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Abstract
Loosely speaking, a statistic is any function of a sample from the distribution of a random variable;
statistics aim to extract information from an observed sample to summarise the essential features of
a dataset. In this (far too) brief tour of a far-reaching and ubiquitous subject, we review ten areas of
particular interest for analysts and consultants.
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1. Introduction

In general, statistics can be divided into two categories
based on their purposes: descriptive statistics and infer-
ential statistics.

As its name implies, descriptive statistics aim to describe
the collected data. Examples include:

sample size (overall and/or subgroups);
demographic breakdowns of participants;
measures of central tendencies (e.g., mean, median,
mode, etc.);
measures of variability (e.g., sample variance, mini-
mum, maximum, interquartile range, etc.);
measures related to higher distribution moments (skew,
kurtosis, etc.);
non-parametric measures (minimum, maximum, var-
ious quantiles);
derived measures (correlation coefficients), etc.
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They can be presented as a single number, in a summary
table, or even in graphical representations (e.g., histogram,
pie chart, etc.). Descriptive statistics can be extended to
summarise multivariate behaviours, via sample correla-
tions, contingency tables, scatter plots, etc.

Descriptive statistics not only provide an easily under-
tandable overview of the dataset; they also give analysts a
chance to study the collected sample and investigate two
important questions:

is the sample compatible with our understanding of
the situation?
is the sample representative of the underlying popu-
lation?

Inferential statistics, on the other hand, aim to facilitate
the process of inference (induction) to the general popula-
tion from which the sample is drawn.

Our review of statistical methods is by necessity quite brief;
further details can be found in [1–7].

2. Hypothesis Testing

In a very broad sense, most of statistical inference is done
through hypothesis testing:

are the client’s conjectures about their business situ-
ation compatible with the evidence provided by the
data?
is there a way to get a quantitative ruling in favour
of one of several competing conjectures that relies on
something other than gut feeling?
can some of these conjectures be definitively elimi-
nated?

Suppose that a researcher wants to determine if, as she
believes, a new teaching method enables students to un-
derstand elementary statistical concepts better than the
traditional lectures given in a university setting.

She recruits N = 80 second-year students to test her
claim. The students are randomly assigned to one of two
groups: students in group A are given the traditional lec-
tures, whereas students in group B are taught using the
new teaching method.

After three weeks, a short quiz is administered to the
students in order to assess their understanding of statistical
concepts – Table 1 summarises the results.

If we assume that both groups have similar background
knowledge prior to being taught (which we attempt to do by
randomising the group assignment), then the effectiveness
of the teaching methods may be compared using two hy-
potheses: the null hypothesis H0 and the alternative Ha.
Let µi represent the true performance of method i.

Group Sample Size Sample Mean Sample Variance
A NA = 40 ȳA = 75.1 S2

A = 6.7
B NB = 40 ȳB = 79.0 S2

B = 5.5
Table 1. Summary of teaching method study example

One-sided testing pits

H0 : µA ≥ µB against Ha : µA < µB

(or the reverse); in two-sided testing, we have

H0 : µA = µB against Ha : µA 6= µB.

Intuitively, it would seem that testing for inequality of
method seems a looser approach (i.e. more general) than
testing for the superiority of a specific method over the
other.

Hypothesis testing can generate two types of error:

we can mistakenly reject H0 when it is, in fact, correct
(type I error), or
we can mistakenly accept H0 when it is actually false
(type II error).

In order to control the probability of making a type I error
(called significance level, and denoted by α), we usually
let the hypothesis of interest be the alternative hypothesis.

Since the researcher wants to claim that the new method
is more effective than the traditional ones, then it is most
appropriate for her to use one-sided hypothesis testing with

H0 : µA ≥ µB against H1 : µA < µB;

The testing procedure is simple:

1. calculate a test statistic under H0;
2. reject H0 in favour of H1 if the test statistic falls in

the critical region (also called rejection region) of
an associated distribution (see Figure 1), and

3. fail to reject H0 otherwise, which is not quite the
same thing as accepting it.

Using the summary table above, we can test the researcher’s
claim by using the two-sample t test. Assuming that vari-
ability in two groups are roughly the same, the test statistic
is given by:

t0 =
ȳB − ȳA

Sp

Ç

1
NA
+ 1

NB

,

where the pooled variance S2
p is

S2
p =
(NA− 1)S2

A + (NB − 1)S2
B

NA+ NB − 2
.
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Figure 1. Critical regions for hypothesis testing at α (in grey); two-sided on the left, one-sided on the right; γk represent the critical
value for the given test and underlying distribution.

In our example, the test statistic value is t0 = 7.02. To
reject or accept the null hypothesis, we need to compare
it against the critical value of the Student T distribution
with N − 2= 78 degrees of freedom at α= 0.05, which is

t∗ = t1−α,N−2 = t0.95,78 = 1.665.

Since t0 > t∗ at α= 0.05, we have enough evidence to be-
lieve that the new teaching method is indeed more effective
than the traditional methods, at α= 0.05.

In general, the challenge is to recognise which test statistic
to use and how it is distributed under H0. Various scenarios
have been explored in the literature (see [2], for instance);
it could be useful for analysts to be able to derive their
own tests when the client’s data does not meet the various
assumptions.

Ad-hoc solutions come at a price, however – a fair num-
ber of clients (and reviewers), if they are familiar with
statistical tests at all, do not understand how they are de-
rived and thus only trust ‘tried, tested, and true’ methods
(this also applies to other fields of quantitative analysis).
Custom approaches are likely to be treated with suspicion.

2.1 Questions to Ponder
1. Distribution assumptions:

what distribution assumptions are we making
by using a t−test?
how can we verify them?
if such assumptions are violated, what is our
recourse?

