
data-action-lab.com

PROGRAMMING IN R

data-action-lab.com

GENERAL LEARNING OBJECTIVE

§ Variables

§ Data Structures

§ Operators

§ Statements and Expressions

§ Blocks (and Scope)

§ Functions

§ Logical (Control) Flow

§ Libraries/Packages/Modules

§ Inputs/Outputs

§ Interpreters/Compilers

Gain hands-on experience with, and a preliminary understanding of, the following
elements of code in both R and Python:

data-action-lab.com

CONTENTS

1. R Basics

2. A Comparison of R and Python

3. Resources for Programming

4. Exercises for Hands-On Learning

data-action-lab.com

PERSONAL LEARNING OBJECTIVES

Depending on where you are starting from, reaching the learning objectives for this
session within the time frame of the session itself may be ambitious.

Pick a learning objective for yourself that you think is reasonable given your
starting point.

You will have time to continue working on the exercises over the next weeks.

data-action-lab.com

R BASICS

data-action-lab.com

PROGRAMMING LANGUAGE REQUIREMENTS (DATA ANALYSIS)

Data-Centric:

¡ data analysts seek to uncover some information present in the data which is not obviously
found during a first pass: focus on analysis, not on programming.

¡ The language should allow high-level concepts and questions related to data analysis to be
expressed naturally.

Trustworthy:

¡ Recipients of analyses are usually far removed from the details of implementation, which is why
the language used for analysis must be trustworthy.

data-action-lab.com

PERFORMANCE

Data analysis is centered on the analyst figuring out what questions to ask and
what transformations or algorithms may provide insights:

¡ the computer spends most of its time waiting for user input – it is more valuable to have a
language that promotes human/analyst efficiency at this stage.

Once a pipeline to answer the question has been established, the algorithm can be
run again and again every time the data set is updated:

¡ data processing, not data analysis anymore – the non-creative process is mechanical and can
be automated. This is when computer performance becomes paramount.

data-action-lab.com

ABOUT R

R is an open source implementation of the (commercial) S language:

¡ designed for statistical and data analysis

¡ supports functional and object-oriented styles of programming

¡ data frame is a built-in type

¡ missing values are built-in (WARNING: read the documentation on NAs!!!)

¡ model formulas are first-class objects

¡ contains advanced statistical routines (external packages that must be loaded)

¡ state of the art graphics capabilities (ggplot2)

¡ has dialects (the tidyverse, in particular, is quite popular currently)

data-action-lab.com

ABOUT R

The functional style is not enforced, although it is encouraged and natural in R.

The main unit of programming is the function.

Data frames are the natural containers for data (also, tibbles)

¡ “tables” whose rows are observations and columns are variables

¡ this is a natural data model (DBMS, spreadsheets) ...

¡ ... but there are restrictions when using tidy data (more on this later)

data-action-lab.com

R REFERENCES & BOOKS

R Project: http://www.r-project.org (installation)

R Studio: http://www.rstudio.com (development environment)

R Cookbook: http://www.cookbook-r.com

The R Inferno: http://bit.ly/1mpZabc

Advanced R, by H. Wickham: https://adv-r.hadley.nz

R for Data Science, by G. Grolemund and H. Wickham: https://r4ds.had.co.nz

http://www.r-project.org/
http://www.rstudio.com/
http://www.cookbook-r.com/
http://bit.ly/1mpZabc
https://adv-r.hadley.nz/
https://r4ds.had.co.nz/

data-action-lab.com

BASIC TYPES

Vector: logical, integer, double, double complex, string

¡ each has a missing value literal: NA

¡ NULL is not the same thing as NA

¡ scalars are vectors of length 1

Structured: list, factor, data frame, array, matrix, etc.

data-action-lab.com

BASIC TYPES

Factor: represents categorical variable

¡ similar to vector of strings

¡ stored as an integer vector

Data Frame: represents observations of statistical variables

¡ behaves as a list of vectors

¡ also behaves as a matrix

data-action-lab.com

BASIC OPERATORS

Usual arithmetic, comparison, logical operators are elementwise

For matrix multiplication use \%*\%

There are 5 assignment operators!!!

¡ =, <- (best practice), ->, <<-, ->>

There are 3 indexing operators:

¡ [[_]] for access to a single element by index or name

¡ [_] for access to multiple elements by index or name

¡ $ for access to single element by name

data-action-lab.com

BASIC FLOW CONTROL

if(cond){expr}

if(cond){expr 1 else {expr2}}

for(var in seq) {expr}

while(cond) {expr}

repeat {expr}

break

next

Avoid loops if at all possible (they can be VERY SLOW...);
vectorize instead!

data-action-lab.com

FUNCTIONS

Functions are first-class objects

Function arguments passing can be complicated! (less so with the tidyverse)

¡ parameters are assigned by position or name

¡ use = to assign parameter by name

¡ lazy evaluation (symbol, function only evaluated when needed)

Hint: try using one of the *apply functions instead of a loop whenever possible

data-action-lab.com

PRACTICE, PRACTICE, PRACTICE

In what follows we show how to do … well, more data stuff using R.

