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STATISTICAL AND MATHEMATICAL FOUNDATIONS
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MODULE LEARNING OBJECTIVES

In this module, we provide, in very broad terms, some fundamental mathematical and
statistical background required for data analysis and model building with practical
applications.

Participants will become acquainted will key concepts, to allow for future learning.

This introduction is not meant to replace formal training and is at best incomplete;
please consult the references for further details.
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OUTLINE

1. Modeling

2. Distributions

3. Central Limit Theorem

4. Estimation

5. Bayes’ Theorem

6. Matrix Algebra

7. Eigenvalues and Eigenvectors

8. Optimization

9. Sampling Methods

10. Confidence Intervals

11. Hypothesis Testing

12. Regression Analysis
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MODELING
STATISTICAL AND MATHEMATICAL FOUNDATIONS
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LEARNING OBJECTIVES

Understand the difference between modeling from first principles and statistical 
modeling.

Working knowledge of the modeling process. 

Increase awareness of modeling pitfalls and challenges.
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Real World Model

Theory

Identification of 
details relevant to 
description and 

translation of real-
world objects into 

model variables

[http://dailycatdrawings.tumblr.com; #309]

http://dailycatdrawings.tumblr.com/
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MODELS IN GENERAL

First principles modeling

¡ examine a system

¡ write down a set of rules/equations that describe the essence of the system

¡ ignore complicating details that are “less” important

Statistical modeling

¡ typically a set of equations with parameters

¡ parameters are learned (model is “trained”) using multiple data observations

¡ data sample vs. population
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MODELING HEURISTICS

In a sense, modeling is a straightforward (and formulaic?) process, guided by
intuition and experience at each step.

Basic steps in building a statistical model:
¡ defining the goals

- what are we trying to achieve? 

- under what situations will the model be used and what is the outcome we are trying to predict?

¡ gathering data
- what data is available?

- how many records will we have?

- generally, modelers want as much data as possible
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MODELING HEURISTICS

Basic steps in building a statistical model: (continued)

¡ deciding on the model structure

- should we run a linear regression, logistic regression, or a nonlinear model? Which kind?

- choices of model structure require experience and deep knowledge of the strength and weaknesses of each 
technique

¡ preparing the data
- assemble data into appropriate form for the model

- encode the data into inputs, using expert knowledge as much as possible

- separate the data into the desired training, testing, and validation sets
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MODELING HEURISTICS

Basic steps in building a statistical model: (continued)

¡ selecting and removing features
- variables are examined for model importance and selected or eliminated

- a list of candidate appropriate variables are ordered by importance

¡ building candidate models
- begin with baseline linear models and try to improve using more complex nonlinear models 

- keep in mind the environment in which the model will be implemented

¡ finalizing the model
- select among the candidates the most appropriate model to be implemented

¡ implementing and monitoring
- embed the model into necessary system process; implement monitoring steps to examine the model performance
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MODELING PITFALLS

Common pitfalls surrounding the modeling process:

¡ defining the goals

- lack of clarity around problem definition

- lack of understanding of how and where the model will be used  

¡ gathering data

- using data that is too old or otherwise not relevant going forward

- not considering additional key data sources or data sets that might be available

¡ deciding on the model structure
- using a modeling methodology that is not appropriate for the nature of the data (sizes, dimensions, noise…)
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MODELING PITFALLS

Common pitfalls surrounding the modeling process: (continued)

¡ preparing the data

- not cleaning or considering outliers

- not properly scaling data

- not giving enough thought to building special expert variables

- not having data from important categories of records

¡ selecting and eliminating features
- keeping too many variables, making it hard for modeling, interpretation, implementation, or model maintenance

- too much reliance on simply eliminating correlated variables
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MODELING PITFALLS

Common pitfalls surrounding the modeling process: (continued)

¡ building candidate models 
- overfitting

- not doing proper training/testing as one examines candidate models

- not doing a simpler linear regression to use as baseline

¡ finalizing the model
- not rebuilding the final model optimally using all the appropriate data

- improperly selecting the final model without consideration to some implementation constraints 

¡ implementing and monitoring
- errors in implementation process: data input streams, variable encodings, algorithm mistakes

- not monitoring model performance



data-action-lab.com

DISTRIBUTIONS
STATISTICAL AND MATHEMATICAL FOUNDATIONS
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LEARNING OBJECTIVES

What questions can you use to help you pick a model distribution for a data feature?

What are some commonly encountered pdfs?

What are the mean and variance of some common pdfs?

When do we need to use joint distributions?
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DATA AND DISTRIBUTIONS

If a data feature can be characterized by a distribution, consider asking four basic
questions:

1. Can the variable only take on discrete values? continuous values?

¡ whether a taxpayer’s file is audited or not is a discrete variable but the corrected amount from
the audit is a continuous variable

2. Is the data distribution symmetric?

¡ If not, in which direction does the asymmetry lie?

¡ Are right- and left-outliers equally likely?
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DATA AND DISTRIBUTIONS

3. Does the variable have theoretical upper and lower limits?

¡ Some items like age or height cannot be smaller than zero

¡ Some items like operating margins cannot exceed a value (100% in this case)

4. How likely is it to observe extreme values in the distribution? 

¡ in some data, extreme values occur infrequently whereas in others, they occur more often

How would these questions have to change when dealing with joint distributions?
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FUNDAMENTAL DISTRIBUTIONS

Empirical distributions are often approximated by parametric distributions, defined
via a probability density function (pdf) and a set of parameters that must be learned
from the data.