2. Assumption of equal variance:

how can we verify the appropriateness of using
pooled variance?
if it is not appropriate, can we modify the test
to overcome the problem?

3. One-sided vs. two-sided tests:

when is it appropriate to use a one-sided test,
and when is it better to employ a two-sided test?
are there drawbacks in using a two-sided test
when a one-sided test would be indicated?

3. Analysis of Variance (ANOVA)

Analysis of variance (ANOVA) is a statistical method that
partitions a dataset’s variability into explainable variabil-
ity (model-based) and unexplained variability (error) us-
ing various statistical models, to determine whether (mul-
tiple) treatment groups have significantly different group
means.

The total sample variability of a feature y in a dataset
is defined as

SStot =
N
∑

k=1

(yk − ȳ)2,

where ȳ is the overall mean of the data.

Let us return to the teaching method example given in
Section 2.

Figure 2 shows all the students’ scores, ordered by par-
ticipant ID. Since the assignment of ID is arbitrary (at least,
in theory), we do not observe any patterns – if we were to
guess someone’s score with no knowledge except for their
participant ID, then picking the sample mean is as good a
guess as any other reasonable guesses.

Statistically speaking, this means that the null model

yi, j = µ+ εi, j ,

where µ is the overall mean, i = A, B, and j = 1, . . . , 40,
does not explain any of the variability in the student scores
(as usual, εi, j represents the departure or noise from the
model prediction).

But the students DID NOT all receive the same treatment:
40 randomly selected students were assigned to group A,
and the other 40 to group B, and both group were taught
using a different method.

When we add this information onto Figure 2 (on the
right), we clearly see that the two study groups show dif-
ferent characteristics in term of their average scores.
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Figure 2. Effectiveness of new teaching method for two groups. The grey line is the overall sample mean (left), while the red and
blue lines represent the average score for groups A and B, respectively (right).

With the group assignment information, we can refine our
null model into the treatment-based model

yi, j = µi + εi, j ,

where µi , i = A, B represent the group means.

Using this model, we can decompose SStot into between-
treatment sum of squares and error (within-treatment)
sum of squares as

SStot =
∑

i, j

(yi, j − ȳ)2 =
∑

i, j

(yi, j − ȳi + ȳi − ȳ)2

=
∑

i

Ni( ȳi − ȳ)2 +
∑

i, j

(yi, j − ȳi)
2 = SStreat + SSe

The SStreat component looks at the difference between each
of the treatment means and the overall mean, which we
consider to be explainable1; the SSe component, on the
other hand, looks at the difference between each obser-
vation and its own group mean, and is considered to be
random.2

Thus, SStreat/SStot × 100% of the total variability can
be explained using a treatment-based model. This ratio is
called the coefficient of determination, denoted by R2.

Formally, the ANOVA table incorporates a few more items
– Table 2 summarises all the information that it contains;

1That is to say, the treatment explains part of the difference in the
observed group means.

2As the spread about the group means is fairly large (relatively-
speaking), we suspect that the treatment-based model on its own does
not capture all the variability in the data.

the specific table for the teaching methodology example is
shown in 3.

The test statistic F0 follows an F -distribution with

(dftreat, dfe) = (1,78)

degrees of freedom. At a significance level of α = 0.05, the
critical value F∗ = F0.95,1,78 = 3.96 is substantially smaller
than the test statistic F0 = 49.28, implying that the two-
treatment model is statistically significant.

This, in turn, means that the model recognises a statis-
tically significant difference between the students’ scores,
based on the teaching methods.

The coefficient of determination R2 provides a way to mea-
sure the model’s significance. From Table 3, we compute

R2 =
SStreat

SStot
=

300.31
775.69

≈ 0.39,

which means that 39% of the total variation in the data
can be explained by our two-treatment model. Is this good
enough? That depends on the specifics of the situation (in
particular, on the client’s needs).

3.1 Diagnostic Checks
As with most statistical procedures, ANOVA relies on certain
assumptions for the its result to be valid. Recall that our
model is given by

yi, j = µi + εi, j

What assumptions are made? The main assumption is that
the error terms follow independently and identically dis-

tributed (i.i.d.) normal distributions (i.e., εi, j
i.i.d.∼ N(0,σ2)).
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Source Sum of Squares df Mean Square F0 p−value
Treatment (Model) SStreat p− 1 MStreat = SStreat/(p− 1) MStreat/MSe P(F0 > F∗)

Error SSe N − p MSe = SSe/(N − p)
Total SStot N − 1

Table 2. A simple ANOVA table, with p treatments and N observations.

Source Sum of Squares df Mean Square F0 p−value
Treatment (Model) 300.31 1 300.31 49.28 7.2× 10−10 ***

Error 475.38 78 6.095
Total 775.69 79

Table 3. ANOVA table for the teaching methodology example, with p = 2 and N = 80, at α= 0.001.

Assuming independence, we are required to verify three
additional assumptions:

normality of the error terms;
constant variance (within treatment groups), and
equal variances (across treatment groups).

Normality of the errors can be tested visually with the help
of a normal-QQ plot, which compares the standardized
residuals quantiles against the theoretical quantiles of
the standard normal distribution N(0,1) (a straight line
indicates normality).

In other words, if the errors are normally distributed
with mean 0 and variance σ2, we would expect that the 80
standardized residuals ri, j =

εi, j−0
σ should behave as though

they had been drawn from N(0,1).
Figure 3 (left) shows some departure in the lower tail,

however, moderate departure from normality is usually ac-
ceptable as long as it is mostly a tail phenomenon.

To test the assumption of constant variance, we can run
visual inspection using

residuals vs. fitted values, and/or
residuals vs. order/time.

The standardized residuals in both groups should be approx-
imately distributed according to N(0,1). Figure 3 (right)
shows that variability from the mean in each treatment
group is reasonably similar.3

More formally, equality of variance is often tested for
using Bartlett’s test (when normality of the residuals is
met) or the modified Levene’s test (when it is not).

