PROGRAMMING INR

N IDLEWYLD Sysabeecly Z pAvHILL [uottava data-action-lab.com gy

GENERAL LEARNING OBIJECTIVE

Gain hands-on experience with, and a preliminary understanding of, the following
elements of code in both R and Python:

= Variables = Blocks (and Scope)

» Data Structures * Functions

« Operators = Logical (Control) Flow

= Statements and Expressions = Libraries/Packages/Modules

= |nputs/Outputs
= |nterpreters/Compilers

S DLEWYLD uOttawa data-action-lab.com

CONTENTS

1. R Basics
2. A Comparison of R and Python
3. Resources for Programming

4. Exercises for Hands-On Learning

N IDLEWYLD uOttawa data-action-lab.com

PERSONAL LEARNING OBJECTIVES

Depending on where you are starting from, reaching the learning objectives for this
session within the time frame of the session itself may be ambitious.

Pick a learning objective for yourself that you think is reasonable given your
starting point.

You will have time to continue working on the exercises over the next weeks.

S DLEWYLD uOttawa data-action-lab.com

R BASICS

N IDLEWYLD uOttawa data-action-lab.com

PROGRAMMING LANGUAGE REQUIREMENTS (DATA ANALYSIS)

Data-Centric:

= data analysts seek to uncover some information present in the data which is not obviously
found during a first pass: focus on analysis, not on programming.

= The language should allow high-level concepts and questions related to data analysis to be
expressed naturally.

Trustworthy:

= Recipients of analyses are usually far removed from the details of implementation, which is why
the language used for analysis must be trustworthy.

S DLEWYLD uOttawa data-action-lab.com

PERFORMANCE

Data analysis is centered on the analyst figuring out what questions to ask and
what transformations or algorithms may provide insights:

= the computer spends most of its time waiting for user input - it is more valuable to have a
language that promotes human/analyst efficiency at this stage.

Once a pipeline to answer the question has been established, the algorithm can be
run again and again every time the data set is updated:

= data processing, not data analysis anymore — the non-creative process is mechanical and can
be automated. This is when computer performance becomes paramount.

)LEWYLD uOttawa data-action-lab.com

ABOUTR

R is an open source implementation of the (commercial) S language:
= designed for statistical and data analysis
= supports functional and object-oriented styles of programming
= data frame is a built-in type
= missing values are built-in (WARNING: read the documentation on NAs!!!)
= model formulas are first-class objects
= contains advanced statistical routines (external packages that must be loaded)
= state of the art graphics capabilities (ggplot?2)

= has dialects (the tidyverse, in particular, is quite popular currently)

S DLEWYLD uOttawa data-action-lab.com

ABOUTR

The functional style is not enforced, although it is encouraged and natural in R.
The main unit of programming is the function.

Data frames are the natural containers for data (also, tibbles)
= “tables” whose rows are observations and columns are variables

= thisis a natural data model (DBMS, spreadsheets) ...

= .. but there are restrictions when using tidy data (more on this later)

S DLEWYLD uOttawa data-action-lab.com

R REFERENCES & BOOKS

R Project: http://www.r-project.org (installation)

R Studio: http://www.rstudio.com (development environment)

R Cookbook: http://www.cookbook-r.com

The R Inferno: http://bit.ly/1mpZabc

Advanced R, by H. Wickham: https://adv-r.hadley.nz

R for Data Science, by G. Grolemund and H. Wickham: https://r4ds.had.co.nz

@ IDLEWYLD Sysal [uottawa data-action-lab.com

http://www.r-project.org/
http://www.rstudio.com/
http://www.cookbook-r.com/
http://bit.ly/1mpZabc
https://adv-r.hadley.nz/
https://r4ds.had.co.nz/

BASIC TYPES

Vector: logical, integer, double, double complex, string
= each has a missing value literal: NA
= NULL is not the same thing as NA

= scalars are vectors of length 1

Structured: list, factor, data frame, array, matrix, etc.

N IDLEWYLD uOttawa data-action-lab.com

BASIC TYPES

Factor: represents categorical variable
= similar to vector of strings

= stored as an integer vector

Data Frame: represents observations of statistical variables

= pbehaves as a list of vectors

= also behaves as a matrix

N IDLEWYLD uOttawa data-action-lab.com

BASIC OPERATORS

Usual arithmetic, comparison, logical operators are elementwise
For matrix multiplication use \ $*\ %

There are 5 assignment operators!!!

= = <- (bestpractice), ->, <<=, ->>

There are 3 indexing operators:
= [[_]] foraccess to asingle element by index or name
= [] foraccess to multiple elements by index or name

= S for access to single element by name
N IDLEWYLD uOttawa data-action-lab.com

BASIC FLOW CONTROL

1f(cond) {expr}

if(cond){expr 1 else {expr2}}

==

for(var in seq) {expr}

Avoid loops if at all possible (they can be VERY SLOW...);
vectorize instead!

while(cond) {expr}

repeat {expr}

break

next
N IDLEWYLD uOttawa data-action-lab.com

FUNCTIONS

Functions are first-class objects

Function arguments passing can be complicated! (less so with the tidyverse)

= parameters are assigned by position or name

= use = to assign parameter by name

= |azy evaluation (symbol, function only evaluated when needed)

Hint: try using one of the *apply functions instead of a loop whenever possible

N IDLEWYLD uOttawa data-action-lab.com

PRACTICE, PRACTICE, PRACTICE

In what follows we show how to do ... well, more data stuff using R.

The selection of problems is still not intended to be complete, but it provides a gloss
of the myriad ways to approach data analysis with R.

Some of it overlaps with the other Data Analysis Short Course notebooks.

As always, do not hesitate to consult online resources for more examples
(StackOverflow, R-bloggers, etc.).

S DLEWYLD uOttawa data-action-lab.com

A SIMPLE EXAMPLE - CARS

We start by loading one of the standard pedagogical datasets used with R.

> data(cars)

It's a data frame with two variables, speed and dist.

> str(cars)

'data.frame': 50 obs. of 2 variables:

S speed: num 4 4 7 7 8 9 10 10 10 11 ...