The basic distributions of data analysis are:

¡ the uniform distribution 𝑈(𝑎, 𝑏) on the interval [𝑎, 𝑏] or 𝑈(𝑥!, … , 𝑥") on the discrete set
{𝑥!, … , 𝑥"}, potentially the simplest

¡ the normal distribution 𝑁 𝜇, 𝜎# on the real line ℝ, possibly the most frequently used (not
always aptly so)

¡ a wide variety of special distributions that are used in applications ranging from consumer
modeling and finance to operation research (Poisson, exponential, log-normal, binomial, etc.)
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EXPECTATION AND MOMENTS

Given a pdf 𝑓 and a function 𝑔(𝑋), the expectation E!(𝑔 𝑋 ) of 𝑔 under 𝑓 is the
weighted average

E! 𝑔 𝑋 = ∫" 𝑔 𝑋 𝑓(𝑋) 𝑑𝑋, where Ω = dom(𝑓).

The moments of a distribution are defined as 

𝑚# = E 𝑋# , for 𝑖 = 0,… ,

Note that 𝑚$ = 1, by definition. The mean and variance of the distribution are given 
by𝑚% = E 𝑋 and 𝑚& −𝑚%

& = E 𝑋& − E 𝑋 &
, respectively.
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distribution pdf 𝑓(𝑥) mean variance notes

uniform 
𝑈(𝑎, 𝑏)

1
𝑏 − 𝑎 for 𝑎 ≤ 𝑥 ≤ 𝑏

𝑎 + 𝑏
2

𝑏 − 𝑎 !

12

most languages provide rand # generators 
for 𝑈 𝑎, 𝑏 ; used to generate r.v. with other 

distributions

Gaussian
𝑁 𝜇, 𝜎!

1
𝜎 2𝜋

𝑒"
#
!
$"%
&

!

for 𝑥 ∈ ℝ 𝜇 𝜎! if 𝑋~𝑁 𝜇, 𝜎! , then 
'"%
&
~𝑁(0,1) (and vice-

versa); very commonly used

Poisson 
𝑃 𝜆 , 𝜆 ≥ 0

𝜆$

𝑥! 𝑒
"( for 𝑥 = 0,1,2, … 𝜆 𝜆

estimates the # of events that occur in a 
continuous time interval (# of calls 

received in 1-hour intervals)

binomial
ℬ 𝑁, 𝑝 , 𝑁 ∈ ℕ, 

𝑝 ∈ [0,1]

𝑁
𝑥 𝑝$ 1 − 𝑝 )"$

for 𝑥 = 0,1, … , 𝑁
𝑁𝑝 𝑁𝑝(1 − 𝑝)

describes the probability of exactly 𝑥
successes in 𝑁 independent trials if the 

probability of a success in a single trial is 𝑝
(# of heads in 𝑁 coin tosses) 

log-normal 
𝛬 𝜇, 𝜎!

1
𝑥𝜎 2𝜋

𝑒"
#
!
*+ $"%
&

!

for 𝑥 > 0
𝑒(%-.!/!) 𝑒(!%-&!) 𝑒&! − 1

if ln 𝑋~𝑁 𝜇, 𝜎! , then 𝑋~𝛬 𝜇, 𝜎! (and 
vice-versa); positively skewed
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JOINT DISTRIBUTIONS

Univariate distributions are useful modeling tools, especially when the variables
under consideration are independent.

In practice, that is not usually the case. A joint distribution 𝑃(𝑋%, … , 𝑋N) gives the
probability that each of 𝑋%, … , 𝑋N falls in a given range. The multivariate normal
distribution 𝑁 𝝁, 𝚺 has pdf

𝑓 𝑥%, … , 𝑥N : = 𝑓 𝒙 =
1

2𝜋 Ndet 𝚺
exp −

1
2
𝒙 − 𝝁 O𝚺P% 𝒙 − 𝝁

where 𝝁 is the mean vector and 𝚺 the covariance matrix.
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JOINT DISTRIBUTIONS

If 𝚺 is positive definite, the multivariate
normal is non-degenerate.

𝐷 = 𝒙 − 𝝁 O𝚺P% 𝒙 − 𝝁 is the 
Mahalanobis distance.

To generate a sample 𝒙 from 𝑁 𝝁, 𝚺 , let
𝒛~𝑁 𝟎, 𝐈 and set 𝒙 = 𝝁 + 𝑨𝒛 , where
𝑨𝑨O = 𝚺 is the Cholesky decomposition.

[image taken from Wikipedia]

𝑋# 𝑋!

𝑃(𝑋!)𝑃(𝑋#)

𝐷! ≤ 𝜒!!(0.95)
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EXERCISES

Write R and/or Python code that lets you draw “random” samples from the various
distributions discussed in this section.
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CENTRAL LIMIT THEOREM
STATISTICAL AND MATHEMATICAL FOUNDATIONS
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LEARNING OBJECTIVES

What is the central limit theorem?

When is the central limit theorem relevant?
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NORMAL DISTRIBUTION 

𝑁 𝜇, 𝜎& is fully characterized by the mean 𝜇 and the standard deviation 𝜎, which 
reduces estimation requirements.