Assuming that we felt the evidence of normal residuals
was warranted in the two-treatment model of the teaching
dataset, we get a p−value of 0.57 for Bartlett’s test; other-
wise, we get a p−value of 0.76 for Levene’s test. In either
case, the p−value falls above reasonable significance levels
(0.05, say), which means that we cannot reject the null
hypothesis of equal variance.

3If a difference is apparent and we cannot conclude that the vari-
ances are constant across groups, we need to apply a variance stabilising
transformation, such as a logarithmic transformation or square-root
transformation before proceeding.

When there are p > 2 treatment groups, ANOVA provides a
test for

H0 : µ1 = · · ·= µp vs. H1 : µi 6= µ j for at least one i 6= j.

A significant F0 value indicates that there is at least one
group which differs from the others, but it does not spec-
ify which one(s) that may be.

Specialised methods such as Scheffe’s method and
Tukey’s test can be used to identify the statistically dif-
ferent treatments.

Finally, while ANOVA can accommodate unequal treatment
group sizes, it is recommended to keep those sizes equal
across all groups – this makes the test statistic less sensitive
to violations of the assumption of equal variances across
treatment groups, providing yet another reason to involve
the analysts/consultants in the data collection process.

4. Multiple Linear Regression

In the previous sections, we considered a simple scenario
where a single, categorical, explanatory variable (Treatment
A vs. Treatment B) was used to model a desired response
variable (score Y ).

Real-world data is, of course, much more intricate and
complex, typically consisting of multiple response variables,
with multiple quantitative and categorical/qualitative ex-
planatory features.

In this section, we will review how to handle such cases.

4.1 Multiple Linear Regression in Matrix Form
Throughout, we suppose that the dataset consists of N obser-
vations with a single response output Y and p explanatory
variables X1, . . . , X p. The first-order linear model describ-
ing this scenario can be represented in matrix from by

Y = Xβ + ε, (1)

where the vectors Y = [y1, · · · , yN ]>, β = [β0, · · · ,βp]>,
and ε = [ε1, · · · ,εN ]> are the response vector, the coeffi-
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Figure 3. On the left: normal QQ-plot for the two-treatment teaching model (standardised residuals); note the moderate (but
acceptable) departure in the lower tail. On the right: diagnostic check for constant variance in the two-treatment teaching model. The
spread is fairly similar; we can safely assume constant variance (as well as equal variance across treatment groups).

Source Sum of Squares d.f. Mean Square F0

Regression SSreg p− 1 MSreg = SSreg/(p− 1) MSreg/MSe
Error SSe N − p MSe = SSe/(N − p)
Total SStot N − 1

Table 4. ANOVA table for first-order multiple regression model (1); with p explanatory variables and N observations.

cient vector, and the error vector, respectively, and

X =





1 x1,1 · · · x1,p
...

...
. . .

...
1 xN ,1 · · · xN ,p





is the design matrix, with ε ∼ N(0,σ2In), where In is the
N × N identity matrix.

4.2 Qualitative Explanatory Variables
Some say that the colour of a vehicle is part of the assess-
ment for car insurance premiums. Such a variable is quali-
tative (nominal, in fact) in nature, as there is no reasonable
way to order colours for insurance purposes.

If we want to incorporate this feature in an insurance
premium model taking into account k possible colour choices
(red , black , . . . , green , yellow), then we need k−1 dummy
variables X1, . . . , Xk−1 defined according to

X1 =

¨

1 if red

0 otherwise
· · · Xk−1 =

¨

1 if green

0 otherwise

With ordinal variables (e.g., on scale of 1 to 5, how likely
are you to buy a new phone this year?), we may choose to
have 4 dummy variables as above, or a single continuous
variable.

While the latter approach saves 4 degrees of freedom, we
are imposing an assumption that equal spacings on the
ordinal axis have an equal impact on the outcome, which
may not be the case – if it isn’t so, it might be preferable to
use dummy variables.

4.3 Overall Significance of the Model
For the model presented in (1), ordinary least square
(OLS) estimation yields fitted values

Ŷ = Xβ̂ = X(XX>)−1X>Y

and residuals

e = Y − Ŷ = (I − X(XX>)−1X>)Y .

The ANOVA table has the same form as Table 2, although
the sums of squares will be different:

SStot = ‖Y − ȳ1‖2 =
∑

i

(yi − ȳ)2 =
∑

i

(yi − ŷi + ŷi − ȳ)2

=
∑

i

(yi − ŷi)
2 +
∑

i

( ŷi − ȳ)2 = ‖Y − Ŷ‖2 + ‖Ŷ − ȳ1‖2

= SSreg + SSe

(see Table 4).
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It is used in testing

H0 : β1 = · · ·= βp = 0 against H1 : βi 6= 0 for some i.

If the test statistic F0 is significant, it does not necessar-
ily imply that all the independent variables X1, . . . , X p are
useful in predicting y , only that at least one of them is.

We can examine significance of the β coefficients indi-
vidually (using a t-test), or multiple coefficients simulta-
neously (e.g., by building Bonferroni simultaneous con-
fidence interval). Choosing the best subset of the model
will be discussed in the next section.

4.4 Model Adequacy Checks
There are some rare examples for which OLS does not yield
a unique solution; but in the vast majority of instances, the
data can be fitted to the model. How can we tell if the
model is adequate to the situation at hand?

Assumptions on Residuals – we cannot emphasise
enough that statistical significance (i.e. when F0 is
in the critical region) does not mean that the model
is necessarily valid; the conclusion only follows once
the model has been determined to be an adequate
fit for the data. A normal-QQ plot can help verify
the assumption of normality, for instance, while the
assumptions of independence and constant variance
can be tested using scatterplots of fitted values against
residuals.

