplot2 charts; theme() options are used to change
fonts, backgrounds, colours, gridlines, and more. Themes
can be used once or saved and applied to multiple charts.
See below for an example.

data(Salaries, package="car")
library(ggplot2)
mytheme <- theme(plot.title=element_text(

face="bold.italic",
size="14",

color="brown"), axis.title=
element_text(

face="bold.italic",
size=10, color="brown"),

axis.text=element_text(
face="bold", size=9,
color="darkblue"),

panel.background=element_rect(
fill="white",color="darkblue"),

panel.grid.major.y=element_line(
color="grey", linetype=1),

panel.grid.minor.y=element_line(
color="grey", linetype=2),

panel.grid.minor.x=element_blank(),
legend.position="top")

ggplot(Salaries, aes(x=rank, y=salary,
fill=sex)) +
geom_boxplot() +
labs(title="Salary by Rank and

Sex", x="Rank", y="Salary") +
mytheme

Adding “+ mytheme” to the plotting statement generates
the graph shown in Figure 10; mytheme specifies that plot
titles are printed in brown 14-point bold italics; axis titles in
brown 10-point bold italics; axis labels in dark blue 9-point
bold; the plot area should have a white fill and dark blue
borders; major horizontal grids should be solid grey lines;
minor horizontal grids should be dashed grey lines; vertical
grids should be suppressed; and the legend should appear
at the top of the graph. The theme() function gives you
great control over the look of the finished product (consult
help(theme) to learn more about these options).
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Figure 7. Faceted graph showing the distribution (histogram) of singer heights by voice part
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Figure 8. Scatterplot of years since graduation and salary. Academic rank is represented by color and shape, and sex is
faceted.
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Figure 9. Placing three ggplot2 plots in a single graph
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Figure 10. Box plots with a customized theme
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9. Tidy Data: Getting Data Into the Right
Format

ggplot2 is compatible with what is generally referred to as
the tidyverse [22]. Social scientists will likely be familiar
with the distinction between data in wide format and in
long format:

in a long format table, every column represents a
variables, and every row an observation,
whereas in a wide format table, some variables are
spread out across columns, perhaps along some other
characteristic such as the year, say.

The plots that have been produced so far were simple to
create because the data points were given in the format
of one observation per row which we call a "tall" format.
But many datasets come in a "wide"" format, i.e. there is
more than one observation – more than one point on the
scatterplot – in each row.

Consider, for instance, the WorldPhones dataset,
one of R’s built-in dataset:

data("WorldPhones")

This dataset records the number of telephones, in thou-
sands, on each continent for several years in the 1950s (see
Table 2).

Each column represents a different continent, and each
row represents a different year. This wide format seems like
a reasonable way to store data, but suppose that we want
to compare increases in phone usage between continents,
with time on the horizontal axis. In that case, each point on
the plot is going to represent a continent during one year –
there are seven observations in each row, which makes it
very difficult to plot using ggplot2.

Fortunately, the tidyvers provides an easy way to con-
vert this wide dataset into a tall dataset, by melting the
data. This can be achieved by loading a thrid-party package
called reshape2. The WorldPhones dataset can now be
melted from a wide to a tall dataset with the melt() func-
tion. Let’s assign the new, melted data to an object called
WorldPhones.m, where the m reminds us that the data
has been melted.

library(reshape2)
WorldPhones.m = melt(WorldPhones)

The new, melted data looks like:

head(WorldPhones.m)

## Var1 Var2 value
## 1 1951 N.Amer 45939
## 2 1956 N.Amer 60423
## 3 1957 N.Amer 64721
## ...

Notice that while there were originally seven columns, there
are now only three: Var1, Var2, and value; Var1
represents the year, Var2 the continents, and value the
number of phones. Every data cell – every observation –
every number of phones per year per continent – in the
original dataset now has its own row in the melted dataset.

In 1951, in North America, for instance, there were
45,939,000 phones, which is the same value as in the origi-
nal unmelted data – the data has not changed, it just got
reshaped.

Changing the column names might make the data more
intuitive to read:

colnames(WorldPhones.m) = c("Year",
"Continent", "Phones")

head(WorldPhones.m)

## Year Continent Phones
## 1 1951 N.Amer 45939
## 2 1956 N.Amer 60423
## 3 1957 N.Amer 64721
## ...

Now that the data has been melted into a tall dataset, it is
easy to create a plot with ggplot2, with the usual steps of a
ggplot() call, but with WorldPhones.m instead of
WorldPhones:

ggplot(WorldPhones.m, aes(x=Year,
y=Phones, color=Continent)) +
geom_point()

We place the Year on the x−axis, in order to see how the
numbers change over time, while the number of Phones
(the variable of interest) is displayed on the y−axis. The
Continent factor will be represented with colour. A
scatterplot is obtained by adding a geom_point() layer.

Scatterplots can also be used to show trends over time,
by drawing lines between points for each continent. This
only require a change to a geom_line() layer.

ggplot(WorldPhones.m, aes(x=Year,
y=Phones, color=Continent)) +
geom_line()

The result is shown in Figure 11. Incidentally, one might
expect the number of phones to increase exponentially over
time, rather than linearly (a fair number of observations
are clustered at the bottom of the chart).

When that’s the case, it’s a good idea to plot the vertical
axis on a log scale. This can be done adding a logarithm
scale to the chart.

ggplot(WorldPhones.m, aes(x=Year,
y=Phones, color=Continent)) +
geom_line() + scale_y_log10()
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Table 2. WorldPhones dataset in wide format.

Now each of the phone trends looks linear, and the lower
values are spotted more easily; for example, it is now clear
that Africa has overtaken Central America by 1956 (see
Figure 12).

Notice how easy it was to build this plot once the data
was in the tall format: one row for every point – that’s every
combination of year and continent – on the graph.

10. Saving Graphs

Plots might look great on the screen, but they typically have
to be embedded in other documents (Markdown, LATEX,
Word, etc.). In order to do so, they must first be saved
in an appropriate format, with a specific resolution and
size. Default size settings can be saved within the .Rmd
document by declaring them in the first chunk of code. For
instance, this would tell knitr to produce 8 in. × 5 in.
charts:

knitr::opts_chunk$set(fig.width=8,
fig.height=5)

A convenience function named ggsave() can be partic-
ularly useful. Options include which plot to save, where to
save it, and in what format. For example,

myplot <- ggplot(data=mtcars,
aes(x=mpg)) + geom_histogram()

ggsave(file="mygraph.png", plot=myplot,
width=5, height=4)

saves the myplot object as a 5-inch by 4-inch .png file
named mygraph.png in the current working directory.
The available formats include .ps, .tex, .jpeg, .pdf,
.jpg, .tiff, .png, .bmp, .svg, or .wmf (the latter
only being available on Windows machines).