The probability of a value being drawn
can be obtained if we know how many 
multiples of 𝜎 separate it from 𝜇

¡ within 𝜎 from 𝜇: ≈ 68%

¡ within 2𝜎 from 𝜇: ≈ 95%

¡ within 3𝜎 from 𝜇: ≈ 99.7%

[image taken from Wikipedia]
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NORMAL DISTRIBUTION 

The normal distribution is best suited for data meeting the following minimum
requirements:

¡ strong tendency for the data to take on a central value

¡ positive, negative deviations from this central value are equally likely

¡ frequency of the deviations falls off rapidly as we move further away from the central value.

Symmetry of deviations leads to zero skewness; low prob. of large deviations from
the central value leads to no kurtosis.

Its omnipresence in human affairs is linked to the Central Limit Theorem.
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CENTRAL LIMIT THEOREM

Let 𝑥%, 𝑥&, … , 𝑥N be a random sample from any (?) distribution with mean 𝜇 and
variance 𝜎&. If the sample observations are independent of each other, then the
distribution of the average

𝑤 =
𝑥% + 𝑥& +⋯+ 𝑥N

𝑛
is approximately normal (when 𝑛 → ∞) with mean and variance

𝜇V =
%
N𝐸 𝑥% +⋯+ 𝑥N = 𝜇, 𝜎V& =

%
N! 𝐸(𝑥% +⋯+ 𝑥N − 𝑛𝜇)&= %

N𝜎
&.

The CLT plays an important role in the prevalence of the normal distribution in 
human affairs. 
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HOW LARGE IS LARGE?

If the underlying population is normal, the distribution of the sample mean is also
normal, no matter the sample size 𝑛.

If the underlying population is approximately symmetric, the distribution of the
sample mean is approximately normal for small sample sizes 𝑛.

If the sample populations are skewed (or disparate), the sample size must typically
reach 30 before the distribution of the sample mean becomes approximately
normal.
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CENTRAL LIMIT THEOREM IN ACTION

[https://www.value-at-risk.net/central-limit-theorem]
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EXERCISES

A large freight elevator can transport a maximum of 9800 lbs. Suppose a load
containing 49 boxes must be transported. From experience, the weight of boxes
follows a distribution with mean 𝜇 = 205 lbs and standard deviation 𝜎 = 15 lbs.

Using R and/or Python, estimate the probability that all 49 boxes can be safely
loaded onto the freight elevator and transported.
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ESTIMATION
STATISTICAL AND MATHEMATICAL FOUNDATIONS
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LEARNING OBJECTIVES

What is estimation, in a statistical sense?

What is estimation used for?

What is bias, in a statistical sense?
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ESTIMATION

One of the goals of statistics is to try to understand a large population on the basis
of the information available in a small sample.

In particular, we are interested in the population parameters, which are estimated
using suitable sample statistics.

For example, we may use the sample mean �̅� = %
N
∑#W%N 𝑥# as an estimate for the true

population mean 𝜇.
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ESTIMATION

The estimator is a random variable; the estimate is a number.

As an another example, the sample standard deviation 𝑆 is an estimator of the true
population standard deviation 𝜎 and the computed value

𝑠 = %
NP%

∑XW%
N 𝑥# − �̅� &

of 𝑆 is an estimate of 𝜎.

An estimator 𝑊 of 𝜔 is unbiased if E(𝑊) = 𝜔.
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BASIC MATHEMATICAL CONCEPTS

Let 𝑋%, … , 𝑋N be random variables, 𝑏%, … , 𝑏N ∈ ℝ, and E, V, Cov be the expectation, 
variance, and covariance operators, respectively, i.e.: 

§ E 𝑋$ = 𝜇$

§ Cov 𝑋$, 𝑋% = E 𝑋$𝑋% − E 𝑋$ E 𝑋%

§ V 𝑋$ = Cov 𝑋$, 𝑋$ = E 𝑋$# − E# 𝑋$ = E 𝑋$# − 𝜇$# = 𝜎$# and 

E 9
$&!

"
𝑏$𝑋$ =9

$&!

"
𝑏$E 𝑋$ =9

$&!

"
𝑏$𝜇$

V 9
$&!

"
𝑏$𝑋$ =9

$&!

"
𝑏$#V 𝑋$ +9

$'%
𝑏$𝑏% Cov 𝑋$, 𝑋%
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BASIC MATHEMATICAL CONCEPTS

The bias of an estimate is the average of the error in the estimate if the study is
repeated many times independently under the same conditions.

The variability of an estimate is the extent to which the estimate would vary about 
its average value in the ideal scenario described above. 

The mean square error of an estimate is a measure of the error that incorporates
both elements:

MSE Z𝛽 = V Z𝛽 + Bias& Z𝛽 ,

where Z𝛽 is an estimator of 𝛽.
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BASIC MATHEMATICAL CONCEPTS

If the estimate Z𝛽 is unbiased, E Z𝛽 − 𝛽 = 0, then an approximate 95% confidence 
interval (95% CI) for 𝛽 is given approximately by

Z𝛽 ± 2 aV Z𝛽 ,

where aV Z𝛽 is a sampling design-specific estimate of V Z𝛽 .