Outliers and Influential Points – in addition, out-
liers and influential points could affect the fitted
values. While it is typically easier to classify some
observations as outliers, influential points can distort
the regression line significantly. Figure 4 shows the
clear impact of an influential point. Outliers and influ-
ential points should be studied carefully, as there are
a number of possible mechanisms that can account
for their presence; it may be that these anomalies
are due to data entry error, in which case we may
try to correct/impute with a reasonable alternative,
if possible. It may be the case that these unusual
observations are worth studying on their own merit.

Multicollinearity and Variance Inflation Factor –
last but not least, it is important to take a look at
the scatterplot matrix and the correlation matrix of
the explanatory variables to detect multicollinearity.
While it is hoped that the explanatory variables have
some relationship with the response variable (other-
wise any model is bound to be fruitless), high corre-
lations and/or dependencies among the explanatory
variables is contra-indicated as it introduces instabil-
ity in the estimates of the regression coefficients are
unstable. We can formally test for presence of mul-
ticollinearity using variance inflation factors (VIF);
in its presence, data reduction and data transforma-
tion strategies might need to be implemented.

Figure 4. Illustrative example of the effect of an influential
point. The red dot in the top left corner is an influential point –
the slope of the regression line when it is included in the data
(red) is quite different from the slope when it is not (blue).

5. Data Reduction/Model Selection

In a good model, a balance must be struck between pre-
dictive ability and simplicity. In practice, we look for the
simplest model that explains the behaviour of the response
variable Y in a reasonably adequate manner (a version
of Occam’s Razor).

If there are p predictor variables X1, . . . , X p, then there
are 2p possible models from which to select the "best", rang-
ing from the simple average model

yi = β0 + εi

to the full model

yi = β0 +
p
∑

j=1

β j x i, j + εi .

5.1 Step-Wise Regression
As the number of predictors p grows, it is not feasible to fit
all 2p possible models to determine the optimal model.

Step-wise regression is an automated model selection pro-
cedure that builds a succession of models from which a
choice can be made. There are numerous variants – the
particular algorithm we present is called forward selec-
tion, for reasons that will shortly become clear (to fix the
problem in conceptual space, assume that there are p = 10
predictor variables).
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1. Selecting the first variable: fit p simple linear re-
gressions

yi = β0 + β j x i, j + εi , j = 1, . . . , p

and choose the model with highest R2 value. In other
words, select the variable X j that best describes the
behaviour of Y on its own. If X5 turns out to be that
variable, fsay, then the tentative model is

yi = β0 + β5X i,5 + εi .

If this model is not statistically significant (tested at
a predetermined significance level α), then the final
model selection is

yi = β0 + εi

and the search is complete. Otherwise, proceed to
step 2.

2. Selecting the second variable: fit all two-parameter
regression models

yi = β0 + β5 x i,5 + β j x i, j + εi , j = 1, . . . , p, j 6= 5.

Select the model that has the highest value of the test
statistic

t ′k =

√

√

√
MSreg(X5, Xk)−MSreg(X5)

MSe(X5, Xk)
.

Say that k = 3 yields the largest such value. If the
associated model’s p−value is smaller than α, then
our tentative model is updated to

yi = β0 + β3X i,3 + β5X i,5 + εi

and we proceed to step 3. Otherwise, the final model
selection is

yi = β0 + β5X i,5 + εi

and the search is complete.

3. All subsequent steps: Repeat step 2 using

t
′′

k =

√

√

√
MSreg(X5, X3, Xk)−MSreg(X5, X3)

MSe(X5, X3, Xk)
,

and so forth, until no additional term improves the
model significantly.

In contrast to forward selection which starts with the simple
average model

yi = β0 + εi

and build a nested sequence of increasingly complex models,
backward elimination begins with the full model

yi = β0 +
p
∑

j=1

β j x i, j + εi

and keeps removing terms until removal of any variable
causes a significant loss of its predictive power (calculated
using t(`)k ). In general, forward selection and backward
elimination will not select the same final model.

In the combined approach, the process starts from the
simple average model as in forward selection, but each time
a new variable is added to the tentative model, a backward
elimination search is performed to test whether any of the
previously added variables are no longer significant, which
can prevent overfitting (mistaking noise for a pattern).

The test statistic t(`)k is the square root of the ratio of
conditional MSR over MSE. In everyday terms, it is testing
whether the addition of Xk provides a significant improve-
ment in predictive ability over the current tentative model’s.
Other alternative include the Akaike Information Crite-
rion (AIC), the Bayesian Information Criteria (BIC), Mal-
low’s Cp Criterion, and the R2 criterion – simply pick the
model which optimises the desired criterion.

Note that step-wise regression is flawed in many ways
which we will not explore at the moment; in practice, it has
started being replaced by regularisation methods such as
ridge regression and the LASSO.

6. Basics of Multivariate Statistics
To this point, we have only considering situations where the
response has been univariate. In applications, the situation
often calls for multivariate responses, where the response
variables are thought to have some relationship to one
another (e.g. a correlation structure).

It remains possible to analyse each response variable in-
dependently, but the dependence structure can be exploited
to make joint (or simultaneous) inferences.

6.1 Properties of the Multivariate Normal Distribution
The probability density function of a multi-dimensional ran-
dom vector X ∈ Rp that follows a multivariate normal dis-
tribution with mean vector µ and covariance matrix Σ,
denoted by X ∼ Np(µ,Σ), is given by

f (X) =
1

(2π)p/2 det(Σ)1/2
exp
�

−
1
2
(X −µ)>Σ−1(X −µ)

�

,

where

Σ=









σ1,1 σ1,2 · · · σ1,p
σ2,1 σ2,2 · · · σ2,p

...
...

. . .
...