Without the plot= option, the most recently created
graph is saved. The following code, for instance, the follow-
ing bit of code would also save the mtcars plot (the latest
plot) to the current working directory (see the ggsave()
helf file for additional details):

ggplot(data=mtcars, aes(x=mpg)) +
geom_histogram()

ggsave(file="mygraph.pdf")

Within RStudio, an alternative is to click on Export, then
“Save Plot As Image” to open a GUI.

11. Summary

The first 10 sections reviewed the ggplot2 package, which
provides advanced graphical methods based on a compre-
hensive grammar of graphics. The package is designed
to provide the use with a complete and comprehensive
alternative to the native graphics provided with R. It of-
fers methods for creating attractive and meaningful data
visualizations that are difficult to generate in other ways.

It does come with some drawbacks, however: the gg-
plot2 and tidyverse design teams have fairly strong opinions
about how data should be visualized and processed. As a
result, it can sometimes be difficult to produce charts that
go against their design ideals. In the same vein, the various
package updates do not always preserve the functionality
of working code, sending the analysts scurrying to figure
how the new functions work, which can cause problems
with legacy code. Still, the versatility and overall simplicity
of ggplot2 cannot be overstated.

A list of all ggplot2 functions, along with examples, can
be found at http://docs.ggplot2.org. The theory underly-
ing ggplot2 is explained in great deatil in [2]; useful exam-
ples and starting points can also be found in [1,5].

The ggplot2 action flow is always the same: start with data
in a table, map the display variables to various aesthetics
(position, colour, shape, etc.), and select one or more geoms
to draw the graph. This is accomplished in the code by
first creating an object with the basic data and mappings
information, and then by adding or layering additional
information as needed.

Once this general way of thinking about plots is under-
stood (especially the aesthetic mapping part), the drawing
process is simplified significantly. There is no need to think
about how to draw particular shapes or colours in the chart;
the many (self-explanatory) geom_ functions do all the
heavy lifting.

Similarly, learning how to use new geoms is easier
when they are viewed as ways to display specific aesthetic
mappings.
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Figure 11. WorldPhones.m plots, using geom_points() (above) and geom_lines() (below).
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Figure 12. WorldPhones.m on a vertical logarithmic scale.
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Figure 13. Scatterplot of the midwest dataset.

12. Examples

In this final section, we provide 30 additional examples of
ggplot2 visualizations. Some of those examples have been
taken directly (and modified) from various online sources
(see references).

Example 1 (Scatterplot)
The most frequently used plot for data analysis is undoubt-
edly the scatterplot. Whenever you want to understand
the nature of relationship between two variables, invari-
ably the first choice is the scatterplot, which is drawn us-
ing geom_point(). Additionally, the geom_smooth
default will draw a “loess” smoothing line, which can be
tweaked to draw the line of best fit instead by setting
method=’lm’ (see Figure 13).

# load package and data
options(scipen=999) # turn-off

scientific notation like 1e+48
library(ggplot2)
theme_set(theme_bw()) # pre-set
data("midwest", package = "ggplot2")
# Scatterplot
ggplot(midwest, aes(x=area, y=poptotal))

+ geom_point(aes(col=state,
size=popdensity)) +

geom_smooth(method="loess", se=F) +
xlim(c(0, 0.1)) + ylim(c(0, 500000)) +
labs(subtitle="Area Vs Population",

y="Population",
x="Area",
title="Scatterplot",
caption = "Source: midwest")
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Figure 14. Bubble chart of the mpg dataset.

Example 2 (Bubble Chart)
While scatterplots allows for comparisons between 2 con-
tinuous variables, bubble charts extend the principles to 4
or more variables using various marker elements:

the colour of the marker can be mapped to a categor-
ical variable (finite colour choices) or a continuous
variable (gradient scale);
the size of the marker is typically mapped to a positive
continuous variable.

Additionally, the shape of the marker can be mapped to a
categorical variable.

With the mpg dataset, a bubble chart can help to clearly
distinguish the range of the displ feature for the various
manufacturers, and can be used to show how the slope of
the lines of best fit vary by manufacturer, providing a better
visual comparison between the groups (see Figure 14).

library(ggplot2)
data(mpg, package="ggplot2")
mpg_select <- mpg[mpg$manufacturer %in%

c("audi", "ford", "honda",
"hyundai"), ]

# Scatterplot
theme_set(theme_bw()) # pre-set the bw

theme.
g <- ggplot(mpg_select, aes(displ, cty))

+
labs(subtitle="mpg: Displacement vs

City Mileage",
title="Bubble chart")

g + geom_jitter(aes(col=manufacturer,
size=hwy)) +

geom_smooth(aes(col=manufacturer),
method="lm", se=F)
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Example 3 (Animated Bubble Chart)
An animated bubble chart can be implemented using the
gganimate package. It works quite the same way as a bub-
ble chart, but allows the user to show how the bubble chart
changes with an additional variable (typically time). The
key element is to set aes(frame) to the desired column
on which to animate. The rest of the plot construction pro-
cedure is the same as before. Once the plot is constructed,
it can be animated by using gganimate() and setting
the “time” variable appropriately.

Note that ImageMagick (http://imagemagick.org) must
be installed in order to use the anim_save() function.

library(ggplot2)
library(gganimate)
library(gapminder)
theme_set(theme_bw()) # pre-set bw theme
head(gapminder)

ggplot(gapminder, aes(gdppc,
life_expectancy, size = population,
colour = country)) +

geom_point(alpha = 0.7, show.legend =
FALSE) +

#scale_colour_manual(values =
country_colors) +

scale_size(range = c(2, 12)) +
scale_x_log10() +
facet_wrap(~continent) +
# Here is the gganimate bits
labs(title = ’Year: {frame_time}’, x =

’GDP per capita’, y = ’life
expectancy’) +

transition_time(year) +
ease_aes(’linear’)

anim_save(file="gapminder.gif") # saved,
not plotted

Example 4 (Maps)
The ggmap package provides facilities to interact with the
google maps api and get the coordinates (latitude and lon-
gitude) of places you want to plot. The example below
provides road (Figure 16), hybrid (Figure 17) and satellite
(Figure 18) maps of the city of Ottawa, encircling some loca-
tions of interest (the google maps api has changed its func-
tionality since the images were originally created; the exam-
ple below will require some tweaking). The geocode()
function is used to get the coordinates of the locations and
qmap() is used to retrieve the maps. The type of map to
fetch is determined by the value set to maptype.