S dist ¢ num 2 10 4 22 16 10 18 26 34 17 ...

> summary(cars)

biala speed dist

Min. : 4.0 Min. : 2.00
1st Qu.:12.0 st Qu.: 26.00
Median :15.0 Median : 36.00
Mean :15.4 Mean : 42.98
3rd Qu.:19.0 3rd Qu.: 56.00
Max. :25.0 Max. :120.00

N IDLEWYLD uOttawa data-action-lab.com

A SIMPLE EXAMPLE - CARS

We can compute the mean of each variable using the pre-built function colMeans ().

> colMeans(cars)
speed dist
15.40 42.98

But there is no such function to compute the minimum/maximum of each variable.
iInstead, we use loops.

min

> for(i in 1:2){

print(min(cars[,i]))

}

[1] 4
[1] 2

N IDLEWYLD uOttawa data-action-lab.com

A SIMPLE EXAMPLE - CARS

max
> for(i in 1:2){
print (max(cars[,i]))

}
[1] 25
[1] 120
The use of loops was justified because the dataset is small, but it would be useful to
know how to the computation using once of the *apply functions.

> sapply(cars, min)
speed dist
4 2

> sapply(cars, max)
speed dist
25 120

N IDLEWYLD uOttawa data-action-lab.com

A SIMPLE EXAMPLE - CARS

> sapply(cars, mean)
speed dist
15.40 42.98

Note that in each of the three cases, the result is a data frame.

A dataset with 2 variables is easy to display.

> plot(cars)

N IDLEWYLD uOttawa data-action-lab.com

o
o O
O
o
000 O
O 00
00 © O©
00O
oXe
e 00
O O 0O
© 00
0000
0 O
000
o
o
0 ©
00
_ N I I R
0cl 08 09 0Oy 0C O

IsIp

25

20

15

10

speed

A SIMPLE EXAMPLE - CARS

We can see that the relationship between speed and distance has a strong linear
component, which we can identify by running a linear regression (implemented in the
function 1m):

> reg <- lm(dist ~ speed, data=cars)

In this assignment, reg is the object (or model) obtained when running Im() on the
cars dataset.

We can summarize it and see what its attributes are.

S DLEWYLD uOttawa data-action-lab.com

A SIMPLE EXAMPLE - CARS

> summary(reg)

Call:

lm(formula = dist ~ speed, data = cars)

##

Residuals:

St Min 10 Median 30 Max

-29.069 -9.525 -2.272 9.215 43.201

##

Coefficients:

i Estimate Std. Error t value Pr(>|t])

(Intercept) -17.5791 6.7584 -2.601 0.0123 =
speed 3.9324 0.4155 9.464 1.49e-12 **%*
—-—-

Signif. codes: 0 '***' (0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' ‘1
##

Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49%9e-12

N IDLEWYLD uOttawa data-action-lab.com

A SIMPLE EXAMPLE - CARS

> attributes(regq)
Snames

[1] "coefficients" ‘"residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df .residual"
[9] "xlevels" "call" "terms" "model"

Sclass

[1] "1m"

We can extract the coefficients of the linear model as follows:

> regScoefficients
(Intercept) speed
-17.579095 3.932409

and use them to plot the line of best fit over the display:

> plot(cars)
> abline(reg$coefficients, col="red")

N IDLEWYLD uOttawa data-action-lab.com

_
0cl

1 T T 1
08 09 0Ov 0C O

}SIp

speed

WORKING WITH MATRICES

R’'s matrix notation is not super intuitive, as we will see presently.

Let’s generate 2 matrices that we will use in the following code blocks (the brackets
around the code mean that the assignment is followed by an object display).

> (M <- matrix(1:12, nrow=3, ncol=4))

#i# [,11 [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
(3,1 3 6 9 12

> (V <- matrix(runif(4), 4, 1))
At [,1]
[1,] 0.02875853
[2,] 0.07807830
[3,] 0.31080912
[4,] 0.54691573

N IDLEWYLD uOttawa data-action-lab.com

WORKING WITH MATRICES

When ncol and nrow are not specified, the default parameter ordering takes over.
Since M is 3X4 and V is 4x1, the product MV exists (and is 3x1).

use %*% to multiply matrices
> M $*3 V
[,1]

[1,] 7.985893
[2,] 8.950455
[3,] 9.915016

The product VM does not exist, however, as the dimensions are not compatible.

uncomment the following line to see the error message
> # V %$*%% M

The choice of $*% for matrix multiplication is not ... inspired; most languages use *.
S DLEWYLD uOttawa data-action-lab.com

WORKING WITH MATRICES

What DOES * doin R?

> M * 2

#i# [,11 [,2] [,3] [,4]
(1,1 2 8 14 20
12,1 4 10 16 22
(3,1 6 12 18 24

Hah! Multiplication by a scalar. Good to know.

One of R’s most nefarious habit is that it is not always compatible with resonable
mathematical notation. What do you think the following line of code does?

> M * c(2, -2)

N IDLEWYLD uOttawa data-action-lab.com

WORKING WITH MATRICES

> M * c(2, -2)

#it [,11 [,2] [,3] [,4]
11,1 2 -8 14 =20
[2,] -4 10 -16 22
[3,] 6 -12 18 -24

Apparently, it cycles through the arguments?!?

It's hard to imagine why this construction should yield a result without breaking
down, and yet it does. Beware, then.

(It’s probably a good idea to verify that code does what it’'s meant to along the way.)

N IDLEWYLD uOttawa data-action-lab.com

WORKING WITH MATRICES

Other familiar operations (like the transpose) are easy to compute:

> t (M)

#i# (.11 [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12

Is indeed the 4% 3 transpose of M.

V“V IDLEWYLD uOttawa

data-action-lab.com

WORKING WITH MATRICES

rbind and cbind are used to bind rows and columns, respectively.