But what is a 95% CI, exactly? 
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EXERCISE

The total time to manufacture a specific component is known to follow a normal
distribution, for which the mean 𝜇 and variance 𝜎& are not known. In an experiment,
10 components are manufactured; the sample time is given as following:

What are the best estimates for 𝜇 and 𝜎&? Provide a 95% CI for 𝜇.

1 2 3 4 5 6 7 8 9 10

63.8 60.5 65.3 65.7 61.9 68.2 68.1 64.8 65.8 65.4Time
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BAYES’ THEOREM
STATISTICAL AND MATHEMATICAL FOUNDATIONS
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LEARNING OBJECTIVES

What is a conditional probability and when is it useful?

What are some mathematical rules that govern probability?

What is Bayes’ Theorem and when is it useful?
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CONDITIONAL PROBABILITIES 

We are often interested in the likelihood of an event occurring given that another
has occurred.

Examples include:
¡ the probability that a train arrives on time given that it left on time

¡ the probability that a PC crashes given the operating system installed 

¡ the probability that a bit is transmitted over a channel is received as a 1 given that the bit 
transmitted was a 1

¡ the probability that a website is visited given its number of in-links

Questions of this type are handled using conditional probability. 
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CONDITIONAL PROBABILITIES

A conditional probability is the probability of an event taking place given that
another event occurred.

The conditional probability of 𝐴 given 𝐵, 𝑃(𝐴|𝐵), is defined as

𝑃 |𝐴 𝐵 =
𝑃 𝐴 ∩ 𝐵
𝑃 𝐵

The probability that two events 𝐴 and 𝐵 both occur is obtained by applying the 
multiplication rule:

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐵 𝑃 |𝐴 𝐵 = 𝑃 𝐴 𝑃 |𝐵 𝐴
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CONDITIONAL PROBABILITIES

Example (a classic): a family has two children (not twins). What is the probability that
the youngest child is a girl given that at least one of the children is a girl? Assume
that boys and girls are equally likely to be born.

Solution: Let 𝐴 and 𝐵 be the events that the youngest child is a girl and that at least 
one child is a girl, respectively:

𝐴 = 𝐺𝐺, 𝐵𝐺 , 𝐵 = {𝐺𝐺, 𝐵𝐺, 𝐺𝐵}

Then 𝑃 |𝐴 𝐵 = Y Z∩\
Y \

= 
&
]

(not ½, as one might naively assume).  
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RULES OF PROBABILITY

Let 𝐼 denote relevant background information; 𝑋, 𝑌, 𝑌 denote propositions, and −𝑋
denote the proposition that 𝑋 is false.

The plausibility of 𝑋 given 𝐼 is denoted by 𝑃(𝑋|𝐼), ranging from 0 (false) to 1 (true).

Sum Rule: 𝑃(𝑋|𝐼) + 𝑃(−𝑋|𝐼) = 1
Product Rule: 𝑃 𝑋, 𝑌 𝐼 = 𝑃 𝑋 𝑌, 𝐼 ×𝑃 𝑌 𝐼

Bayes’ Theorem: 𝑃 𝑋 𝑌, 𝐼 ×𝑃 𝑌 𝐼 = 𝑃 𝑌 𝑋, 𝐼 ×𝑃 𝑋 𝐼

Marginalization Rule: 𝑃(𝑋|𝐼) = ∑𝑃(𝑋, 𝑌 |𝐼), where {𝑌 } are exhaustive, disjoint
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BAYES’ THEOREM

The sum rule and the product rules are the basic rules of probability.

Bayes' Theorem and the Marginalization Rule are simple corollaries of these basic
rules.

Bayes' Theorem is sometimes written is a slightly different form

𝑃(𝑋|𝑌, 𝐼) =
𝑃(𝑌|𝑋, 𝐼)×𝑃(𝑋|𝐼)

𝑃(𝑌|𝐼)
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BAYES’ THEOREM

Set-up: assume that an experiment has been conducted to determine the degree of
validity of a particular hypothesis, and that experimental data has been collected.

The central data analysis question: given everything that was known prior to the
experiment, does the collected data support (or invalidate) the hypothesis?

Throughout, let 𝑋 denote the proposition that the hypothesis in question is true, let 𝑌
denote the proposition that the experiment yielded the actual observed data, let 𝐼
denote (as always) the relevant background information.
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BAYES’ THEOREM

Central data analysis question (reprise):

What is the value of 𝑃 hypothesis is true observed data, 𝐼)?

Problem: this is nearly always impossible to compute directly.

Solution: using Bayes' Theorem,

𝑃 hypothesis data, 𝐼) =
𝑃 data hypothesis, 𝐼)×𝑃 hypothesis 𝐼)

𝑃 data 𝐼) ,

it may be that the terms on the right are easier to compute.
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BAYES’ THEOREM

In the vernacular: the probability
¡ 𝑃 hypothesis 𝐼) of the hypothesis being true prior to the experiment is the prior

¡ 𝑃 hypothesis data, 𝐼) of the hypothesis being true once the experimental data is taken into
account is the posterior

¡ 𝑃 data hypothesis, 𝐼) of the experimental data being observed assuming that the hypothesis is
true is the likelihood

¡ 𝑃 data 𝐼) of the experimental data being observed independently of any hypothesis is the
evidence