The map supports zooms; the default value of 10 is
suitable for large cities. It can be reduced to 3 for zooming
out, and increased to 21 to zoom in at the building level.

library(ggplot2)
library(ggmap)
library(ggalt)

# Get Ottawa’s Coordinates
--------------------------------

ottawa<-geocode("Ottawa") # get
longitude and latitude

# Get Coordinates for Ottawa’s Places
---------------------

ottawa_places<-c("Canadian War
Museum","Rideau Centre","University
of Ottawa","Carleton University")

places_loc <- geocode(ottawa_places) #
get longitudes and latitudes

# Get the Map
------------------------------

# Google Satellite Map
ottawa_ggl_sat_map <- qmap("ottawa",

zoom=13, source = "google",
maptype="satellite")

# Google Hybrid Map
ottawa_ggl_hybrid_map <- qmap("ottawa",

zoom=13, source = "google",
maptype="hybrid")

# Google Road Map
ottawa_ggl_road_map <- qmap("ottawa",

zoom=13, source = "google",
maptype="roadmap")

# Plot Google Road Map
-------------------------------------

ottawa_ggl_road_map +
geom_point(aes(x=lon, y=lat), data =
places_loc, alpha = 0.8, size = 7,
color = "tomato") +
geom_encircle(aes(x=lon, y=lat),
data = places_loc, size = 2, color =
"blue")

# Google Hybrid Map
----------------------------------------

ottawa_ggl_hybrid_map +
geom_point(aes(x=lon, y=lat), data =
places_loc, alpha = 0.7, size = 7,
color = "tomato") +
geom_encircle(aes(x=lon, y=lat),
data = places_loc, size = 2, color =
"blue")

# Google Satellite Map
----------------------------------------

ottawa_ggl_sat_map +
geom_point(aes(x=lon, y=lat), data =
places_loc, alpha = 0.7, size = 7,
color = "tomato") +

geom_encircle(aes(x=lon, y=lat), data
= places_loc, size = 2, color =
"blue")
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Figure 15. Bubble chart of the gapminder dataset (selected frames).
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Figure 16. Ottawa Road Map
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Figure 17. Ottawa Hybrid Map
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Figure 18. Ottawa Satellite Map
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Example 5 (Marginal Histogram / Boxplot)
A marginal histogram is a chart on which the scatterplot of
two variables X and Y are shown, together with the distribu-
tion of each of the variables. This can be implemented using
the ggMarginal() function from the ggExtra package.
Other marginal plots are available. The output of the fol-
lowing code is shown in Figure 19.

# load package and data
library(ggplot2)
library(ggExtra)
data(mpg, package="ggplot2")

# Scatterplot
theme_set(theme_bw()) # pre-set the bw

theme.
mpg_select <- mpg[mpg$hwy >= 35 &

mpg$cty > 27, ]
g <- ggplot(mpg, aes(cty, hwy)) +
geom_count() +
geom_smooth(method="lm", se=F)

ggMarginal(g, type = "histogram",
fill="transparent")

ggMarginal(g, type = "boxplot",
fill="transparent")

Example 6 (Diverging Bars)
We might want bar charts that can handle both negative and
positive values (diverging bars); this can be implemented
by providing a tweak to geom_bar() (the histogram
function):

set stat=identity
provide both x and y inside the aes() call, where
x is a character or a factor and y is numeric.

In order to guarantee diverging bars (instead of simple
bars), the categorical variable must have two levels whose
values change at a given threshold of the continuous vari-
able. In the display of Figure 20, mpg (from mtcars) is
normalised by computing the z score – vehicles with mpg
above zero are shown in green; those below in red.

library(ggplot2)
theme_set(theme_bw())
data("mtcars") # load data
mtcars$‘car name‘ <- rownames(mtcars) #

create new column for car names
mtcars$mpg_z <- round((mtcars$mpg -

mean(mtcars$mpg))/sd(mtcars$mpg), 2)
# compute normalized mpg

mtcars$mpg_type <- ifelse(mtcars$mpg_z <
0, "below", "above") # above / below
avg flag

mtcars <- mtcars[order(mtcars$mpg_z), ]
# sort

mtcars$‘car name‘ <- factor(mtcars$‘car
name‘, levels = mtcars$‘car name‘)

# convert to factor to retain sorted
order in plot.

# Diverging Barcharts
ggplot(mtcars, aes(x=‘car name‘,

y=mpg_z, label=mpg_z)) +
geom_bar(stat=’identity’,

aes(fill=mpg_type), width=.5) +
scale_fill_manual(name="Mileage",
labels = c("Above Average", "Below

Average"),
values = c("above"="#00ba38",

"below"="#f8766d")) +
labs(subtitle="Normalised mileage",

title= "Diverging Bars - mtcars") +
coord_flip()

Example 7 (Area Chart)
Area charts are typically used to visualize how a particular
metric (such as % returns from a stock) performed com-
pared to a certain baseline. Other types of % returns or
% change data are commonly used; area charts are imple-
mented with geom_area() (see Figure 21).

library(ggplot2)
#install.packages("quantmod")
library(quantmod)
data("economics", package = "ggplot2")

# Compute % Returns
economics$returns_perc <- c(0,

diff(economics$psavert)/
economics$psavert[
-length(economics$psavert)])

# Create break points and labels for
axis ticks

brks <- economics$date[seq(1,
length(economics$date), 12)]

#install.packages("lubridate")
lbls <-

lubridate::year(economics$date[seq(1,
length(economics$date), 12)])

# Plot
ggplot(economics[1:100, ], aes(date,

returns_perc)) +
geom_area() +
scale_x_date(breaks=brks, labels=lbls)+
theme(axis.text.x =

element_text(angle=90)) +
labs(title="Area Chart",

subtitle = "Perc Returns for
Personal Savings",

y="% Returns for Personal Savings",
caption="Source: economics")
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Figure 19. Marginal histograms / boxplots for the mtcats dataset.

Example 8 (Population Pyramid)
Population pyramids offer a way to visualize how much of
the population (or what percentage of the population) falls
under a certain category. The pyramid of Figure 22 is an
excellent example, showing how many users are retained
at each stage of an email marketing campaign funnel.

library(ggplot2)

library(ggthemes)
options(scipen = 999) # turns off

scientific notations (like 1e+40)

# Read data
email_campaign_funnel <-
read.csv("https://raw.githubusercontent.com/
selva86/datasets/master/
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Figure 20. Diverging bars for the mtcars dataset.

email_campaign_funnel.csv")
# X Axis Breaks and Labels
brks <- seq(-15000000, 15000000, 5000000)
lbls = paste0(as.character(c(seq(15, 0,

-5), seq(5, 15, 5))), "m")

# Plot
ggplot(email_campaign_funnel, aes(x =

Stage, y = Users, fill = Gender)) +
# Fill column

geom_bar(stat = "identity", width = .6)
+ # draw the bars

scale_y_continuous(breaks = brks, #
Breaks
labels = lbls) + # Labels

coord_flip() + # Flip axes
labs(title="Email Campaign Funnel") +
theme_tufte() + # Tufte theme from

ggfortify
theme(plot.title = element_text(hjust =

.5), axis.ticks = element_blank()) +
# Centre plot title

scale_fill_brewer(palette = "Dark2")
# Colour palette

Example 9 (Calendar Heatmap)
The calendar heat map is a great tool to see the daily varia-
tion (especially the highs and lows) of a variable like stock
price, as it emphasizes the variation over time rather than
the actual value itself. It can (with a fair amount of data
preparation) be produced with geom_tile.