> cbind(t(M), V)

#i# [,11 [,2] [,3] [/4]
[1,] 1 2 3 0.02875853
[2,] 4 5 6 0.07807830
[3,] 7 8 9 0.31080912

[4,] 10 11 12 0.54691573

> rbind(M,t(V))
[,1] [,2] [,3] [,4]

[1,] 1.00000000 4.0000000 7.0000000 10.0000000
[2,] 2.00000000 5.0000000 8.0000000 11.0000000
[3,]1 3.00000000 6.0000000 9.0000000 12.0000000
[4,] 0.02875853 0.0780783 0.3108091 0.5469157

but this wont work because of dimension incompatibility; uncomment to test
> # cbind(M, V)

N IDLEWYLD uOttawa data-action-lab.com

WORKING WITH STRINGS

What is usually called a string in other programming languages is a character object
In R.

Character vectors are created by using double quotes (", preferred) or single quotes
(', acceptable).

> "Come on, everybody!"
[1] "Come on, everybody!"

In R, strings are scalar values, not vectors of characters.

> length("Come on, everybody!")
[1] 1

N IDLEWYLD uOttawa data-action-lab.com

WORKING WITH STRINGS

The combining function ¢ () creates a vector of strings.

> c("Come", "on", "," , "everybody", "!")
[1] "Come" "on" " "everybody

We use paste or paste0 to concatenate strings:

n "

> paste("Come", "on", "," , "everybody", "!")
[1] "Come on , everybody !"

n "

> paste("Come", "on", "," , "everybody",
[1] "Come on , everybody !"

| , sep= n n)

The function strsplit () does the opposite:

> strsplit("Come on, everybody!", ", ")
[[1]]
[1] "Come on" "everybody!"

N IDLEWYLD uOttawa data-action-lab.com

R NOTEBOOKS & CHEATSHEETS

These examples, as well as numerous others, can be found in the R Notebooks
= R Basics

= More Data Stuff in R

There is no substitute for writing code, but these examples could be a good starting
point for many analysts.

Take the time to run those examples at your console to get a sense for R in action.

RStudio publishes various cheatsheets, which can come in handy (see next slides),
but remember that these cheatsheets may become obsolete with new R releases.

S DLEWYLD uOttawa data-action-lab.com

BaseR

Cheat Sheet

c(2, 4, 6)

seq(2, 3, by=0.5)
rep(1:2, times=3)
rep(1:2, each=3)

?mean

Get help of a particular function.
help.search(‘weighted mean’)
Search the help files for a word or phrase.

Join elements into
a vector

An integer
sequence

A complex
sequence

Repeat a vector

Repeat elements

of a vector
help(package = ‘dplyr’)
Find help for a package.
sort(x) rev(x)
str(iris) Returnx sorted. Return x reversed.
Get a summary of an object’s structure. table(x) unique(x)
class(iris) See counts of values. See unique values.

Find the class an object belongs to.

install.packages(‘dplyr’) x[4]
Download and install a package from CRAN.
library(dplyr) x[-4]
Load the package into the session, making all
its functions available to use. x[2:4]
dplyr::select .
Use a particular function from a package. x[-(2:4)]
data(iris) x[c(1, 5)]
Load a built-in dataset into the environment.

x[x == 10]
getwd()
Find the current working directory (where x[x < 0]

inputs are found and outputs are sent). .
X[x %in%

setwd(‘C://file/path’) c(1, 2, 5)]
Change the current working directory.

Use projects in RStudio to set the working , ,
directory to the folder you are working in. x[‘apple’]

RStudio® is a trademark of RStudio, Inc. « CC BY Mhairi McNeill « mhairihmcneill@gmail.com

The fourth element.

All but the fourth.

Elements two to four.

All elements except

two to four.

Elements one and

five.

Elements which
are equal to 10.

All elements less
than zero.

Elements in the set
1,2,5.

Element with
name ‘apple’.

for (variable in sequence){

Do something

for (i in 1:4){
j <=1+ 10

print(j)

if (condition){
Do something
} else {
Do something different

b

if (1 > 3){
print(‘Yes"’)
} else {

print(‘No’)

Input Ouput

df <- read.table('file.txt’)

df <- read.csv(‘file.csv’)

load(‘file.RData’)

write.table(df, ‘file.txt’)

write.csv(df, ‘file.csv’)

save(df, file = 'file.Rdata’)

while (condition){

Do something

while (i < 5){

print(i)

i<-i+1

function_name <- function(var){
Do something

return(new_variable)

square <- function(x){
squared <- x*x

return(squared)

}

Also see the readr package.

Description

Read and write a delimited text
file.

Read and write a comma
separated value file. Thisis a
special case of read.table/
write.table.

Read and write an R data file, a
file type special for R.

Greater than :
== > >= . N
a Areequal @ > b Greaterthan a b orequalto 15-3(a) s missing
Lessthanor .
1= < <= is.null(a
a b Notequal a < b Lessthan a b e (a) Isnull

Learn more at web page or vignette - package version «

Updated: 3/15

Converting between common data types in R. Can always go
from a higher value in the table to a lower value.

as.logical TRUE, FALSE, TRUE [Boolean values (TRUE or FALSE).
as.numeric 1, 0, 1 Integers or floating point
r numbers.
as.character 7', 'p', '1' Character strings. Generally
preferred to factors.
fact ‘1, 'e', '1', Character strings with preset
as.factor
levels: '1', '0' levels. _Ngeded for some
statistical models.

log(x) Natural log. sum(x) Sum.
exp(x) Exponential. mean (x) Mean.
max (x) Largest element. median(x) Median.
min(x) Smallest element. quantile(x) Percentage
quantiles.
round(x, n) Round to ndecimal ~ rank(x) Rank of elements.
places.
signif(x, n) Roundton var(x) The variance.
significant figures.
cor(x, y) Correlation. sd(x) The standard
deviation.

Variable Assignment

> a <- 'apple’
> a
[1] 'apple’

The Environment

1s() List all variables in the
environment.

rm(x) Remove x from the

environment.

rm(list = 1s()) Removeallvariables from the

environment.

You can use the environment panel in RStudio to
browse variables in your environment.

m <- matrix(x, nrow = 3, ncol = 3)
Create a matrix from x.

B ml2, 1 -Selectarow t(m)

Transpose
= m %%% n
[ml, 11 -Selecta column Matrix Multiplication

solve(m, n)
Findxin:m*x=n

1 <- list(x = 1:5, y = c('a', 'b"))
Alistis a collection of elements which can be of different types.