σp,1 σp,2 · · · σp,p









.

For such an X , the following properties hold:

1. any linear combination of its components are nor-
mally distributed;

2. all subsets of components follow a (modified) multi-
variate normal distribution;

3. a diagonal covariance matrix implies the indepen-
dence of its components;

4. conditional distributions of components follow a nor-
mal distribution, and

5. the quantity (X −µ)>Σ−1(X −µ) follows a χ2
p .
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Figure 5. 95% confidence ellipse, Bonferroni and Hotelling’s T 2 simulatenous confidence intervals for a bivariate normal random
sample; showing the p = 2 framework for the Mahalanobis distance D =

Æ

(X −µ)>Σ−1(X −µ) [Wikipedia].

These properties make the multivariate normal distribution
attractive, from a theoretical point of view (if not entirely
realistic). For instance,

using property 1, we can use contrasts to test which
components are distinct from the others;
property 5 is the multivariate analogue of the square
of a standard normal random variable Z ∼ N(0,1)
following a Z2 ∼ χ2

1 distribution;
but two univariate normal random variables with
zero covariance are not necessarly independent (the
joint p.d.f. of two such variables is not necessarily
the p.d.f. of a multivariate normal distribution).

6.2 Hypothesis Testing for Mean Vectors
When the sample comes from a univariate normal distribu-
tion, we can test

H0 : µ= µ0 against H1 : µ 6= µ0

by using a t−statistic. Analogously, if the sample comes
from a p−variate normal distribution, we can test

H0 : µ= µ0 against H1 : µ 6= µ0

by using Hotelling’s T 2 test statistic

T 2 = N · (X̄ −µ)>S−1(X̄ −µ)

where X̄ denotes the sample mean, S the sample covari-
ance matrix, and N the sample size.

Under H0,

T 2 ∼
(N − 1)p
(N − p)

Fp,N−p.

Thus, we do not reject H0 at a significance level of α if

N · (X̄ −µ0)
>S−1(X̄ −µ0)≤

(N − 1)p
(N − p)

Fp,N−p(α)

and reject it otherwise.

6.3 Confidence Region and Simultaneous Confidence In-
tervals for Mean Vectors

In the p−variate normal distribution, any µ that satisfies
the condition

N · (X̄ −µ)>S−1(X̄ −µ)≤
(N − 1)p
(N − p)

Fp,N−p(α)

resides inside a (1−α)100% confidence region (an ellip-
soid in this case).

Simultaneous Bonferroni confidence intervals with over-
all error rate α can also be derived, using

( x̄ j −µ j)± tN−1(α/p)

√

√ s j, j

N
for j = 1, . . . , p

Another approach is to use Hotelling’s T 2 simultaneous
confidence intervals, given by

( x̄ j −µ j)±
√

√ p(N − 1)
N − p

Fp,N−p(α)

√

√ s j, j

N
for j = 1, . . . , p

Figure 5 shows these regions for a bivariate normal random
sample.

Note that the Hotelling’s T 2 simultaneous confidence inter-
vals form a rectangle (in grey) that confines the confidence
region, while the Bonferroni confidence intervals (in blue)
are slightly narrower.

Given that all the components of the mean vector are
correlated (since the covariance matrix is generally non-
diagonal), the confidence region should be used if the goal is
to study the plausibility of the mean vector as a whole,
while Bonferroni confidence intervals may be more suit-
able when component-wise confidence intervals are of
needed.
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Source SSP df MSP “F0”
Treatment B =

∑I
i=1 Ni(X̄i − X̄)(X̄i − X̄)> I − 1 B/(I − 1) W−1B

Error W =
∑I

i=1

∑ni
j=1(Xi j − X̄i)(Xi j − X̄i)>

∑I
i=1 Ni − I W/

∑I
i=1(Ni − 1)

Total B+W =
∑I

i=1

∑ni
j=1(Xi j − X̄)(Xi j − X̄)>

∑I
i=1 Ni − 1 B+W/(

∑I
i=1 Ni − 1)

Table 5. One-way MANOVA table; with I sub-populations.

7. Multivariate Analysis of Variance (MANOVA)

ANOVA is often used as a first attempt to determine whether
the means from every sub-population are identical.

ANOVA can test means from more than two popula-
tions; the multivariate ANOVA (MANOVA) is quite simply
a multivariate extension of ANOVA which tests whether the
mean vectors from all sub-populations are identical.

Assume there are I sub-populations in the population, from
each of which Ni p−dimensional responses are drawn, for
i = 1, . . . , I . Each observation can be expressed as:

Xi, j = µ+τi + εi j ,

whereµ is the overall mean vector, τi is the ith population-
specific treatment effect, and εi j is the random error,
which follows a Np(0,Σ) distribution.

It is important to note that the covariance matrix Σ is
assumed to be the same for each sub-population, and that

I
∑

i=1

Niτi = 0

to ensure that the estimates are uniquely identifiable.

To test the hypothesis

H0 : τ1 = · · ·= τI = 0 against H1 : some τi 6= 0,

we decompose the total sum of squares and cross-products
SSPtot into

SSPtot = SSPtreat + SSPe.

Based on this decomposition, we compute the test statistic
known as Wilks’ lambda

Λ∗ =
|W |
|B+W |

,

where B, W are as in Table 5, and reject H0 if Λ∗ is below
some threshold, which depends on p, I , and Ni , i = 1, . . . , I .

8. Goodness-of-Fit Tests

A (fictitious) 2017 survey asked a sample of N = 200 adults
between the age of 25 to 35 about their highest educational
achievement. The result is summarised in Table 6. In 1997,
it was found that p1 = 13% of adults had not complete
high school, p2 = 32% had obtained a high school degree

Year <HS HS CU CU+
2017 16% 55% 83% 46%
1997 13% 32% 37% 18%

Table 6. Respondents’ educational achievements, from a
(fictitious) survey, for 1997 and 2017.

but not a post-secondary degree, p3 = 37% had either
an undergraduate college or university diploma but no
post-graduate degree, and p4 = 18% had at least one post-
graduate degree.