# http://margintale.blogspot.in/2012/04/
ggplot2-time-series-heatmaps.html
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Figure 21. Area chart for the economics dataset.

library(ggplot2)
library(plyr)
library(scales)
library(zoo)

df <- read.csv(
"https://raw.githubusercontent.com/
selva86/datasets/master/yahoo.csv")

df$date <- as.Date(df$date) # format date
df <- df[df$year >= 2012, ] # filter

years

# Create Month Week
df$yearmonth <- as.yearmon(df$date)
df$yearmonthf <- factor(df$yearmonth)
df <- ddply(df,.(yearmonthf), transform,

monthweek=1+week-min(week))
# compute week number of month

df <- df[, c("year", "yearmonthf",
"monthf", "week", "monthweek",
"weekdayf", "VIX.Close")]

head(df)

# Plot
ggplot(df, aes(monthweek, weekdayf, fill

= VIX.Close)) +
geom_tile(colour = "white") +
facet_grid(year~monthf) +
scale_fill_gradient(low="red",

high="green") +
labs(x="Week of Month",

y="",
title = "Time-Series Calendar

Heatmap",
subtitle="Yahoo Closing Price",
fill="Close")
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Figure 22. Population pyramid for the email campaign funnel dataset.
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Figure 23. Time-series calendar heatmap of the yahoo stockprice dataset.
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Example 10 (Ordered Bar Chart)
An ordered bar chart is a bar chart that is ordered by the
y−axis variable. It is not sufficient to sort the dataframe by
the variable of interest; in order for the bar chart to retain
the row ordering, the x−axis variable (i.e. the categories)
has to be converted into a factor object.

This is shown in Figure 24, for the mean city mileage
of each manufacturer in the mpg dataset. The data is first
aggregated and sorted, and the x−variable is converted to
a factor.

# Prepare data: group mean city mileage
by manufacturer.

cty_mpg <- aggregate(mpg$cty,
by=list(mpg$manufacturer), FUN=mean)
# aggregate

colnames(cty_mpg) <- c("make",
"mileage") # change column names

cty_mpg <- cty_mpg[
order(cty_mpg$mileage),] # sort

cty_mpg$make <- factor(cty_mpg$make,
levels = cty_mpg$make) # to retain
the order in plot.

# Plot
library(ggplot2)
theme_set(theme_bw())

# Draw plot
ggplot(cty_mpg, aes(x=make, y=mileage)) +
geom_bar(stat="identity", width=.5,

fill="tomato3") +
labs(title="Ordered Bar Chart",

subtitle="Make Vs Avg. Mileage",
caption="source: mpg") +

theme(axis.text.x =
element_text(angle=65, vjust=0.6))

Example 11 (Correlogram)
Correlograms can be used to test the level of correlation
among the data variables. The cells of the matrix can
be shaded or coloured to show the correlation value (the
darker the colour, the higher the magnitude of the corre-
lation between a pair of variables). Positive correlations
are displayed in one colour, and negative correlations in
another, with intensity proportional to the actual correla-
tion value. This is conveniently implemented using the
ggcorrplot package (see Figure 25).

#install.packages("ggcorrplot")
library(ggplot2)
library(ggcorrplot)

# Correlation matrix
data(mtcars)
corr <- round(cor(mtcars), 1)

# Plot
ggcorrplot(corr, hc.order = TRUE,

type = "lower",
lab = TRUE,
lab_size = 3,
method="circle",
colors = c("tomato2", "white",

"springgreen3"),
title="Correlogram of mtcars",
ggtheme=theme_bw)

Example 12 (Treemap)
A treemap requires a data frame with (at least) the following
columns:

a numeric column, which determines the area of each
treemap rectangle, and
another numeric column, which determines the fill
colour of each treemap rectangle.

The treemapify package includes, as an example, a dataset
containing statistics about the G20 world economies. For
this example, we will further use two optional columns: a
factor column, containing labels for each rectangle (Coun-
try) and a second factor column, containing labels for
groups of rectangles (Region) – see Figure 26 for the fi-
nal display.

We start by drawing a treemap where each tile repre-
sents a G20 country. The area of the tile will be mapped
to the country’s GDP, and the tile’s fill colour mapped to
its HDI (Human Development Index). The basic geom
used for that purpose is geom_treemap(), but with-
out a label to identify each country, the display will not
be very insightful. To add a text label to each tile, use
geom_treemap_text(), which uses the ggfittext pack-
age to resize the text so that it fits inside the tile.

In addition to standard text formatting aesthetics in
geom_text() (like fontface or color), ggfittext-
specific options are available; for example, we can centre
the text in the tile with place = "centre", and ex-
pand it to fill as much of the tile as possible with grow =
TRUE.

The geom_treemap geom supports subgrouping by
passing a subgroup aesthetic. Countries can be subdivided
by region, say; geom_treemap_subgroup_border
can be used to draw a border around these regions, with la-
bels given by geom_treemap_subgroup_text (the
latter takes the same input arguments for text placement
and resizing as geom_treemap_text).

Like any ggplot2 plot, treemapify plots can be faceted,
scaled, themed, etc.

library(devtools)
#devtools::install_github("wilkox/treemapify")
library(treemapify)
library(ggplot2)
data(G20)
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ggplot(G20, aes(area = gdp_mil_usd, fill
= region, label = country)) +

geom_treemap() +
geom_treemap_text(grow = T, reflow =

T, colour = "black") +
facet_wrap( ~ econ_classification) +
scale_fill_brewer(palette = "Set1") +
theme(legend.position = "bottom") +
labs(
title = "The G20 Economies",
caption = "The area of each country

is proportional to its relative
GDP

within the economic group (advanced
or developing)",

fill = "Region"
)

Example 13 (Network Visualization)
This example using the geomnet package has been chosen
from a social network from the popular television show Mad
Men (which we have never actually seen, for the record).
The network it displays uses data and code that made avail-
able at CRAN’s gcookbook page [1]; it consists of 52 vertices
and 87 edges. Each vertex represents a character on the
show; there is an edge between two characters if they have
shared a romantic relationship.