= m[2, 3] - Selectanelement

10211 1[1] 1$x 'y']
Second element sl with Element named iz it
of | only the first « only element

’ element. ’ namedy.

Also see the

dplyr package. Data Frames

df <- data.frame(x = 1:3, y = c('a', 'b', 'c'))
Aspecial case of a list where all elements are the same length.

List subsetting

E" oo TE
f df[[2]]
1 a T m |
[| ||
2 b Understanding a data frame
.) See the full data
. Vv f
3 c . lew(df) frame.
Matrix subsetting head(df) rSOe\flSthe firste
-=
df [2]
! = nrovg(dff) cbind -Bind columns
Number of rows. - = ..=
- ncol(df) |
df[2, 1 | Number of L
columns.
dim(df)
1 | Number of
df[2, 2] columns and
' - rows.

RStudio® s a trademark of RStudio, Inc. « CC BY Mhairi McNeill « mhairihmcneill@gmail.com « 844-448-1212 « rstudio.com

paste(x, y, sep = ' ')

Join multiple vectors together.

paste(x, collapse = ' ') Joinelements ofa vector together.
grep(pattern, x) Find regular expression matches in x.

gsub(pattern, replace, x) Replace matchesinxwith a string.

toupper(x) Convert to uppercase.
tolower(x) Convert to lowercase.
nchar(x) Number of characters in a string.

factor(x)
Turn a vector into a factor. Can
set the levels of the factor and
the order.

cut(x, breaks = 4)
Turn a numeric vector into a
factor by ‘cutting’ into
sections.

im(y ~ X, dzt?=df) t.test(x, y) prop.test
Linear model. Perform a t-test for ;eﬁst fora
difference between frerence
glm(y ~ x, data=df) means. between
Generalised linear model. proportions.
summar pairwise.t.test
Get dut i d'yf i Perform a t-test for aov
et more detailed information paired data. Ana!ysws of
out a model. variance.
Distributions
Random Density Cumulative Quantile
Variates Function Distribution
Normal rnorm dnorm pnorm gnorm
Poisson rpois dpois ppois gpois
Binomial rbinom dbinom pbinom gbinom
Uniform runif dunif punif qunif

S plot(x) el plot(x, y) hist(x)
o . AP A
e e Valuesofxin ki Values of x Histogram of

[8
order. againsty.

Learn more at web page or vignette - package version « Updated: 3/15

Plotting

Advanced R
Cheat Sheet

Search path — mechanism to look up objects, particularly functions. 1. Enclosing environment - an environment where the

Created by: Arianne Colton and Sean Chen))) function is created. It determines how function finds
» Access with : search() - lists all parents of the global environment

. . . value.
Environment Basics (see Figure 1) ‘ _ _
» Enclosing environment never changes, even if the

Environment — Data structure (with two : Access_any environment on the search path: function is moved to a different environment.
. . as.environment('package:base’)
components below) that powers lexical scoping

* Access with: environment(‘func1’)

Create environment: env1<-new.env() 2. Binding environment - all environments that the
globalenv() baseenv() enptyenv() function has a binding to. It determines how we find
1. Named list (“Bag of names”) — each name the function.
points to an object stored elsewhere in . [] L « Access with: pryr::where(‘func1’)
memory.
y Example (for enclosing and binding environment):
If an object has no names pointing to it, it Figure 1 — The Search Path
o ey etz 07 e geitgs * Mechanism : always start the search from global environment,
collector. then inside the latest attached package environment.
* Access with: Is(env1’) * New package loading with library()/require() : new package is ‘
2. Parent environment — used to implement attached right after global environment. (See Figure 2) y <1 a o ®
lexical _scoplng. Ifa name '_S not fc?ur.Id n » Name conflict in two different package : functions with the same e<- new.eny() Y s1lobalenv()
an environment, then R will ook in its name, latest package function will get called. e$g <- function(x) x +
parent (and so on).
) . . » function g enclosing environment is the global
+ Access with: parent.env(‘env1’) search() : environment,
+ the binding environment is "e".
Four special environments ".GlobalEnV' ... 'Autoloads' 'package:base’
1. Empty environment — ultimate ancestor of library(reshape2); search() 3. Execution environment - new created environments
all environments ".GlobalEnv' 'package:reshape?2' ... 'Autoloads' 'package:base’ to host a function call execution.
+ Parent: none NOTE: Autoloads : special environment used for saving memory by * Two parents :
* Access with: emptyenv() only loading package objects (like big datasets) when needed 1. Enclosing environment of the function
2. Base environment - environment of the I1. Calling environment of the function
base package Figure 2 — Package Attachment

. + Execution environment is thrown away once the
« Parent: empty environment function has completed.

* Access with: baseenv() Binding Names to Values 4. Calling environment - environments where the

3. Global environment — the interactive :
. Assignment — act of binding (or rebinding) a name to a value in an function was called.
workspace that you normally work in) .
environment. * Access with: parent.frame(‘func1’)
» Parent: environment of last attached) . .
package 1. <-(Regular assignment arrow) — always creates a variable in the » Dynamic scoping :
current environment . ; ;
- Access with: globalenv() » About : look up variables in the calling
, . 2. <<-(Deep assignment arrow) - modifies an existing variable environment rather than in the enclosing
4. Current environment — environment that) .)
. L found by walking up the parent environments environment
R is currently working in (may be any of the
+ Usage : most useful for developing functions that
above and others) Warning: If <<- doesn’t find an existing variable, it will create aid i?]teractive data analysis Ping
« Parent: empty environment one in the global environment.

« Access with: environment()

RStudio® is a trademark of RStudio, Inc. + CC BY Arianne Colton, Sean Chen ¢+ data.scientist.inffo@gmail.com « 844-448-1212 « rstudio.com Updated: 2/16

Homogeneous Heterogeneous
1d | Atomic vector List
2d | Matrix Data frame
nd | Array

R has no 0-dimensional or scalar types. Individual numbers
or strings, are actually vectors of length one, NOT scalars.