Based on the result of this survey, is there sufficient
evidence to believe that educational backgrounds of the
population have changed since 1997?

Since each respondent’s educational achievement can only
be classified into one of these categories, they are mutually
exclusive. Furthermore, these categories cover all possibil-
ities on the educational front, so they are also exhaustive.

We can thus view the distribution of educational achieve-
ments as being multinomial. For such a distribution, with
parameters p1, · · · , pk, the expected frequency in each cate-
gory is m j = N p j .

Let Oj denote the observed frequency for the jth category. If
there has been no real change since 1997, we would expect
the sum of squared differences between the observed 2017
frequencies and the expected frequencies based on 1997
data to be small.

We can use this information to test the goodness-of-fit
between the observations and the expected frequencies via
Pearson’s χ2 test statistic

X 2 =
k
∑

j=1

(Oj −m j)2

m j

which follows a χ2 distribution with k− 1 df.

In the above example, the hypotheses of interest are

H0 : p = p∗ = (0.13, 0.32,0.37, 0.18) vs H1 : p 6= p∗.

Table 7 summarises the information under H0.

Pearson’s test statistic is X 2 = 7.815, with an associated
p−value of 0.0295, which implies that there is enough sta-
tistical evidence (at the α= 0.05 level) to accept that the
population’s educational achievements have changed over
the last 20 years.
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Category O j p j,0 m j,0 (O j −m j,0)2/m j,0

1 16 0.13 26 3.846
2 55 0.32 64 1.266
3 83 0.37 74 1.095
4 46 0.18 36 2.778

Total 200 1 200 7.815
Table 7. Summary table for goodness-of-fit data for educational
achievements under H0.

9. Analysis of Covariance (ANCOVA)

In Section 2, we looked at the effectiveness of new teaching
method by assigning each group to a specific treatment
and comparing the mean test scores. A crucial assumption
for that model is that subjects in each group have similar
background knowledge about statistics prior to the three
week lectures.

If this assumption is wrong, however, we may be making
incorrect decisions based on the model. Even if each group
had similar background knowledge on average, there may
be large variability from person-to-person, masking the true
treatment effect.

9.1 Paired Comparison
One way to avoid such subject-to-subject variability is to
administer both treatments to each individual, and then
compare treatment effects by looking at the difference in
the outcomes.

For instance, if a grocery chain is interested in measur-
ing the effectiveness of two advertising campaigns, it could
be reasonable to assume that there is a large variability in
total sales, as well as popular items sold, at each store.

It may then be preferable to run both campaigns in each
store and analyse the resulting data rather than to split
the stores into two groups (in each of which a different ad-
vertising campaign is run) and then to compare the mean
outcomes in the two groups.

Formally, let X i,1 denote the total sales with campaign A
and X i,2 the total sales with campaign B. The quantity of
interest is the difference Di = X i,1 − X i,2 for each store
i = 1, . . . , N .

Assuming that the differences Di follow an i.i.d. normal
distribution with mean δ and variance σ2

d , then we test for

H0 : δ = 0 against H1 : δ 6= 0

using the test statistic

t0 =
p

N
D̄
sd

,

which follows a Student’s t distribution with N − 1 degrees
of freedom; thus we reject H0 if the observed test statistic
t0 has p-value less than the significance level α/2.

Figure 6. Breakdown of variability for ANOVA and ANCOVA.

9.2 Analysis of Covariance (ANCOVA)
ANOVA compares multiple group means and tests whether
any of the group means differ from the rest, by breaking
down the total variability into a treatment (explainable)
variability component and an error (unexplained) variabil-
ity component, and building a ratio F0 to determine whether
or not to reject H0.

Analysis of covariance (ANCOVA) introduces concomi-
tant variables (or covariates) to the ANOVA model, split-
ting the total variability into 3 components: SStreat, SScon,
and SSe, aiming to reduce error variability. The choice of
covariates is thus crucial in running a successful ANCOVA.

In order to be useful, a concomitant variable must be re-
lated to response variable in some way, otherwise it not
only fails to reduce error variability, but it also increases
the model complexity:

in the teaching method example, we could consider
administering a pre-study test to measure the prior
knowledge level of each participant and use this
score as a concomitant variable;
in the advertising campaign example, we could have
used the previous month’s sales as a covariate;
in medical studies, we could use the age and weight
of subjects, say.

Importantly, concomitant variables should not be affected
by treatments. As an example, suppose that the patients in
a medical study were asked:

How strongly do you believe that you were
given actual medication rather than a placebo?

If the treatment is indeed effective, then a participant’s re-
sponse to this question could be markedly different in the
treatment group than in the placebo group.4 This means
that true treatment effect may be masked by concomitant
variable due to unequal effects on treatment groups.

Note that qualitative covariates (such as gender, say) are
not part of the ANCOVA framework – indeed, such covari-
ates create new ANOVA treatment groups instead.

4The medication may have strong side-effects which cannot be ignored.
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Figure 6 shows a potential breakdown of the total variabil-
ity when moving from an ANOVA to an ANCOVA model –
the error variability is further split into a pure error and
a covariate component, while the treatment variability
remains unchanged.

9.3 ANCOVA Model and Assumptions
Suppose that we are testing the effect of p treatments, with
N j subjects in each group. Then the ANCOVA model takes
the form

yi, j = µ+τ j + γ(x i, j − x̄) + εi, j (2)

where

yi, j is the response of the ith subject in the jth treat-
ment group;
µ is the overall mean;
τ j is the jth treatment effect, subject to a constraint

p
∑

j=1

τ j = 0;

γ is the coefficient for the covariate effect;
(x i, j − x̄) is the covariate value of the ith subject in
the jth treatment group, adjusted by the mean, and
εi, j is the error of ith subject in the jth treatment
group.