The network visualization of Figure 27 is provided by
the ggnetwork package under the ggplot2 framework, using
layering..

library(ggplot2)
library(ggnetwork)
library(geomnet)
library(network)
# make the data available
data(madmen, package = ’geomnet’)
# create undirected network
mm.net <- network(madmen$edges[, 1:2],

directed = FALSE)
# mm.net # glance at network object

# create node attribute (gender)
rownames(madmen$vertices) <-

madmen$vertices$label
mm.net %v% "gender" <- as.character(
madmen$vertices[

network.vertex.names(mm.net),
"Gender"])

# gender color palette
mm.col <- c("female" = "#ff0000", "male"

= "#00ff00")
set.seed(10052016)
ggplot(data = ggnetwork(mm.net, layout =

"kamadakawai"),
aes(x, y, xend = xend, yend =

yend)) +

geom_edges(color = "grey50") + # draw
edge layer

geom_nodes(aes(colour = gender), size
= 2) + # draw node layer

geom_nodetext(aes(colour = gender,
label = vertex.names),

size = 3, vjust = -0.6) + #
draw node label layer

scale_colour_manual(values = mm.col) +
xlim(c(-0.05, 1.05)) +
theme_blank() +
theme(legend.position = "bottom")

In the plot, we can see that there is one central character
who has many more relationships than any other character.
This vertex represents the main character of the show, Don
Draper, who is apparently quite the Lothario. Networks can
be found practically in all data environments; ggnetwork
provides the curious reader with a straightforward way to
visualize any network.

Colouring the vertices or edges in a graph is a quick
way to visualize grouping and helps with pattern or cluster
detection. The vertices in a network and the edges between
them compose the structure of a network, and being able
to visually discover patterns among them is a key part of
network analysis.

Example 14 (Time Series Plot From a Time Series Object )
The ggfortify package allows autoplot to automatically plot
directly from a ts object (see Figure 28).

## From Timeseries object (ts)
library(ggplot2)
library(ggfortify)
# Plot
autoplot(AirPassengers) +
labs(title="AirPassengers") +
theme(plot.title =

element_text(hjust=0.5))

Example 15 (Time Series Plot From a Data Frame)
Using geom_line(), a time series (or line chart) can
be drawn from a data frame as well. The horizontal axis
breaks are generated by default. In the example below
(Figure 29), the breaks are formed once every 10 years.

library(ggplot2)
theme_set(theme_classic())
# Allow Default X Axis Labels
ggplot(economics, aes(x=date)) +
geom_line(aes(y=unemploy)) +
labs(title="Time Series Chart",

subtitle="Number of unemployed in
thousands from ’Economics-US’
Dataset",

caption="Source: Economics",
y="unemploy")
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Figure 24. Ordered bar plot of the mpg dataset.
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Figure 25. Correlogram of the mtcars dataset.
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Figure 26. Treemap for the G20 economies.

E.Gashim, P.Boily, 2018 Page 33 of 59



DATA SCIENCE REPORT SERIES A ggplot2 Primer

Figure 27. Graph of Mad Men characters who are linked by a romantic relationship.
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Figure 28. Time series plot for the AirPassengers dataset.
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Figure 29. Time series plot for the economics dataset.
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Example 16 (Time Series Plot For a Monthly Time Series)
In order to select specific breaks on the x−axis, consider the
functionality offered by scale_x_date() (plot shown
in Figure 30).

library(ggplot2)
library(lubridate)
theme_set(theme_bw())

economics_m <- economics[1:24, ]

# labels and breaks for X axis text
lbls <-

paste0(month.abb[month(economics_m$date)
], " ",
lubridate::year(economics_m$date))

brks <- economics_m$date

# plot
ggplot(economics_m, aes(x=date)) +
geom_line(aes(y=pce)) +
labs(title="Monthly Time Series",

subtitle="Personal consumption
expenditures, in billions of
dollars",

caption="Source: Economics",
y="pce") + # title and caption

scale_x_date(labels = lbls,
breaks = brks) + # change to

monthly ticks and labels
theme(axis.text.x = element_text(angle

= 90, vjust=0.5), # rotate x axis
text
panel.grid.minor =

element_blank()) # turn off
minor grid

Example 17 (Time Series Plot For a Yearly Time Series)
Here’s the same, but with a yearly breakdown (plot shown
in Figure 31).

library(ggplot2)
library(lubridate)
theme_set(theme_bw())

economics_y <- economics[1:90, ]

# labels and breaks for X axis text
brks <- economics_y$date[seq(1,

length(economics_y$date), 12)]
lbls <- lubridate::year(brks)

# plot
ggplot(economics_y, aes(x=date)) +
geom_line(aes(y=psavert)) +
labs(title="Yearly Time Series",

subtitle="Personal savings rate",
caption="Source: Economics",
y="psavert") + # title and caption

scale_x_date(labels = lbls,
breaks = brks) + # change to

monthly ticks and labels
theme(axis.text.x = element_text(angle

= 90, vjust=0.5), # rotate x axis
text
panel.grid.minor =

element_blank()) # turn off
minor grid

Example 18 (Time Series Plot From Long Data Format)
In this example, we construct the plot from a long data
format (i.e. the column names and respective values of all
the columns are stacked in only 2 variables – variable
and value, respectively). In the wide format, the data
would takee the appearance of the economics dataset.

Below, thegeom_line objects are drawn usingvalue
andaes(col) is set tovariable. In this way, multiple
coloured lines are plotted (one for each uniquevariable
level) with a single call; scale_x_date() changes the
x−axis breaks and labels, while the line colours are changed
by scale_color_manual.

data(economics_long, package = "ggplot2")
# head(economics_long)
library(ggplot2)
library(lubridate)
theme_set(theme_bw())
df <-

economics_long[economics_long$variable
%in% c("psavert", "uempmed"), ]

df <- df[lubridate::year(df$date) %in%
c(1967:1981), ]

# labels and breaks for X axis text
brks <- df$date[seq(1, length(df$date),

12)]
lbls <- lubridate::year(brks)

# plot
ggplot(df, aes(x=date)) +
geom_line(aes(y=value, col=variable)) +
labs(title="Time Series of Returns

Percentage",
subtitle="Drawn from Long Data

format",
caption="Source: Economics",
y="Returns %",
color=NULL) + # title and caption

scale_x_date(labels = lbls, breaks =
brks) + # change to monthly ticks
and labels

scale_color_manual(labels =
c("psavert", "uempmed"),

values =
c("psavert"="#00ba38",
"uempmed"="#f8766d"))
+ # line color
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Figure 30. Monthly time series for the economics dataset.

theme(axis.text.x = element_text(angle
= 90, vjust=0.5, size = 8), #
rotate x axis text
panel.grid.minor =

element_blank()) # turn off
minor grid

Example 19 (Stacked Area Chart)
A stacked area chart is just like a line chart, except that the
region below the plot is filled in. This is typically used to:

describe how a quantity or volume (rather than some-
thing like a price) changes over time;
when the data contains a “large” number of points
(for “small” datasets, consider using a bar chart), or
when the respective contributions of each individual
component needs to be highlighted.

The appropriate call uses geom_area, which works very
much like geom_line, with an important difference –
by default, each geom_area starts from the bottom of
y−axis (which is typically set at 0), but in order to show
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Figure 31. Yearly time series for the economics dataset.

the contribution from individual components, the area has
to be stacked on top of the previous component, rather than
relative to the floor of the plot. All the bottom layers have
to be added to the y value of a new area.