Human readable description of any R data structure :

str(variable)

Every Object has a mode and a class

1. Mode: represents how an object is stored in memory
» ‘type’ of the object from R’s point of view
» Access with: typeof()

2. Class: represents the object’s abstract type

» ‘type’ of the object from R'’s object-oriented programming
point of view

» Access with: class()

typeof() class()
strings or vector of strings character character
numbers or vector of numbers | numeric numeric
list list list
data.frame list data.frame

1. Factors are built on top of integer vectors using two attributes :

class(x) -> 'factor’

levels(x) # defines the set of allowed values

2. Useful when you know the possible values a variable may take,
even if you don't see all values in a given dataset.

R has three object oriented systems :

1.

S3 is a very casual system. It has no formal

definition of classes. It implements generic

function OO.

» Generic-function OO - a special type of
function called a generic function decides
which method to call.

Example: |drawRect(canvas, 'blue')

Language: | R

* Message-passing OO - messages
(methods) are sent to objects and the object
determines which function to call.

Example: | canvas.drawRect('blue’)

Language: | Java, C++, and C#

S4 works similarly to S3, but is more formal.
Two major differences to S3 :

» Formal class definitions - describe the
representation and inheritance for each class,
and has special helper functions for defining
generics and methods.

« Multiple dispatch - generic functions can
pick methods based on the class of any
number of arguments, not just one.

Reference classes are very different from S3

and S4:

« Implements message-passing OO -
methods belong to classes, not functions.

« Notation - $ is used to separate objects and
methods, so method calls look like
canvas$drawRect('blue’).

R base types - the internal C-level types that underlie

1. Factors look and often behave like character vectors, they
are actually integers. Be careful when treating them like .
strings.

2. Most data loading functions automatically convert character
vectors to factors. (Use argument stringAsFactors = FALSE
to suppress this behavior)

the above OO systems.

Includes : atomic vectors, list, functions,
environments, etc.

Useful operation : Determine if an object is a base
type (Not S3, S4 or RC) is.object(x) returns FALSE

RStudio® is a trademark of RStudio, Inc. «+ CC BY Arianne Colton, Sean Chen « data.scientist.info@gmail.com « 844-448-1212 « rstudio.com

1. About S3:
* R's first and simplest OO system
* Only OO system used in the base and stats
package
» Methods belong to functions, not to objects or
classes.

2. Notation :
* generic.class()

Date method for the

mean.Date())
generic - mean()

3. Useful ‘Generic’ Operations

» Get all methods that belong to the ‘mean’
generic:

- Methods(‘mean’)

« List all generics that have a method for the
‘Date’ class :

- methods(class = ‘Date’)
4. S3 objects are usually built on top of lists, or
atomic vectors with attributes.
» Factor and data frame are S3 class
» Useful operations:

Check if object is
an S3 object

is.object(x) & lisS4(x) or
pryr::otype()

Check if object
inherits from a
specific class

inherits(x, 'classname’)

Determine class of

any object class(x)

+ Internal representation : C structure (or struct) that
includes :

» Contents of the object
* Memory Management Information
* Type

- Access with: typeof()

Updated: 2/16

Functions

Functions — objects in their own right
All R functions have three parts:

body() code inside the function
list of arguments which
formals() controls how you can

call the function

“map” of the location of
the function’s variables
(see “Enclosing
Environment”)

environment()

Every operation is a function call
o + for, if, [$, {...

* x+yisthe sameas "+(x, y)

Note: the backtick (), lets you refer to
functions or variables that have
otherwise reserved or illegal names.

Lexical Scoping

What is Lexical Scoping?

* Looks up value of a symbol. (see
"Enclosing Environment")

» findGlobals() - lists all the external
dependencies of a function

f <- function() x + 1
codetools::findGlobals(f)

>y

environment(f) <- emptyenv()
f()

error in f(): could not find function “+”

* R relies on lexical scoping to find
everything, even the + operator.

Arguments — passed by reference and copied on modify

1. Arguments are matched first by exact name (perfect matching), then
by prefix matching, and finally by position.

2. Check if an argument was supplied : missing()

i <- function(a, b) {
missing(a) -> # return true or false

}

3. Lazy evaluation — since x is not used stop("This is an error!")
never get evaluated.

f <- function(x) {
10

f(stop('This is an error!")) -> 10

4. Force evaluation

f <- function(x) {
force(x)
10

}

5. Default arguments evaluation

f <- function(x = Is()) {
a<-1
X

}

f() ->'a"'x'

f(is())

Is() evaluated inside f

Is() evaluated in global environment

Return Values

» Last expression evaluated or explicit return().
Only use explicit return() when returning early.

+ Return ONLY single object.
Workaround is to return a list containing any number of objects.

* Invisible return object value - not printed out by default when you
call the function.

f1 <- function() invisible(1)

RStudio® is a trademark of RStudio, Inc. «+ CC BY Arianne Colton, Sean Chen « data.scientist.info@gmail.com « 844-448-1212 « rstudio.com

Function Arguments Primitive Functions

What are Primitive Functions?

1. Call C code directly with .Primitive() and contain no R code

print(sum) :

> function (..., na.rm = FALSE) .Primitive('sum")

2. formals(), body(), and environment() are all NULL
3. Only found in base package

4. More efficient since they operate at a low level

Influx Functions

What are Influx Functions?
1. Function name comes in between its arguments, like + or —

2. All user-created infix functions must start and end with %.

"%+%" <- function(a, b) pasteO(a, b)

‘new' %+% 'string’

3. Useful way of providing a default value in case the output of
another function is NULL:

"%||%" <- function(a, b) if (lis.null(a)) a else b

function_that_might_return_null() %]||% default value

Replacement Functions

What are Replacement Functions?

1. Act like they modify their arguments in place, and have the
special name xxx <-

2. Actually create a modified copy. Can use pryr::address() to
find the memory address of the underlying object

*second<-" <- function(x, value) {
x[2] <- value
X

!
x <-1:10
second(x) <- 5L

Updated: 2/16

Subsetting

Subsetting returns a copy of the

original data, NOT copy-on modified . .
Data Frame — possesses the characteristics of both lists and

. . . N 1. Lookup tables (character subsetting)
matrices. If you subset with a single vector, they behave like lists; if

1.