Additionally, four assumptions must be satisfied:

independence and normality of residuals – the resid-
uals follow an i.i.d. normal distribution with mean
of 0 and variance σ2

ε ;
homogeneity of residual variances – the variance
of the residuals is uniform across treatment groups;
homogeneity of regression slopes – the regression
effect (slope) is uniform across treatment groups, and
linearity of regression – the regression relationship
between the response and the covariate is linear.

The first of these assumptions can be tested with the help
of a QQ-plot and a scatter-plot of residuals vs. fitted values,
while the second may use the Bartlett or the Levene test.
The final assumption is not as crucial as the other three
assumptions. Various remedial methods can be applied
should any of these assumptions fail.

The third assumption, however, is crucial to the ANCOVA
model; it can be tested with the equal slope test, which
requires an ANCOVA regression on equation (2) with an
additional interaction term x ×τ.

If the interaction is not significant, the third assumption
is satisfied. In the event that the interaction term is sta-
tistically significant, a different approach (e.g. moderated
regression analysis, mediation analysis) is required since
using the original ANCOVA model is not prescribed.

An in-depth application of an ANCOVA model is highlighted
in Section 12.

10. Nonlinear Regression

From the use of tooth paste, cosmetics, cleaning solutions
and so forth, we are exposed to numerous chemicals on a
daily basis; thousands of new chemicals are introduced into
commercial products each year, and government agencies
(such as Health Canada and the Environmental Protection
Agency in the U.S.) must determine whether these chemi-
cals are safe for humans, animals, and the environment.

To test whether a chemical poses a risk of adverse ef-
fects, we must first determine whether it triggers adverse
effects over a range of potential exposure levels, and if so,
how much is considered safe (or how much would pose an
unacceptable risk).5

Suppose that N laboratory rodents are divided into k groups,
with group i consisting of Ni rodents. Over the course of
the experiment, each group is given a certain amount of
exposure to the chemical under investigation.

For each rodent, the experiment outcome records whether
the rodent eventually develops a tumour or not; that is, the
outcome is expressed as 0 (tumour absent) or 1 (tumour
present).

Table 8 summarises the outcome of such an experiment.

Clearly, we cannot fit an ordinary linear regression to the
data as the outcome is dichotomous (not a continuous vari-
able). How could we then model the relationship between
the adverse effect and the dose levels?

For each dose level d, the probability of adverse effect is
pd = P(y = 1|d). The conditional expectation given the
dose level is also E(y = 1|d) = pd . Since the relation-
ship resembles an S−shaped curve, we may use a logistic
distribution to model the data:

E(y = 1|d) = pd =
exp[β0 + β1d]

1+ exp[β0 + β1d]

To obtain maximum likelihood estimates for β0 and β1,
we need to rely on numerical methods such as the Newton-
Raphson method; the dose-response model for the above
example is shown in Figure 7 (on the left).

10.1 Relationship to Linear Regression
Since pd is a probability, it has to lie in [0, 1]. Let the odds
of having an adverse effect be ωd = pd/(1− pd); ωd now
lies in [0,∞), and the log odds lnωd will span R. The
functional form of the logistic regression model is

log(ωd) = log
�

pd

1− pd

�

= β0 + β1d,

which is a simple linear regression model.

5Traditionally (and not necessarily ethically), rodents were used to
study whether a chemical is carcinogenic or not.
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Dose Levels (d) 0 7000 15000 30000
Sample Size (n) 50 35 65 50

# of Observed Adverse Effect (y) 3 6 33 39
Rate of Observed Adverse Effect (p) 0.06 0.17 0.51 0.78

Table 8. Summary of experimental results involving C.I. Acid Red 114; N = 200.

Figure 7. Dose-response model for C.I. Acid Red 114 using logistic regression (blue) and the Hill model (red).

10.2 Other Non-Linear Regression Models
Other sigmoidal curves can be used to model the relation-
ship between predictors and a binary response variable.

Popular alternatives include:

the probit link P(y|x) = Φ(β0 + β1 x), where Φ is
the cumulative distribution function of the standard
normal distribution, or
the complementary log-log link

P(y|x) = 1− exp(−exp(β0 + β1 x)).

In toxicology studies, one of the most widely used model is
called the Hillmodel, and it is defined via

P(y|d,α,κ,η) = α+ (1−α)
dη

dη +κη
;

part of its appeal to health scientists is the interpretation of
its parameters – α represents the background rate for ad-
verse effect, while κ denotes ED50 (the effective dose at
which 50% of participants would exhibit the response
of interest) and η provides the steepness of the dose-
response curve.

Figure 7 (on the right) compares the simple logistic model
to the Hill model; we observe that the Hill model provides
a closer fit to the observed proportions, and the curvature
is more pronounced compared to the logistic model.

11. Bayesian Statistics

In classical statistics, model parameters such as µ and σ are
treated as constants; Bayesian statistics, on the other hand
assume that model parameters are random variables.

Bayes’ Theorem lies at the foundation of such statistics:

P(H | D) =
P(D | H)× P(H)

P(D)
, (3)

where H represents the hypothesis and D denotes the ob-
served data, which is sometimes written in shorthand as
P(H | D)∝ P(D | H)× P(H); in other words, our degree
of belief in a hypothesis should be updated by the evi-
dence provided by the data.6

Suppose we are interested in diagnosing whether a tumour
is begin or malignant, based on several measurements ob-
tained from video imaging. Bayes’ Theorem (3) can be
recast in a tumour data mould:

posterior: P(H | D) = based on collected data, how
likely is a given tumour to be benign (or malignant)?
prior: P(H) = in what proportion are tumours be-
nign (or malignant) in general?