The selection of problems is still not intended to be complete, but it provides a gloss
of the myriad ways to approach data analysis with R.

Some of it overlaps with the other Data Analysis Short Course notebooks.

As always, do not hesitate to consult online resources for more examples
(StackOverflow, R-bloggers, etc.).

data-action-lab.com

A SIMPLE EXAMPLE – CARS

We start by loading one of the standard pedagogical datasets used with R.
> data(cars)

It’s a data frame with two variables, speed and dist.
> str(cars)
'data.frame': 50 obs. of 2 variables:
$ speed: num 4 4 7 7 8 9 10 10 10 11 ...
$ dist : num 2 10 4 22 16 10 18 26 34 17 ...

> summary(cars)
speed dist
Min. : 4.0 Min. : 2.00
1st Qu.:12.0 1st Qu.: 26.00
Median :15.0 Median : 36.00
Mean :15.4 Mean : 42.98
3rd Qu.:19.0 3rd Qu.: 56.00
Max. :25.0 Max. :120.00

data-action-lab.com

A SIMPLE EXAMPLE – CARS

We can compute the mean of each variable using the pre-built function colMeans().
> colMeans(cars)
speed dist
15.40 42.98

But there is no such function to compute the minimum/maximum of each variable.
instead, we use loops.

min
> for(i in 1:2){

print(min(cars[,i]))
}

[1] 4
[1] 2

data-action-lab.com

A SIMPLE EXAMPLE – CARS

max
> for(i in 1:2){

print(max(cars[,i]))
}

[1] 25
[1] 120

The use of loops was justified because the dataset is small, but it would be useful to
know how to the computation using once of the *apply functions.

> sapply(cars, min)
speed dist
4 2

> sapply(cars, max)
speed dist
25 120

data-action-lab.com

A SIMPLE EXAMPLE – CARS

> sapply(cars, mean)
speed dist
15.40 42.98

Note that in each of the three cases, the result is a data frame.

A dataset with 2 variables is easy to display.
> plot(cars)

data-action-lab.com

data-action-lab.com

A SIMPLE EXAMPLE – CARS

We can see that the relationship between speed and distance has a strong linear
component, which we can identify by running a linear regression (implemented in the
function lm):

> reg <- lm(dist ~ speed, data=cars)

In this assignment, reg is the object (or model) obtained when running lm() on the
cars dataset.

We can summarize it and see what its attributes are.

data-action-lab.com

A SIMPLE EXAMPLE – CARS

> summary(reg)
Call:
lm(formula = dist ~ speed, data = cars)

Residuals:
Min 1Q Median 3Q Max
-29.069 -9.525 -2.272 9.215 43.201

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.5791 6.7584 -2.601 0.0123 *
speed 3.9324 0.4155 9.464 1.49e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ‘ 1

Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

data-action-lab.com

A SIMPLE EXAMPLE – CARS

> attributes(reg)
$names
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"
$class
[1] "lm"

We can extract the coefficients of the linear model as follows:
> reg$coefficients
(Intercept) speed
-17.579095 3.932409

and use them to plot the line of best fit over the display:
> plot(cars)
> abline(reg$coefficients, col="red")

data-action-lab.com

data-action-lab.com

WORKING WITH MATRICES

R‘s matrix notation is not super intuitive, as we will see presently.

Let’s generate 2 matrices that we will use in the following code blocks (the brackets
around the code mean that the assignment is followed by an object display).

> (M <- matrix(1:12, nrow=3, ncol=4))
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

> (V <- matrix(runif(4), 4, 1))
[,1]
[1,] 0.02875853
[2,] 0.07807830
[3,] 0.31080912
[4,] 0.54691573

data-action-lab.com

WORKING WITH MATRICES

When ncol and nrow are not specified, the default parameter ordering takes over.

Since 𝑀 is 3×4 and 𝑉 is 4×1, the product 𝑀𝑉 exists (and is 3×1).
use %*% to multiply matrices
> M %*% V
[,1]
[1,] 7.985893
[2,] 8.950455
[3,] 9.915016

The product 𝑉𝑀 does not exist, however, as the dimensions are not compatible.
uncomment the following line to see the error message
> # V %*% M

The choice of %*% for matrix multiplication is not ... inspired; most languages use *.

data-action-lab.com

WORKING WITH MATRICES

What DOES * do in R?
> M * 2
[,1] [,2] [,3] [,4]
[1,] 2 8 14 20
[2,] 4 10 16 22
[3,] 6 12 18 24

Hah! Multiplication by a scalar. Good to know.