Simplifying subsetting

* Returns the simplest possible
data structure that can represent
the output

2. Preserving subsetting

« Keeps the structure of the output
the same as the input.

* When you use drop = FALSE, it's
preserving

Simplifying behavior varies slightly
between different data types:

you subset with two vectors, they behave like matrices
1. Subset with a single vector : Behave like lists

‘ df1[c('col1’, 'col2')]

2. Subset with two vectors : Behave like matrices

‘ df1[, c¢(‘col1', 'col2')]

The results are the same in the above examples, however, results are

different if subsetting with only one column. (see below)

i ifving* i grade = 3:1,
Simplitying™ | Preserving 1. Behave like matrices desc = ¢(Excellent, 'Good', 'Poor’),
fail=c(F,F, T
Vector (1]l x(1] ‘ str(df1[, 'col1]) -> int [1:3]) ()
List (1l X First Method
. - . * Result: the result is a vector
Factor | x[1:4, drop = T] x[1:4] o id <- match(grades, info$grade)
2. Behave like lists infolid
x[1, , drop = F] or info[id,]
Array | x[1,]orx[, 1] 1 d =F
X[, 1, drop =F] ‘ str(df1['col17) -> ‘data.frame’ Second Method
Data x[, 1, drop = F] or . rownames(info) <- info$grade
frame | XU 1orx(ll x[1] + Result: the result remains a data frame of 1 column infolas.character(grades), |

x <-c('m','f,"'u, 'f,'f, 'm', 'm")

lookup <- c(m ='Male’, f = 'Female', u = NA)

lookup[x]

>mfuffmm

>'Male' 'Female' NA 'Female' 'Female' 'Male' 'Male'
unname(lookup[x])

>'Male' 'Female' NA 'Female' 'Female' 'Male' 'Male'

2. Matching and merging by hand (integer subsetting)
Lookup table which has multiple columns of information:

grades <-¢(1, 2,2, 3,1)
info <- data.frame(

3. Expanding aggregated counts (integer subsetting)
* Problem: a data frame where identical rows have been

1. Atomic Vector 1. About Subsetting Operator collapsed into one and a count column has been added
+ x[[1]]is the same as x[1] + Useful shorthand for [[combined with character subsetting * Solution: rep() and integer subsetting make it easy to
2. List uncollapse the data by subsetting with a repeated row index:
. x3$y is equivalent to x[['y', exact = FALSE]] rep(x, y) rep replicates the values in x, y times.

* []always returns a list

* Use [[]] to get list contents, this 2. Difference vs. [[df1$countCol is ¢(3, 5, 1)
returns a single value piece out of - § does partial matching, [[does not rep(1:nrow(df1), df1$countCol)

a list ' >111222223
3. Factor x <- list(abc = 1)
D d levels but i x$a -> 1 # since "exact = FALSE" 4. Removing columns from data frames (character subsetting)
rop§ any unused levels but it x[[a-> #would be an error There are two ways to remove columns from a data frame:
remains a factor class
4. Matrix or Array 3. Common mistake with $ Set individual columns to NULL df1$col3 <- NULL
t to ret | | t f1[c(‘col1’, 'col2'

» If any of the dimensions has + Using it when you have the name of a column stored in a variable Subsetto return only columns you want | dft{c(col®’, ‘col2')]
length 1, that dimension is 5. Selecting rows based on a condition (logical subsetting)
dropped xg:’; cy! « This is the most commonly used technique for extracting

5. Data Frame rows out of a data frame.

» If output is a single column, it
returns a vector instead of a data
frame

doesn't work, translated to x[['var']
Instead use x[[var]]

RStudio® is a trademark of RStudio, Inc. «+ CC BY Arianne Colton, Sean Chen « data.scientist.info@gmail.com « 844-448-1212 « rstudio.com

df1[df1$col1 == 5 & df1$col2 == 4,]

Updated: 2/16

Subsetting continued Debugging, Condition Handling and Defensive Programming

1. Using integer subsetting is more effective
when:

* You want to find the first (or last) TRUE.

* You have very few TRUEs and very
many FALSEs; a set representation may
be faster and require less storage.

2. which() - conversion from boolean
representation to integer representation

which(c(T, F, TF))-> 13

 Integer representation length : is always

« Lists the sequence of calls that lead to
the error

. browser() or RStudio's breakpoints tool

« Opens an interactive debug session at
an arbitrary location in the code

. options(error = browser) or RStudio's

"Rerun with Debug" tool

» Opens an interactive debug session
where the error occurred

« Error Options:

options(error = recover)

1. traceback() or RStudio's error inspector 1. Communicating potential problems to users:

l. stop()

« Action : raise fatal error and force all execution to terminate

« Example usage : when there is no way for a function to continue
Il. warning()

« Action : generate warnings to display potential problems

« Example usage : when some of elements of a vectorized input are

invalid

lll. message()

« Action : generate messages to give informative output

« Example usage : when you would like to print the steps of a program
execution

Handling conditions programmatically:

<= boolean representation length L try()
. + Difference vs. 'browser': can enter) . .) .
+ Common mistakes :) . « Action : gives you the ability to continue execution even when an error
environment of any of the calls in the ocCUrs
I. Use x[which(y)] instead of x[y] stack
Il. tryCatch()

II. x[-which(y)] is not equivalent to
x[y]

Avoid switching from logical to integer
subsetting unless you want, for example, the
first or last TRUE value

1. All subsetting operators can be combined
with assignment to modify selected values
of the input vector.

df1$col1[df1$col1 < 8] <- 0

options(error = dump_and_quit)

» Equivalent to ‘recover’ for non-
interactive mode

* Creates last.dump.rda in the current
working directory

In batch R process :

dump_and_quit <- function() {

Save debugging info to file
last.dump.rda
dump.frames(to.file = TRUE)

Quit R with error status
q(status = 1)

}

» Action : lets you specify handler functions that control what happens
when a condition is signaled

result = tryCatch(code,
error = function(c) "error",
warning = function(c) "warning",
message = function(c) "message"

)

Use conditionMessage(c) or cmessage to extract the message
associated with the original error.