In the example below (and in Figure 33), the top layer
is y=psavert+uempmed. However nice the plot might
look, keep in mind that it can be difficult to interpret.

library(ggplot2)
library(lubridate)
theme_set(theme_bw())

df <- economics[, c("date", "psavert",
"uempmed")]

df <- df[lubridate::year(df$date) %in%
c(1967:1981), ]

# labels and breaks for X axis text
brks <- df$date[seq(1, length(df$date),

12)]
lbls <- lubridate::year(brks)
# plot
ggplot(df, aes(x=date)) +
geom_area(aes(y=psavert+uempmed,
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Figure 32. Time series from long data format for the economics dataset.

fill="psavert")) +
geom_area(aes(y=uempmed,

fill="uempmed")) +
labs(title="Area Chart of Returns

Percentage",
subtitle="From Wide Data format",
caption="Source: Economics",
y="Returns %") + # title and caption

scale_x_date(labels = lbls, breaks =
brks) + # change to monthly ticks
and labels

scale_fill_manual(name="",
values =

c("psavert"="#00ba38",
"uempmed"="#f8766d"))
+ # line color

theme(panel.grid.minor =
element_blank()) # turn off minor
grid
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Figure 33. Stacked area chart for the economics dataset (green area is the sum of psavert and uempmed).
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Example 20 (Seasonal Plot)
When working with a time series object of class ts or xts,
the seasonal fluctuations can be viewed through a seasonal
plot using forecast::ggseasonplot.

You can see the traffic increase in air passengers in
AirPassengers over the years along with the repeti-
tive seasonal patterns in traffic; in the same vein, the tem-
peratures in nottem do not increase over time, but they
definitely follow a seasonal pattern (see below, and Fig-
ure 34).

library(ggplot2)
library(forecast)
theme_set(theme_classic())
# Subset data
nottem_small <- window(nottem,

start=c(1920, 1), end=c(1925, 12)) #
subset a smaller timewindow

# Plot
ggseasonplot(AirPassengers) +

labs(title="Seasonal plot:
International Airline Passengers")

ggseasonplot(nottem_small) +
labs(title="Seasonal plot: Air
temperatures at Nottingham Castle")

Example 21 (Parallel Coordinate Plots)
Parallel coordinate plots are useful to visualize multivariate
data. As a practical example, assume that a survey has been
conducted, with a variety of questions. Each question is
asked three times – in a different context – and is answered
on a discrete scale from 1 to 7. Consequently, each question
has three “dimensions”. The distribution of answers across
the three dimensions should be displayed for each question.
Because the three dimensions have the same unit and scale,
they can easily be compared on parallel coordinates (it
would be possible to display more than three dimensions,
of course).

library(triangle)
set.seed(0)
q1_d1 <- round(rtriangle(1000, 1, 7, 5))
q1_d2 <- round(rtriangle(1000, 1, 7, 6))
q1_d3 <- round(rtriangle(1000, 1, 7, 2))
df <- data.frame(q1_d1 = factor(q1_d1),

q1_d2 = factor(q1_d2), q1_d3 =
factor(q1_d3))

We are using the triangular distribution to get random inte-
gers r ∈ [1,7], around a different mode c for each dimen-
sion (5, 6 and 2). To plot the main “answer paths” (i.e. the
most frequent answer combination across the three dimen-
sions), we need to group by all dimensions, and then to
count the frequency of each unique answer combinations.
This can be done with the dplyr package.

library(dplyr)

# group by combinations and count
df_grouped <- df %>% group_by(q1_d1,

q1_d2, q1_d3) %>% count()
# set an id string that denotes the

value combination
df_grouped <- df_grouped %>% mutate(id =

factor(paste(q1_d1, q1_d2, q1_d3,
sep = ’-’)))

order.freq <-
order(df_grouped[,4],decreasing=TRUE)

# sort by count and select top rows
df_grouped <-

df_grouped[order.freq[1:25],]

The count per group is automatically stored in a column
n. We additionally set an id column which denotes the
unique answer combination. The dataset is sorted by de-
creasing count and the 25 most frequent paths are retained
(optional).

We can now plot the data by using geom_path, af-
ter processing the data appropriately. We need to convert
our grouped data frame into a "long format" using melt()
from the package reshape2 so that our three dimensions are
contained in a column named "variable" and the respective
values are in the column "values":

library(reshape2)
library(ggplot2)
# create long format
df_pcp <- melt(df_grouped, id.vars =

c(’id’, ’freq’))
df_pcp$value <- factor(df_pcp$value)

We can then specify what levels should be drawn on the
y−axis (1 to 7). In the ggplot() function we define an
aesthetic that uses the “variable” column for the x−axis and
the “value” column for the y−axis. We also specify that the
values should be grouped by using the id column. This is
required, as the connections between the three dimensions
won’t be drawn otherwise. We use geom_path() to
draw the connection lines and make the width and colour
of the connection dependent on the n and id columns,
respectively,

y_levels <- levels(factor(1:7))
ggplot(df_pcp, aes(x = variable, y =

value, group = id)) + # group = id
is important!

geom_path(aes(size = freq, color = id),
alpha = 0.5,
lineend = ’round’, linejoin =

’round’) +
scale_y_discrete(limits = y_levels,

expand = c(0.5, 0)) +
scale_size(breaks = NULL, range = c(1,

7))
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Figure 34. Seasonal plots for the AirPassengers dataset (above) and the nottem dataset (below).
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Figure 35. Parallel coordinate plots for randomly generated data.
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Example 22 (Clusters)
It is possible to show the distinct clusters or groups using
geom_encircle(). If the dataset has multiple “weak”
features, we often first find the principal components and
display the dataset as a scatterplot using PC1 and PC2 for
the x and y axes, respectively.

The geom geom_encircle() can be used to encir-
cle the desired groups. The only thing to note is the data
argument to geom_circle() – a subsetted dataframe
containing only the observations (rows) beloning to the
group as the data argument.

# devtools::
install_github("hrbrmstr/ggalt")

library(ggplot2)
library(ggalt)
library(ggfortify)
theme_set(theme_classic())
# Compute data with principal components
df <- iris[c(1, 2, 3, 4)]
pca_mod <- prcomp(df) # compute

principal components
# Data frame of principal components
df_pc <- data.frame(pca_mod$x,

Species=iris$Species) # dataframe of
principal components

df_pc_vir <- df_pc[df_pc$Species ==
"virginica", ] # df for ’virginica’

df_pc_set <- df_pc[df_pc$Species ==
"setosa", ] # df for ’setosa’

df_pc_ver <- df_pc[df_pc$Species ==
"versicolor", ] # df for ’versicolor’

# Plot
clustering<-ggplot(df_pc, aes(PC1, PC2,

col=Species)) +
geom_point(aes(shape=Species), size=2)

+ # draw points
labs(title="Iris Clustering",

subtitle="With principal components
PC1 and PC2 as X and Y axis",

caption="Source: Iris") +
coord_cartesian(xlim = 1.2 *

c(min(df_pc$PC1), max(df_pc$PC1)),
ylim = 1.2 *

c(min(df_pc$PC2),
max(df_pc$PC2))) + #
change axis limits

geom_encircle(data = df_pc_vir,
aes(x=PC1, y=PC2)) + # draw circles

geom_encircle(data = df_pc_set,
aes(x=PC1, y=PC2)) +

geom_encircle(data = df_pc_ver,
aes(x=PC1, y=PC2))

ggsave(file="clusters.png",
plot=clustering, width=5, height=4)

Example 23 (Dumbbell Plot)
Dumbbell charts are a great tool to visualize relative posi-
tions (like growth and decline) between two points in time,
and compare distances between two categories.