A given hypothesis includes a (potentially implicit) model which can be used to
compute or approximate the likelihood.
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BAYES’ THEOREM

Determining the prior is a source of considerable controversy

¡ conservative estimates (uninformative priors) often lead to reasonable results

¡ in the absence of information, go with maximum entropy prior

The evidence is harder to compute on theoretical grounds – evaluating the
probability of observing data requires access to some model as part of 𝐼. Either

¡ that model was good, so there’s no need for a new hypothesis

¡ that model was bad, so we dare not trust our computation
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BAYES’ THEOREM

Thankfully, the evidence is rarely required on problems of parameter estimation
(although it is crucial for model selection):

¡ prior to the experiment, there are numerous competing hypotheses

¡ the priors and likelihoods will differ, but not the evidence

¡ the evidence is not needed to differentiate the various hypotheses

Bayes' Theorem is often presented as

𝑃 hypothesis data, 𝐼 ∝ 𝑃 data hypothesis, 𝐼 ×𝑃 hypothesis 𝐼

or simply as posterior ∝ likelihood×prior, that is to say, beliefs should be updated in
the presence of new information.



data-action-lab.com

EXERCISE

Suppose that a test for a particular disease has a very high success rate. If a patient 

¡ has the disease, the test accurately reports a ’positive’ with probability 0.99;

¡ does not have the disease, the test accurately reports a ’negative’ with probability 0.95. 

Assume further that only 0.1% of the population has the disease. What is the 
probability that a patient who tests positive does not in fact have the disease? 
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MATRIX ALGEBRA
STATISTICAL AND MATHEMATICAL FOUNDATIONS

Neo: What is the Matrix?
Trinity: The answer is out there, Neo. It's looking for you, and 
it will find you if you want it to.

(The Matrix, the Wachowski Sisters)
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LEARNING OBJECTIVES

What is the main mathematical object involved in linear algebra?

Why are matrices relevant in data science/data analysis?

What are some matrix operations?
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LINEAR ALGEBRA 

A matrix is an important mathematical tool that allows for easy organization of
information, simplifies notation, and facilitates the application of algorithms to data.

Most statistical tools require rectangular data:

¡ each column contains a variable (feature, field, attribute)
- indicator, target, question in a survey, etc.

¡ each row contains an observation (case, unit, item)
- country, survey respondent, subject in an experiment, etc.

¡ each cell contains a value (measurement) for a particular variable and observation

- GDP per capita for Canada, answer to a specific question, age, etc.
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MATRIX OPERATIONS

A matrix is a rectangular grid of elements arranged into rows and columns.

Matrices are often used in algebra to solve for unknown values in linear equations,
and in geometry.

Matrix Addition: matrices can be added together (element-wise) as long as their
dimensions are the same (i.e. both matrices have the same number of rows and
columns), like so:

3 −2
4 1 + 4 6

8 3 = 7 4
12 4
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MATRIX OPERATIONS

Multiplying a Matrix by a Scalar: a matrix of any dimension can be multiplied by a
scalar by multiplying each element by the scalar

−1×
2 1
3 −5
4 6

=
−2 −1
−3 5
−4 −6

Multiplying Matrices: two matrices 𝐴 and 𝐵 can be multiplied if their dimensions are
compatible (i.e.,dim 𝐴 = 𝑛×𝑝and dim 𝐵 = 𝑝×𝑘). The product 𝐶 = 𝐴𝐵 is such
that dim 𝐶 = 𝑛×𝑘.
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MATRIX OPERATIONS

The element in the ith row and jth column of the product 𝐶 = 𝐴𝐵 is given by

𝑐!,# = 𝑎!,$𝑏$,# +⋯+ 𝑎!,%𝑏%,#

For 2×2 matrices, this reduces to

𝑎 𝑏
𝑐 𝑑 × 𝑒 𝑓

𝑔 ℎ = 𝑎𝑒 + 𝑏𝑔 𝑎𝑓 + 𝑏ℎ
𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ

For instance, 

𝐴 = 4 2 1
3 0 5 , 𝐵 =

−2
3
0

⟹ 𝐴𝐵 = 4×(−2) + 2×3 + 1×0
3×(−2) + 0×3 + 5×0 = −2

−6



data-action-lab.com

MATRIX OPERATIONS

Transposing a Matrix: swapping the rows and the columns of a matrix is called transposing
the matrix – it’s denoted with a ‘T’:

6 0 −2
2 1 3

&
=

6 2
0 1
−2 3

When applied to a data frame, transposing has the effect of interchanging the role of cases
and observations.

For square matrices of size 𝑛 (i.e. dim = 𝑛 × 𝑛), there are two special matrices: the null
matrix 0' (consisting only of zeroes), and the identity matrix 𝐼' (diagonal entries are 1, all
others 0).
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MATRIX OPERATIONS

For square matrices, two quantities often end up playing a fundamental role:

the trace and the determinant.

The trace is the sum of the elements on the main diagonal:

tr
𝑎!! ⋯ 𝑎!"
⋮ ⋱ ⋮
𝑎"! ⋯ 𝑎""

= 𝑎!!+ 𝑎##+ ⋯ + 𝑎""
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MATRIX OPERATIONS

The determinant can be computed recursively. Let 𝐴 be 𝑛 × 𝑛.