Defensive Programming

Basic principle : "fail fast", to raise an error as soon as something goes wrong

: - : 1. stopifnot() or use ‘assertthat’ package - check inputs are correct
2. Subsetting with nothing in conjunction with options(error = dump_and_quit)
assignment : 2. Avoid subset(), transform() and with() - these are non-standard
« Why : Preserve original object class and In a later interactive session : evaluation, when they fail, often fail with uninformative error messages.
structure load("last.dump.rda") 3. Avoid [and sapply() - functions that can return different types of output.

df1[] <- lapply(df1, as.integer)

RStudio® is a trademark of RStudio, Inc. « CC BY Arianne Colton, Sean Chen « data.scientist.info@gmail.com «

debugger()

844-448-1212 « rstudio.com

* Recommendation : Whenever subsetting a data frame in a function, you

should always use drop = FALSE

Updated: 2/16

A COMPARISON OF R AND PYTHON

data-action-lab.com

uOttawa

E)

& IDLEWYLD

a successorto S

developed by statisticians as a ‘statistical programming language’
built-in data structures and functionality intended to make working with data easier

gained prominence as a free and open source alternative to expensive statistical software

Python:

created in the early 90’s but popularized in the 00’s
intended to be easy to read, easy to understand and easy to learn, relative to other OOLs

has a massive base of open-source modules

N IDLEWYLD uOttawa data-action-lab.com

[for a comprehensive comparison, consult https://www.datacamp.com/community/tutorials/r-or-python-for-data-analysis]

COMPARISON

R: Python:

= technically object oriented, but this tends to be a = object oriented

bit hidden in practice = |ends itself to writing structured, pre-

= |ends itself to quick interactive scripting, data designed computer code.
exploration = intended to be a general programming
= has special built-in notation for statistical models language
= has a special data type — the data frame — for = designed to create code that is easy to
handling datasets read

N IDLEWYLD uOttawa data-action-lab.com

https://www.datacamp.com/community/tutorials/r-or-python-for-data-analysis

A NOTE : VECTORIZATION IN INTERPRETED LANGUAGES

High-level interpreted languages are slower than low-level/ compiled languages.

To get around this, these languages will sometimes hand off (behind the scenes)
certain types of operations to functions written in lower-level languages (like C).

In order to take advantage of this, the R and Python, communities emphasize a
certain programming strategy when using lists/vectors/arrays.

In particular, they avoid cycling through each item of a list, and instead often use
special functions that map a chosen function or operation to every item in the list.

This can run counter to habits gained when learning other languages.

* IDLEWYLD uOttawa data-action-lab.com

SO MANY PACKAGES/MODULES!

The strength of both R and Python lies in
their many technical packages and
modules.

These allow a programmer to implement
very sophisticated functionality simply
by making a few function calls.

Let’'s open the RPackagesDemo and
PythonPackagesDemo notebooks to
see some of this in action.

/ L E ?‘::i': ;13"‘:::31:; ;131{‘ v‘;“\"ﬂ"ﬁ L E” uOttawa

Available CRAN Packages By Name

abc.data

ABC.RAP

ABCanalysis
abcdeFBA

ABCoptim
ABCp2

abcrf

Accurate, Adaptable, and Accessible
Error Metrics for Predictive Models
Access to Abbyy Optical Character
Recognition (OCR) API

Tools for Approximate Bayesian
Computation (ABC)

Data Only: Tools for Approximate
Bayesian Computation (ABC)

Array Based CpG Region Analysis
Pipeline

Computed ABC Analysis
ABCDE_FBA: A-Biologist-Can-Do-
Everything of Flux Balance Analysis
with this package

Implementation of Artificial Bee Colony
(ABC) Optimization

Approximate Bayesian Computational
Model for Estimating P2

Approximate Bayesian Computation via
Random Forests

data-action-lab.com

RESOURCES FOR PROGRAMMING

data-action-lab.com

uOttawa

E)

& IDLEWYLD

R STUDIO

2l =~ = = r e/functic 5= = Addins -
@7 Untitled1* | nodobo_dataset_igraphdlab
g1 | 7 Filter
Console ~/

R version 3.2.1 (2015-06-18) -- "World-Famous Astronaut"
Copyright (C) 2015 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwinl@.8.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or

"help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

[Workspace loaded from ~/.RData]

Loading required package: RMySQL

: 7E \ J:f uOttawa

=

=

R Project: (None) -

Environment History o |
<4 [_*Import Dataset ~ ¥ List = | (=
7} Global Environment ~
Data
© data 813 obs. of 2 variables &
Values
O mydb Formal class MySQLConnection
namecounts 'table' int [1:256(1d)] 2841126121 ...
namelist chr [1:256] "Aaron" "Aboriginal" "Adam" "Adrianna" "..
@Drs Formal class MySQLResult
Files Plots Packages Help Viewer -]
& New Folder @ | Delete || Rename | 4k More ~ @
Q Home
A Name Size Modified
3] .RData 6.7 KB Jul 11, 2018, 4:09 PM
1] .Rhistory 178 B Sep 17, 2019, 5:31 PM
| 1 Applications
= CHLPA_proc_20150323.pdf 190.4 KB Nov 1, 2015, 10:02 PM
1] CHLPA_proc_20150323.vdx 109.6 KB Nov 1, 2015, 10:02 PM
W] CHLPA_report20150323.docx 1.4 MB Nov 1, 2015, 10:02 PM
|1 CHLPA_simple_simulation_20150323.xIsx 84.4 KB Nov 1, 2015, 10:02 PM
1 2 CHLPAdocumentflow_20150323.pdf 109.5 KB Nov 1, 2015, 10:02 PM
| _] CHLPAdocumentflow_20150323.vdx 95.3 KB Nov 1, 2015, 10:02 PM

data-action-lab.com

JUPYTER NOTEBOOKS

Xp=) zne ¥ k=0,...,N—-1
n=0

We begin by loading a datafile using SciPy's audio file support:

In [1]: from scipy.io import wavfile
rate, x = wavfile.read('test_mono.wav')

And we can easlly view Its spectral structure using matplotlib's bulltin specgram routine:

In [2]: =matplotlib inline
from matplotlib import pyplot as plt
fig, (axl, ax2) = plt.subplots(1l, 2, figsize=(12, 4))
axl.plot(x); axl.set_title('Raw audio signal')
ax2.specgram(x); ax2.set_title('Spectrogram');

Raw audio signal Spectrogram

| e LN ATEN

8000 10
v

6000 “ AT, AR .
4000 A _lh il AR A

N IDLEWYLD uOttawa data-action-lab.com

L % b Db T & KN L TR
N B TR, i) L

R NOTEBOOKS

HCLUST()

Let’s start by clustering the entire mtcars dataset, using the

You Can use ‘the pro\“ded R no‘tebooks ‘to Euclidean distance metric, and plot the result. Hierarchical clustering

is implemented in the cluster function hclust().