One of R’s most nefarious habit is that it is not always compatible with resonable
mathematical notation. What do you think the following line of code does?

> M * c(2, -2)

data-action-lab.com

WORKING WITH MATRICES

> M * c(2, -2)
[,1] [,2] [,3] [,4]
[1,] 2 -8 14 -20
[2,] -4 10 -16 22
[3,] 6 -12 18 -24

Apparently, it cycles through the arguments?!?

It’s hard to imagine why this construction should yield a result without breaking
down, and yet it does. Beware, then.

(It’s probably a good idea to verify that code does what it’s meant to along the way.)

data-action-lab.com

WORKING WITH MATRICES

Other familiar operations (like the transpose) are easy to compute:
> t(M)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12

is indeed the 4×3 transpose of 𝑀.

data-action-lab.com

WORKING WITH MATRICES

rbind and cbind are used to bind rows and columns, respectively.
> cbind(t(M), V)
[,1] [,2] [,3] [,4]
[1,] 1 2 3 0.02875853
[2,] 4 5 6 0.07807830
[3,] 7 8 9 0.31080912
[4,] 10 11 12 0.54691573

> rbind(M,t(V))
[,1] [,2] [,3] [,4]
[1,] 1.00000000 4.0000000 7.0000000 10.0000000
[2,] 2.00000000 5.0000000 8.0000000 11.0000000
[3,] 3.00000000 6.0000000 9.0000000 12.0000000
[4,] 0.02875853 0.0780783 0.3108091 0.5469157

but this wont work because of dimension incompatibility; uncomment to test
> # cbind(M, V)

data-action-lab.com

WORKING WITH STRINGS

What is usually called a string in other programming languages is a character object
in R.

Character vectors are created by using double quotes (", preferred) or single quotes
(', acceptable).

> "Come on, everybody!"
[1] "Come on, everybody!"

In R, strings are scalar values, not vectors of characters.
> length("Come on, everybody!")
[1] 1

data-action-lab.com

WORKING WITH STRINGS

The combining function c() creates a vector of strings.
> c("Come", "on", "," , "everybody", "!")
[1] "Come" "on" "," "everybody" "!"

We use paste or paste0 to concatenate strings:
> paste("Come", "on", "," , "everybody", "!")
[1] "Come on , everybody !"

> paste("Come", "on", "," , "everybody", "!", sep=" ")
[1] "Come on , everybody !"

The function strsplit() does the opposite:
> strsplit("Come on, everybody!", ", ")
[[1]]
[1] "Come on" "everybody!"

data-action-lab.com

R NOTEBOOKS & CHEATSHEETS

These examples, as well as numerous others, can be found in the R Notebooks

¡ R Basics

¡ More Data Stuff in R

There is no substitute for writing code, but these examples could be a good starting
point for many analysts.

Take the time to run those examples at your console to get a sense for R in action.

RStudio publishes various cheatsheets, which can come in handy (see next slides),
but remember that these cheatsheets may become obsolete with new R releases.

data-action-lab.com

data-action-lab.com

data-action-lab.com

data-action-lab.com

data-action-lab.com

data-action-lab.com

data-action-lab.com

data-action-lab.com

A COMPARISON OF R AND PYTHON

data-action-lab.com

A BIT OF HISTORY

R:

¡ a successor to S

¡ developed by statisticians as a ‘statistical programming language’

¡ built-in data structures and functionality intended to make working with data easier

¡ gained prominence as a free and open source alternative to expensive statistical software

Python:

¡ created in the early 90’s but popularized in the 00’s

¡ intended to be easy to read, easy to understand and easy to learn, relative to other OOLs

¡ has a massive base of open-source modules

data-action-lab.com

COMPARISON

R:

¡ technically object oriented, but this tends to be a
bit hidden in practice

¡ lends itself to quick interactive scripting, data
exploration

¡ has special built-in notation for statistical models

¡ has a special data type – the data frame – for
handling datasets

Python:

¡ object oriented

¡ lends itself to writing structured, pre-
designed computer code.

¡ intended to be a general programming
language

¡ designed to create code that is easy to
read

[for a comprehensive comparison, consult https://www.datacamp.com/community/tutorials/r-or-python-for-data-analysis]

https://www.datacamp.com/community/tutorials/r-or-python-for-data-analysis

data-action-lab.com

A NOTE : VECTORIZATION IN INTERPRETED LANGUAGES

High-level interpreted languages are slower than low-level/ compiled languages.

To get around this, these languages will sometimes hand off (behind the scenes)
certain types of operations to functions written in lower-level languages (like C).

In order to take advantage of this, the R and Python, communities emphasize a
certain programming strategy when using lists/vectors/arrays.

In particular, they avoid cycling through each item of a list, and instead often use
special functions that map a chosen function or operation to every item in the list.