1. For 𝑛 = 1, det[ 𝑎 ] = 𝑎 ;

2. For 𝑛 = 2, det
𝑎$$ 𝑎$(
𝑎($ 𝑎(( = 𝑎$$𝑎(( − 𝑎$(𝑎($

3. For a general 𝑛, let 𝐷!,# 𝐴 be the determinant of the (𝑛 − 1)×(𝑛 − 1) matrix obtained
by deleting the 𝑖th row and the 𝑗th column of 𝐴. The Laplace expansion of det 𝐴 along
the first column is

(−1)$)$𝑎$$ 𝐷$,$ 𝐴 + (−1)()$𝑎($ 𝐷(,$ 𝐴 + ⋯+ −1 #)$𝑎#$ 𝐷#,$ 𝐴 + ⋯+
(−1)')$𝑎'$ 𝐷',$ 𝐴 .
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MATRIX OPERATIONS

The determinant can be expanded along any row/column without changing its value:

det
1 0 −2
4 −2 6
10 8 0

= 1 ×det −2 6
8 0 − 0 ×det 4 6

10 0 + −2 ×det 4 −2
10 8 = −152

or

det
1 0 −2
4 −2 6
10 8 0

= −0 ×det 4 6
10 0 + (−2)×det 1 −2

10 0 − 8 ×det 1 −2
4 6 = −152

and

tr
1 0 −2
4 −2 6
10 8 0

= 1 + −2 + 0
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MATRIX OPERATIONS

The determinant is linked to the inverse of a matrix.

In number arithmetic every number 𝑎 ≠ 0 has an inverse 𝑏 written as 𝑎P% or ⁄% _ such
that 𝑏𝑎 = 𝑎𝑏 = 1. Similarly a square matrix 𝐴 may have an inverse 𝐵 = 𝐴P% where
𝐴𝐵 = 𝐵𝐴 = 𝐼N.

Miscellaneous:

¡ Non-square matrices do not possess inverses.

¡ Not all square matrices have an inverse (only those with det(𝐴) ≠ 0).

¡ A matrix which has an inverse is said to be non-singular.
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MATRIX OPERATIONS

If 𝑎𝑑 − 𝑏𝑐 ≠ 0 then the matrix 𝐴 = 𝑎 𝑏
𝑐 𝑑 has a (unique) inverse:

𝐴P% =
1

𝑎𝑑 − 𝑏𝑐
𝑑 −𝑏
−𝑐 𝑎

For 𝑛 > 2, other computation methods exist, such as Gaussian elimination: if a
sequence of row operations (𝑦𝑅` + 𝑥𝑅# → 𝑅 ,𝑅 ↔ 𝑅#) applied to a square matrix 𝐴
reduce it to the identity matrix 𝐼 of the same size, then the same sequence of
operations applied to 𝐼 reduces it to 𝐴P%.
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MATRIX OPERATIONS

If we cannot reduce 𝐴 to 𝐼 then 𝐴*$ does not exist. This will become evident by the
appearance of a row of zeros. There is no unique route from 𝐴 to 𝐼 and it is experience which
selects the optimal route.

It is more efficient to do the two reductions simultaneously;

𝐴 𝐼 =
1 3 3
1 4 3
2 7 7

1 0 0
0 1 0
0 0 1

+1*+2→+1
+3*(+2→+3

1 3 3
0 1 0
0 1 1

1 0 0
−1 1 0
−2 0 1

+2*-+1→+2
+3*+1→+3

1 0 3
0 1 0
0 0 1

4 −3 0
−1 1 0
−1 −1 1

+2*-+3→+2
1 0 0
0 1 0
0 0 1

7 0 −3
−1 1 0
−1 −1 1

= [𝐼|𝐴*$]
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EXERCISES

In R, construct 3×3 square matrices 𝐴, 𝐵, 𝐶 and compute the following:

¡ 𝐴 + 𝐵,𝐵𝐶, 𝐶𝐵, 𝐴(, 𝐶𝐴(

¡ tr(𝐴), tr(3𝐴), tr(𝐶), tr(−𝐶), tr(3𝐴 − 𝐶)

¡ det(𝐴), det(𝐴(), det(𝐵), det(𝐶), det(𝐵𝐶)

¡ 𝐴)!, 𝐵)!, 𝐶)!, if the respective determinants are ≠ 0

¡ det 𝐴)! , det 𝐵)! , det 𝐶)! , if the respective matrices are invertible

Can you infer rules from these computations?
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EIGENVALUES AND EIGENVECTORS
STATISTICAL AND MATHEMATICAL FOUNDATIONS
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LEARNING OBJECTIVES

What is an eigenvalue?

What is an eigenvector?

What is a use case for these mathematical concepts?
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EIGENVECTORS AND EIGENVALUES

An eigenvector of a matrix 𝐴 is a vector 𝒗 ≠ 𝟎 such that, for some scalar 𝜆, 𝐴𝒗 = 𝜆𝒗.

The value 𝜆 is called an eigenvalue of 𝐴 associated with 𝒗.

The eigenvalues of an 𝑛×𝑛 matrix 𝐴 satisfy det 𝐴 − 𝜆𝐼N = 0. The left-hand side is a
polynomial in 𝜆, and is called the characteristic polynomial of 𝐴, denoted by 𝑝Z(𝜆).