In order to get the correct ordering of the dumbbells,
the y−axis variable should be a factor and the levels of the
factor variable have to be in the same order as they should
appear in the plot.

#
devtools::install_github("hrbrmstr/ggalt")

library(ggplot2)
library(ggalt)
theme_set(theme_classic())

health <-
read.csv("https://raw.githubusercontent.com/

selva86/datasets/master/health.csv")

# for right ordering of the dumbells
health$Area <- factor(health$Area,

levels=as.character(health$Area))
# health$Area <- factor(health$Area)
gg <- ggplot(health, aes(x=pct_2013,

xend=pct_2014, y=Area, group=Area)) +
geom_dumbbell(color="#a3c4dc",

size=0.75,
point.colour.l="#0e668b") +

scale_x_continuous(label=waiver()) +
labs(x=NULL,

y=NULL,
title="Dumbbell Chart",
subtitle="Pct Change: 2013 vs

2014",
caption="Source:

https://github.com/hrbrmstr/ggalt")
+

theme(plot.title =
element_text(hjust=0.5,
face="bold"),
plot.background=element_rect(

fill="#f7f7f7"),
panel.background=element_rect(

fill="#f7f7f7"),
panel.grid.minor=element_blank(),
panel.grid.major.y=element_blank(),
panel.grid.major.x=element_line(),
axis.ticks=element_blank(),
legend.position="top",
panel.border=element_blank())

plot(gg)
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Figure 36. Clusters in the iris dataset, projected on the first 2 principal components.
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Figure 37. Dumbbell plot for the health dataset.
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Example 24 (Slope Chart)

A slope chart is a great tool to visualize changes in value
and ranking between categories. It is more suitable than a
time series when very few time points are present.

library(dplyr)
theme_set(theme_classic())
source_df <- read.csv("

https://raw.githubusercontent.com/
jkeirstead/r-slopegraph/master/

cancer_survival_rates.csv")

# Define functions. Source:
https://github.com/jkeirstead/r-slopegraph

tufte_sort <- function(df, x="year",
y="value", group="group",
method="tufte", min.space=0.05) {
## First rename the columns for

consistency
ids <- match(c(x, y, group),

names(df))
df <- df[,ids]
names(df) <- c("x", "y", "group")

## Expand grid to ensure every
combination has a defined value

tmp <- expand.grid(x=unique(df$x),
group=unique(df$group))

tmp <- merge(df, tmp, all.y=TRUE)
df <- mutate(tmp, y=ifelse(is.na(y),

0, y))

## Cast into a matrix shape and
arrange by first column

require(reshape2)
tmp <- dcast(df, group ~ x,

value.var="y")
ord <- order(tmp[,2])
tmp <- tmp[ord,]

min.space <-
min.space*diff(range(tmp[,-1]))

yshift <- numeric(nrow(tmp))
## Start at "bottom" row
## Repeat for rest of the rows until

you hit the top
for (i in 2:nrow(tmp)) {

## Shift subsequent row up by
equal space so gap between

## two entries is >= minimum
mat <- as.matrix(tmp[(i-1):i, -1])
d.min <- min(diff(mat))
yshift[i] <- ifelse(d.min <

min.space, min.space - d.min,
0)}

tmp <- cbind(tmp,
yshift=cumsum(yshift))

scale <- 1
tmp <- melt(tmp, id=c("group",

"yshift"), variable.name="x",
value.name="y")

## Store these gaps in a separate
variable so that they can be
scaled ypos = a*yshift + y

tmp <- transform(tmp, ypos=y +
scale*yshift)

return(tmp)

}
plot_slopegraph <- function(df) {

ylabs <- subset(df,
x==head(x,1))$group

yvals <- subset(df, x==head(x,1))$ypos
fontSize <- 3
gg <- ggplot(df,aes(x=x,y=ypos)) +

geom_line(aes(group=group),colour="grey80")
+

geom_point(colour="white",size=8) +
geom_text(aes(label=y),

size=fontSize,
family="American Typewriter") +

scale_y_continuous(name="",
breaks=yvals, labels=ylabs)

return(gg)
}

## Prepare data
df <- tufte_sort(source_df,

x="year",
y="value",
group="group",
method="tufte",
min.space=0.05)

df <- transform(df,
x=factor(x, levels=c(5,10,15,20),
labels=c("5 years","10 years","15

years","20 years")),
y=round(y))

## Plot
plot_slopegraph(df) +

labs(title="Estimates of % survival
rates") +

theme(axis.title=element_blank(),
axis.ticks = element_blank(),
plot.title =

element_text(hjust=0.5,
family = "American

Typewriter",
face="bold"),

axis.text =
element_text(family =
"American Typewriter",
face="bold"))
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Figure 38. Slope chart for the cancer survival rates dataset.
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Example 25 (Hierarchical Dendrogram)
A dendrogram is a tree-structured graph used to visual-
ize the result of a hierarchical clustering calculation, via
ggdendrogram() (see Figure 39).

#install.packages("ggdendro")
library("ggplot2")
library("ggdendro")
theme_set(theme_bw())
hc <- hclust(dist(USArrests), "ave") #

hierarchical clustering
# plot
ggdendrogram(hc, rotate = TRUE, size = 2)

Example 26 (Density Plot)
Density plots can be viewed as a smoothed histograms (see
Figure 40).

library(ggplot2)
theme_set(theme_classic())

# Plot
g <- ggplot(mpg, aes(cty))
g + geom_density(aes(fill=factor(cyl)),

alpha=0.8) +
labs(title="Density plot",

subtitle="City Mileage Grouped by
Number of cylinders",

caption="Source: mpg",
x="City Mileage",
fill="# Cylinders")

h <- ggplot(mpg, aes(cty))
h +

geom_density(aes(x=cty,fill=factor(cyl)),
alpha=0.8) + facet_wrap(~cyl) +
labs(title="Density plot",

subtitle="City Mileage by Number
of cylinders",

caption="Source: mpg",
x="City Mileage",
fill="# Cylinders")

Example 27 (Box Plot)
Boxplots are an excellent tool to study a univariate distri-
bution. It can also be used to show the distribution within
multiple groups, along with the median, range, and sus-
pected outliers (assuming the underlying distribution is
normal).