This can run counter to habits gained when learning other languages.

data-action-lab.com

SO MANY PACKAGES/MODULES!

The strength of both R and Python lies in
their many technical packages and
modules.

These allow a programmer to implement
very sophisticated functionality simply
by making a few function calls.

Let’s open the RPackagesDemo and
PythonPackagesDemo notebooks to
see some of this in action.

data-action-lab.com

RESOURCES FOR PROGRAMMING

data-action-lab.com

R STUDIO

data-action-lab.com

JUPYTER NOTEBOOKS

data-action-lab.com

R NOTEBOOKS

You can use the provided R notebooks to:

¡ get a sense of what can be done

¡ gain exposure to many examples of the
language syntax

¡ help you write your own code

¡ learn why the code works the way it does, and
some theory behind the code

data-action-lab.com

ON-LINE RESOURCES

Stack Exchange/Stack Overflow/Cross Validated

Blogs (e.g. R Bloggers)

Official Sites:

¡ Python Software Foundation: https://www.python.org

¡ Comprehensive R Archive Network (CRAN): https://cran.r-project.org

https://www.python.org/
https://cran.r-project.org/

data-action-lab.com

EXERCISES FOR HANDS-ON LEARNING

data-action-lab.com

GETTING INTO PROGRAMMING

Develop/assess R skills by carrying out the following exercises (order unimportant):

You may choose to carry out each of the exercises separately, or to write a single
program that carries out all of the individual exercises.

You will find much of the base code you need in the course notebooks and R
markdown files, but you will need to tweak and add to this code to carry out the
exercises. You will also find a lot of helpful information and code on the internet!

data-action-lab.com

EXPRESSIONS, VARIABLES, DATA STRUCTURES, OPERATORS (1)

Create three variables and assign numerical values to each of these variables.

Then write one or more statements that carry out the following types of operations
using these variables: addition, subtraction, multiplication, division, raising to a power.

data-action-lab.com

EXPRESSIONS, VARIABLES, DATA STRUCTURES, OPERATORS (2)

Create three variables and assign string values to each of these variables.

Write a statement that joins the three strings into a single string. Write some code
that prints the string.

Write some code that tests to see if a substring of your choosing is contained within
the larger string.

data-action-lab.com

EXPRESSIONS, VARIABLES, DATA STRUCTURES, OPERATORS (3)

Create three variables and assign lists to each of these variables. Join the three lists
into a new list containing three distinct sub-lists (a list of three lists).

Create a list without sub-lists (all original list elements are part of a single larger list).

Create a fourth list by splitting this resulting list in half and assigning the second half
of the list to a new variable.

Extract the last item of this list (it can either stay in the original list or be removed
from it) and assign this element to a variable.

data-action-lab.com

STATEMENTS, BLOCKS, CONTROL FLOW, LOGICAL OPERATORS

Write a statement that contains at least three nested blocks.

Use at least three of the following control flow options: if, if ... else, while,
for, break, next, switch.

data-action-lab.com

FUNCTIONS

Write a function that takes three arguments as input and returns one value.

Call the function with arguments of your choosing.

data-action-lab.com

LIBRARIES/PACKAGES/MODULES

Execute the relevant command that shows a list of the packages that are currently
installed in your R environment.

¡ hint: use the internet, example notebooks and handouts to help you find the relevant command.

Use available documentation to determine what some of these do.

¡ hint: take a look at the R markdown files that are available – you may notice some relevant
information there.

¡ choose a module/package from this list and load the relevant package/module if necessary.

Write some code that uses functions and objects supplied by this package.

data-action-lab.com

INPUTS/OUTPUTS (1)

Print to the standard output of R three sentences of your choosing, on three separate
lines, using a single statement of code.

data-action-lab.com

INPUTS/OUTPUTS (2)

Locate a comma separated values (CSV) file stored on your computer

¡ (Hint - there should be a folder called Data in the main course directory).

Read this file into the notebook and store the results in one or more variables.

data-action-lab.com

INPUTS/OUTPUTS (3)

Create a new file and write four lines in CSV format to this file.

In a separate statement, write four more lines to this existing file, without overwriting
the original file.

data-action-lab.com

INTERPRETERS/COMPILERS

Write enough code to generate at least five different error messages from R.

Copy these error messages into a markdown cell, and write a short note under each
explaining the meaning of the error message, and how the code was fixed.

data-action-lab.com

OPTIONAL EXERCISES

1. Using a language of your choice, write a function that, when passed a dataset,
reports 5 interesting pieces of information about the dataset. Load a dataset and
run the function on this dataset.

2. Using a language of your choice, write two functions. The output of the first
function should work as the input to the second function. The first function
should read in a dataset and generate a subset of the dataset based on some
chosen criteria. The second function should read in a dataset and provide
summary data of some type for each column in the dataset. Load a dataset and
run both functions on the dataset.