To find the eigenvalues of 𝐴, we find the roots of 𝑝Z(𝜆).
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EXAMPLE

Let 𝐴 = 2 −4
−1 −1 . Then 𝑝Z(𝜆) = det 𝐴 − 𝜆𝐼 = (𝜆 − 3)(𝜆 + 2). Thus, 𝜆% = 3 and

𝜆& = −2 are the eigenvalues of 𝐴.

To find eigenvectors corresponding to an eigenvalue 𝜆, we solve the system of linear
equations given by 𝐴 − 𝜆𝐼 𝒗 = 0.

Let’s find the eigenvectors corresponding to 𝜆% = 3, by solving

𝐴 − 3𝐼 𝒗 = 2 − 3 −4
−1 −1 − 3

𝑣%
𝑣& = 0

0 .
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EXAMPLE

This yields the following equations:

−𝑣% − 4𝑣& = 0 , −𝑣% − 4𝑣& = 0

If we let 𝑣& = 𝑡, then 𝑣% = −4𝑡, and so all eigenvectors corresponding to 𝜆% = 3 are

multiples of −4
1 .

A similar computation shows that all eigenvectors corresponding to 𝜆& = −2 are

multiples of 1
1 .
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EIGEN-DECOMPOSITION

If an 𝑛×𝑛 matrix 𝐴 has 𝑛 linearly independent eigenvectors, then 𝐴 may be
decomposed in the following manner:

𝐴 = 𝐵𝛬𝐵P%,

where 𝛬 is a diagonal matrix whose diagonal entries are the eigenvalues of 𝐴 and the
columns of 𝐵 are the corresponding eigenvectors of 𝐴.
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EXAMPLE

We have seen that the eigenvalues of 𝐴 = 2 −4
−1 −1 are 𝜆% = 3 and 𝜆& = −2, and

that the corresponding eigenvectors are −4
1 and 1

1 .

Thus, 𝛬 = 3 0
0 −2 , 𝐵 = −4 1

1 1 , and

𝐴 = −4 1
1 1

3 0
0 −2

−4 1
1 1

P%
= −4 1

1 1
3 0
0 −2

1
−4×1 − 1×1

1 −1
−1 −4

= −4 1
1 1

3 0
0 −2

−1/5 1/5
1/5 4/5
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EXERCISES

Compute the eigen-decomposition of the matrices 𝐴, 𝐵, 𝐶 you constructed in the 
previous module.
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OPTIMIZATION
STATISTICAL AND MATHEMATICAL FOUNDATIONS
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LEARNING OBJECTIVES

What is optimization?

When is optimization useful?

What is a cost function?

Why are minima and maxima relevant to optimization?

What are techniques that can be used to carry out optimization?
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OPTIMIZATION

Suppose we have a cost (objective) function 𝑓: ℝN → ℝ to optimize (the maximum
likelihood function of linear regression, for instance).

Seeking a maximum for 𝑓 is equivalent to seeking a minimum for –𝑓.

The aim is to find parameter values 𝒙 that minimize this function:

𝒙∗ = argmin
𝒙
𝑓 𝒙

The cost function could be subjected to a number of constraints 

𝑐# 𝒙 = 0, 𝑖 = 1,… ,𝑚; 𝑐 𝒙 ≥ 0, 𝑗 = 1,… , 𝑘; 𝒙 ∈ Ω ⊆ ℝN.
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OPTIMIZATION

The optimization problem can be viewed as a decision problem that involves finding
the “best” vector 𝐱 over all possible vectors in Ω ⊆ ℝN.

This vector is called the minimizer of 𝑓 over Ω. There may be multiple minimizers, or
none.

If Ω = ℝN, then we refer to the problem as an unconstrained optimization problem.

In general, this is not a trivial problem (consult the literature).
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TYPE OF MINIMA

In many instances, optimization is a numerical endeavour. Which of the minima is
found depends on the algorithm‘s starting point.

feasibility region

local minima

global minimum
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GOLDEN SECTION METHOD

The golden section search is a technique for finding the extremum (minimum or
maximum) of a strictly unimodal function by successively narrowing the range of
values inside which the extremum is known to exist.

The technique derives its name from the fact that the algorithm maintains the
function values for triples of points whose distances form a golden ratio.
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GOLDEN SECTION METHOD

Let [𝑎, 𝑏] be the interval of the current bracket (i.e. the optimizer resides in [𝑎, 𝑏]),
and assume 𝑓(𝑎), 𝑓(𝑏) have already have been computed. Denote 𝜑 = ⁄(1 + 5) 2.

1. Let 𝑐 = 𝑏 − *)+
,

, 𝑑 = 𝑎 + *)+
,

;

2. If 𝑓(𝑐), 𝑓(𝑑) are not available, compute them;

3. If 𝑓 𝑐 < 𝑓(𝑑) (to find a min – to find a max, reverse the order) then move the data:
𝑏, 𝑓 𝑏 ← 𝑑, 𝑓 𝑑 and (𝑑, 𝑓(𝑑)) ← (𝑐, 𝑓(𝑐)) and update 𝑐 = 𝑏 − (𝑎 − 𝑏)/𝜑 and
𝑓 𝑐 ;

4. Otherwise, move the data 𝑎, 𝑓 𝑎 ← 𝑐, 𝑓 𝑐 and (𝑐, 𝑓(𝑐)) ← (𝑑, 𝑓(𝑑)) and update 𝑑
= 𝑎 + (𝑏 − 𝑎)/𝜑 and 𝑓 𝑑 ;

5. The interval [𝑐, 𝑑] brackets the optimizer. Continue until tolerance is reached.
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NEWTON’S METHOD

In calculus, we learn that a function 𝑓: Ω ⊆ ℝN →ℝ which is sufficiently well behaved
reaches its max/min either at a critical point (i.e. where 𝛻𝑓 = 𝟎) or on the domain
boundary 𝜕Ω.