= get a sense of what can be done

(hclustcars <- hclust(dist(mtcars)))

) plot(hclustcars)
= gain exposure to many examples of the
11:
language syntax helust(d = dist(mtcars))

Cluster method : complete

= help you write your own code bistance i Suclidean

= |earn why the code works the way it does, and 2]
some theory behlnd the COde The output of hclust gives us some information about the

parameters being used to create the hierarchy. In this case the
distance is Euclidean (as expected) and the cluster formation
strategy (the linkage) is complete (these are the default settings).

S DLEWYLD uOttawa data-action-lab.com

ON-LINE RESOURCES

Stack Exchange/Stack Overflow/Cross Validated
Blogs (e.g. R Bloggers)

Official Sites:
= Python Software Foundation: https://www.python.org

= Comprehensive R Archive Network (CRAN): https://cran.r-project.org

The Comprehensive R Archive Network
Download and Install R
k Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most

likely want one of these versions of R:

CRAN e Download R for Linux

Mirrors e Download R for (Mac) OS X

What's new? e Download R for Windows

Task Views

Search R is part of many Linux distributions, you should check with your Linux package management system in
addition to the link above.

N IDLEWYLD uOttawa data-action-lab.com

https://www.python.org/
https://cran.r-project.org/

EXERCISES FOR HANDS-ON LEARNING

data-action-lab.com

uOttawa

E)

& IDLEWYLD

GETTING INTO PROGRAMMING

Develop/assess R skills by carrying out the following exercises (order unimportant):

You may choose to carry out each of the exercises separately, or to write a single
program that carries out all of the individual exercises.

You will find much of the base code you need in the course notebooks and R
markdown files, but you will need to tweak and add to this code to carry out the
exercises. You will also find a lot of helpful information and code on the internet!

S DLEWYLD uOttawa data-action-lab.com

EXPRESSIONS, VARIABLES, DATA STRUCTURES, OPERATORS (1)

Create three variables and assign numerical values to each of these variables.

Then write one or more statements that carry out the following types of operations
using these variables: addition, subtraction, multiplication, division, raising to a power.

N IDLEWYLD uOttawa data-action-lab.com

EXPRESSIONS, VARIABLES, DATA STRUCTURES, OPERATORS (2)

Create three variables and assign string values to each of these variables.

Write a statement that joins the three strings into a single string. Write some code
that prints the string.

Write some code that tests to see if a substring of your choosing is contained within
the larger string.

N IDLEWYLD uOttawa data-action-lab.com

EXPRESSIONS, VARIABLES, DATA STRUCTURES, OPERATORS (3)

Create three variables and assign lists to each of these variables. Join the three lists
into a new list containing three distinct sub-lists (a list of three lists).

Create a list without sub-lists (all original list elements are part of a single larger list).

Create a fourth list by splitting this resulting list in half and assigning the second half
of the list to a new variable.

Extract the last item of this list (it can either stay in the original list or be removed
from it) and assign this element to a variable.

S DLEWYLD uOttawa data-action-lab.com

STATEMENTS, BLOCKS, CONTROL FLOW, LOGICAL OPERATORS

Write a statement that contains at least three nested blocks.

Use at least three of the following control flow options: if, if ... else,while,
for, break, next, switch.

N IDLEWYLD uOttawa data-action-lab.com

FUNCTIONS

Write a function that takes three arguments as input and returns one value.

Call the function with arguments of your choosing.

N IDLEWYLD uOttawa data-action-lab.com

LIBRARIES/PACKAGES/MODULES

Execute the relevant command that shows a list of the packages that are currently
installed in your R environment.

= hint: use the internet, example notebooks and handouts to help you find the relevant command.

Use available documentation to determine what some of these do.

= hint: take a look at the R markdown files that are available — you may notice some relevant
information there.

= choose a module/package from this list and load the relevant package/module if necessary.

Write some code that uses functions and objects supplied by this package.

S DLEWYLD uOttawa data-action-lab.com

INPUTS/OUTPUTS (1)

Print to the standard output of R three sentences of your choosing, on three separate
lines, using a single statement of code.

N IDLEWYLD uOttawa data-action-lab.com

INPUTS/OUTPUTS (2)

Locate a comma separated values (CSV) file stored on your computer

= (Hint - there should be a folder called Data in the main course directory).

Read this file into the notebook and store the results in one or more variables.

N IDLEWYLD uOttawa data-action-lab.com

INPUTS/OUTPUTS (3)

Create a new file and write four lines in CSV format to this file.

In a separate statement, write four more lines to this existing file, without overwriting
the original file.

N IDLEWYLD uOttawa data-action-lab.com

INTERPRETERS/COMPILERS

Write enough code to generate at least five different error messages from R.

Copy these error messages into a markdown cell, and write a short note under each
explaining the meaning of the error message, and how the code was fixed.

N IDLEWYLD uOttawa data-action-lab.com

OPTIONAL EXERCISES

1. Using a language of your choice, write a function that, when passed a dataset,
reports 5 interesting pieces of information about the dataset. Load a dataset and
run the function on this dataset.

2. Using a language of your choice, write two functions. The output of the first
function should work as the input to the second function. The first function
should read in a dataset and generate a subset of the dataset based on some
chosen criteria. The second function should read in a dataset and provide
summary data of some type for each column in the dataset. Load a dataset and
run both functions on the dataset.

EWYLD uOttawa data-action-lab.com