6Nobody disputes the validity of Bayes’ Theorem, and it has proven to
be a useful component in various models and algorithms, such as email
spam filters, and the following example, but the use of Bayesian statistics
is controversial in many quarters.
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Figure 8. Boxplot visualisation of measurements for benign and malignant tumours.

Table 9. Scores for an undiagnosed tumour.

likelihood: P(D | H) = knowing a tumour is benign
(or malignant), how likely is it that these particular
measurements would have been observed?
evidence: P(D) = regardless of a tumour being be-
nign or malignant, what is the chance that a tumour
has the observed characteristics?

To answer the above question (that is, to compute the pos-
terior), we will use a naïve Bayes classifier (NBC; see [13]
for more information on classification methods).

11.1 Naïve Bayes Classification for Tumour Diagnoses
The procedure to apply NBC is straightforward.

1. Objective function: a simple way to determine whether
a tumour is benign or malignant is to compare poste-
rior probabilities and choose the one with highest
probability. That is, we diagnose a tumour as malig-
nant if

P(malignant | D)
P(benign | D)

=
P(D |malignant)× P(malignant)

P(D | benign)× P(benign)
> 1,

and as benign otherwise.

2. Dataset: the classifier is built on a sample of N = 458
tumours with nine measurements, each scored on a

scale of 1 to 10. The measurements include items
such as clump thickness and bare nuclei; boxplots of
these measurements are shown in Figure 8. We also
have undiagnosed cases – an example of an explana-
tory signature scores is given in Table 9; this is an
observation for which a prediction is required.

3. Assumptions: we assume that the scores of each
measurement are independent of one another (hence
the naive qualifier); this assumption reduces the like-
lihood function to

P(H | D) = P(H | x1, x2, · · · , x9)
= P(H | x1)× · · · × P(H | x9).

4. Prior distribution: we can ask subject matter experts
to provide a rough estimate for the general ratio of
benign to malignant tumours, or use the proportion
of benign tumours in the sample as our prior. In
situations where we have no knowledge about the
distribution of priors, we may simply assume a non-
informative prior (in this case, the prevalence rates
would be the same for both responses).

5. Computation of likelihoods: under independence,
each measurement is assumed to follow a multino-
mial distribution (since scores are on 1− 10 scale).
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Figure 9. Multinomial probabilities for benign and malignant tumours.

Class Prior Likelihood Posterior Ratio
Malignant 0.327 5.85× 10−11 1.92× 10−11 3.15× 10−8

Benign 0.673 9.06× 10−4 6.09× 10−4

Table 10. Computation of posterior probabilities in the undiagnosed case of Table 9.

Multiplying probabilities from each multinomial dis-
tribution (one each for both classes) provides the
overall likelihoods for benign and malignant tumours,
respectively. The likelihood of the undiagnosed case
being a benign tumour is seen to be 9.06 × 10−4,
while the likelihood of being a malignant tumour is
5.85× 10−11, based on the multinomial probabilities
given in Table 9

6. Computation of Posterior: Multiplying the prior
probability and likelihood, we get a quqntity that is
proportional to the respective posterior probabilities.
Looking at Table 10, we conclude that the tumour in
the undiagnosed case is likely benign (note that we
have no measurement on how much more likely it is
to be benign than to be malignant – the classifier is
not calibrated).

12. Case Study: Covariance Analysis of the
Effect of a Probiotic Agent on IBS

We finish this report by providing a high-level summary of
a project involving ANCOVA (see Section 9), lifted from the
Executive Summary in [14].

Irritable Bowel Syndrome (IBS) is a functional colonic
disease with high prevalence. Typical symptoms include
“chronic abdominal pain, discomfort, bloating, and alter-
ation of bowel habits” [Wikipedia]; it has been linked to
chronic pain, fatigue, and work absenteeism and is consid-
ered to have a severe impact on quality of life [Paré et al.
(2006), Maxion-Bergemann et al. (2006)].

Although there is no known cure for IBS, there are treat-
ments that attempt to relieve symptoms, including dietary
adjustments, medication and psychological interventions.

In 2010, the Canadian College of Naturopathic Medicine
(CCNM) was commissioned to conduct a study to inves-
tigate the effect of a probiotic agent on IBS. The study’s

details and a preliminary data analysis using hierarchical
linear models (HLM) are not publicly available, but its
key findings are that a strong placebo/expectation effect
is present in the early stages of the study (which is not en-
tirely surprising given the nature of the phenomenon under
study), and that there is no strong statistical evidence to
suspect that the agent itself has much of an effect on mild
to moderate IBS [Herman, Cooley, Seely (2011)].

The sponsor has expressed interest in determining whether
these findings still hold when the trial data is examined
using analysis of covariance (ANCOVA), a general linear
model which evaluates whether the population means of
a dependent/response variables (in this case, IBS Severity
or a measure of Quality of Life (QoL)) are equal across lev-
els of a categorical independent variable (in this case, two
treatment effects over time), while statistically controlling
for the effects of covariates (in this case, the baseline scores
for IBSS and QoL).

By comparison with the more traditional analysis of vari-
ance (ANOVA), ANCOVA can be used to increase the likeli-
hood of finding a significant difference between treatment
groups (when one exists) by reducing the within-group er-
ror variance.

While some of the results looked promising (in particular for
severe IBS sufferers), no statistical evidence for treatment
effect was found at the 95% significance level; furthermore,
even had evidence been found at that level, design and
recruitment issues would have called their practical signifi-
cance into question.

In 2013, CCNM conducted a second study to investigate
the effect of the probiotic agent, this time focusing on se-
vere IBS. The results are provided in the report “Covariance
Analysis of IBS Study II” [14].
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