The dark line inside the box represents the median. The
top of box is the 75th percentile (the 3rd quartile) and the is
the 25th percentile (the 1st quartile). The end points of the
lines (the whiskers) are plotted at a distance of 1.5 × the
interquartie range (3rd quartile - 1st quartile). The points
outside the whiskers are marked as dots and are normally
considered as extreme points.

Setting varwidth=T in the geom_boxplot geom ad-
justs the width of the boxes to be proportional to the number
of observation it contains (see Figure 41).

library(ggplot2)
theme_set(theme_classic())

# Plot
g <- ggplot(mpg, aes(class, cty))
g + geom_boxplot(varwidth=T,

fill="plum") +
labs(title="Box plot",

subtitle="City Mileage grouped by
Class of vehicle",

caption="Source: mpg",
x="Class of Vehicle",
y="City Mileage")

Example 28 (Dot + Box Plot)
On top of the information provided by a box plot, the dot
plot can provide more clear information in the form of
summary statistics by each group. The dots are staggered
such that each dot represents one observation. In Figure 42
the number of dots for a given manufacturer will match the
number of rows of that manufacturer in source data.

library(ggplot2)
theme_set(theme_bw())

# plot
g <- ggplot(mpg, aes(manufacturer, cty))
g + geom_boxplot() +
geom_dotplot(binaxis=’y’,

stackdir=’center’,
dotsize = .5,
fill="red") +

theme(axis.text.x =
element_text(angle=65, vjust=0.6)) +

labs(title="Box plot + Dot plot",
subtitle="City Mileage vs Class:

Each dot represents 1 row in
source data",

caption="Source: mpg",
x="Class of Vehicle",
y="City Mileage")

Example 29 (Waffle Chart)
Waffle charts provide a nice way to show the categorical
composition in the overall population. There is no di-
rect waffle chart geom, but they can be produced using
geom_tile(), as shown below (result in Figure 43).

library(ggplot2)
var <- mpg$class # the categorical data
nrows <- 10
df <- expand.grid(y = 1:nrows, x =

1:nrows)
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Figure 39. Hierarchical dendrogram for the USArrests dataset.

categ_table <- round(table(var) *
((nrows*nrows)/(length(var))))

# categ_table
df$category <-

factor(rep(names(categ_table),
categ_table))

# NOTE: if sum(categ_table) is not 100
(i.e. nrows^2), it will need
adjustment to make the sum to 100.

## Plot
ggplot(df, aes(x = x, y = y, fill =

category)) +
geom_tile(color = "black", size =

0.5) +
scale_x_continuous(expand = c(0,

0)) +
scale_y_continuous(expand = c(0,

0), trans = ’reverse’) +
scale_fill_brewer(palette =

"Set3") +

labs(title="Waffle Chart",
subtitle="’Class’ of vehicles",
caption="Source: mpg") +

theme(panel.border =
element_rect(size = 2),
plot.title =

element_text(size =
rel(1.2)),

axis.text = element_blank(),
axis.title = element_blank(),
axis.ticks = element_blank(),
legend.title =

element_blank(),
legend.position = "right")
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Figure 40. Density plot for the mpg dataset; simultaneous (top), faceted (bottom).
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Figure 41. Boxplots of the mpg dataset.
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Figure 42. Dot boxplot of the mpg dataset.
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Figure 43. Waffle chart of the mpg dataset.
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Example 30 (Text Visualization)
In the following example, we will process the subtitles of
The Green Mile, saved in a plain text (.txt) file.

# Load
library("tm")
library("SnowballC")
library("wordcloud")
library("RColorBrewer")
library("ggplot2")

Loading the text: The text is loaded using Corpus()
from the tm (text mining) package. A corpus is a list of a
documents (in this case, a single document). Typically, this
would be done using code such as:

text <- readLines(file.choose())
# Read the text file from internet
#filePath <- "http://..."
#text <- readLines(filePath)

The corpus can be inspected using:

# Load the data as a corpus
docs <- Corpus(VectorSource(text))
inspect(docs)

Text transformation: text processing is performed using
various tm_map() calls to replace, for instance, the spe-
cial characters “/”, “@” and “|” with a blank space.

toSpace <- content_transformer(function
(x , pattern ) gsub(pattern, " ", x))

docs <- tm_map(docs, toSpace, "/")
docs <- tm_map(docs, toSpace, "@")
docs <- tm_map(docs, toSpace, "\\|")

Cleaning the text: the tm_map() function can also be
used to remove unnecessary white spaces, to convert the
text to lower case, to remove common stopwords like “the”
, or “we”.

The information content of these stopwords is basi-
cally nil due to the fact that they are used so commonly
in a given language. Removing such terms simplifies the
final analysis (there are numerous supported language,
whose names are case-sensitive). Numbers and punctu-
ation can also be removed with removeNumbers and
removePunctuation arguments.

Another important pre-processing step is to stem words
to reduce them to their root form. This process removes
word suffixes to get the common origin. For example, “mov-
ing”, “moved” and “movement” would all be stemmed to the
root word “move” (stemming requires the package Snow-
ballC).

# Convert the text to lower case
docs <- tm_map(docs,

content_transformer(tolower))

# Remove numbers
docs <- tm_map(docs, removeNumbers)
# Remove english common stopwords
docs <- tm_map(docs, removeWords,

stopwords("english"))
# Remove your own stop word
# specify your stopwords as a character

vector
docs <- tm_map(docs, removeWords,

c("blabla1", "blabla2"))
# Remove punctuations
docs <- tm_map(docs, removePunctuation)
# Eliminate extra white spaces
docs <- tm_map(docs, stripWhitespace)
# Text stemming
# docs <- tm_map(docs, stemDocument)

Building a term-document matrix: a tdf is a table con-
taining the frequency of the words per document. Column
names are words (or terms) and row names are documents.
The function TermDocumentMatrix() can be used
as follow :

dtm <- TermDocumentMatrix(docs)
m <- as.matrix(dtm)
v <- sort(rowSums(m),decreasing=TRUE)
d <- data.frame(word = names(v),freq=v)

Generating a word cloud: The relative importance of
words can be illustrated via a word cloud.

set.seed(1234)
wordcloud(words = d$word, freq = d$freq,

min.freq = 1,
max.words=200,

random.order=FALSE,
rot.per=0.35,

colors=brewer.pal(8, "Dark2"))

Plotting: ggplot2 can be used to provide bar plots of the
most frequent words

p <- ggplot(subset(d, freq>30), aes(x =
reorder(word, -freq), y = freq)) +

geom_bar(stat = "identity") +
theme(axis.text.x=element_text(angle=45,

hjust=1))
p

A word cloud and a bar plot for The Green Mile are shown
in Figures 44 and 45.
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Figure 44. Word cloud for The Green Mile (English subtitles).
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Figure 45. Bar chart for The Green Mile (English subtitles).
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