Thus, to identify candidate optimizers, we must be able to solve general systems of
the form 𝑔(𝒙) = 𝟎.

Newton’s Method is a powerful method for finding roots of functions.
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NEWTON’S METHOD

For 𝑛 = 1, the algorithm is shown below (it is quite similar in the general case).

Let 𝑥 = 𝑐 be an (unknown) zero of a differentiable function 𝑓 in an open interval
containing 𝑐.

1. make an initial approximation 𝑥! “close” to 𝑐

2. determine a new approximation using the formula 𝑥# = 𝑥! − 4(52)
46(52)

.

3. If |𝑥# − 𝑥!| is less than the desired accuracy (which needs to be specified), 𝑥# serves as
the final approximation. Otherwise, return to step 2. and calculate a new approximation.
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EXERCISES

Use the golden section method and Newton’s method to find a root of
𝑓 𝑥 = 𝑒Pc sin 𝑥 and 𝑔 𝑥 = 𝑥 ln 𝑥 .
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SAMPLING THEORY AND STUDY DESIGN
DATA COLLECTION AND DATA PROCESSING

“The latest survey shows that 3 out of 4 people make up 75% of the population”

D. Letterman
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THE GOAL OF GOOD STUDY/SAMPLING DESIGN

We need data that can:

¡ provide legitimate insight into our system of interest;

¡ provide correct, accurate answers to relevant questions;

¡ support the drawing of legitimate, valid conclusions, with the ability to qualify these 
conclusions in terms of scope and precision.

This starts with study design – what data to collect and how it should be collected
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¡ “A Dartmouth graduate student used an MRI machine to study the brain activity of 
a salmon as it was shown photographs and asked questions. The most interesting 
thing about the study was not that a salmon was studied, but that the salmon was 

dead. Yep, a dead salmon purchased at a local market was put into the MRI 
machine, and some patterns were discovered. There were inevitably patterns—and 

they were invariably meaningless.” 

[G. Smith, The Exaggerated Promise of So-Called Unbiased Data Mining]

https://www.wired.com/story/the-exaggerated-promise-of-data-mining/
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NPS AND PATTERN FISHING

Two separate issues can be combined to cause problems with data analysis:

¡ drawing conclusions (inferences) from a sample about a population that are not warranted 
by the sample collection method (symptomatic of NPS);

¡ looking for any available patterns in the data and then coming up with post hoc 
explanations for these patterns.

Alone or in combination, these lead to poor (and potentially harmful) conclusions.
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STUDIES AND SURVEYS

A survey is any activity that collects information about characteristics of interest:

¡ in an organized and methodical manner;

¡ from some or all units of a population;

¡ using well-defined concepts, methods, and procedures, and 

¡ compiles such information into a meaningful summary form.
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SAMPLING MODELS

A census is a survey where information is collected from all units of a population, 
whereas a sample survey uses only a fraction of the units.

When survey sampling is done properly, we may be able to use various statistical 
methods to make inferences about the target population by sampling a 
(comparatively) small number of units in the study population. 
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DECIDING FACTORS

In some instances, information about the entire population is required in order to 
answer questions, whereas in others it is not necessary. The survey type depends on 
multiple factors:

¡ the type of question that needs to be answered;

¡ the required precision;

¡ the cost of surveying a unit;

¡ the time required to survey a unit;

¡ size of the population under investigation, and

¡ the prevalence of the attributes of interest.
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STUDY/SURVEY STEPS

Studies or surveys follow the same general steps:

1. statement of objective

2. selection of survey frame

3. sampling design

4. questionnaire design

5. data collection

6. data capture and coding

The process is not always linear, but there is a definite movement from objective to 
dissemination.

7. data processing and imputation

8. estimation

9. data analysis

10. dissemination

11. documentation
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SURVEY FRAMES

The frame provides the means of identifying and contacting the units of the study 
population. It is generally costly to create and to maintain (in fact, there are 
organisations and companies that specialise in building and/or selling such frames). 

Useful frames contain:

¡ identification data,

¡ contact data,

¡ classification data,

¡ maintenance data, and

¡ linkage data.
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SURVEY FRAMES

The ideal frame contains identification data, contact data, classification data, 
maintenance data, and linkage data, and must minimize the risk of undercoverage or 
overcoverage, as well as the number of duplications and misclassifications (although 
some issues that arise can be fixed at the data processing stage).

A statistical sampling approach is contraindicated unless the selected frame is

¡ relevant (which is to say, it corresponds, and permits accessibility to, the target 
population),

¡ accurate (the information it contains is valid), 

¡ timely (it is up-to-date), and 

¡ competitively priced.
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MODES OF DATA COLLECTION

Paper-based vs. computer-assisted

¡ self-administered questionnaires are used when the survey requires detailed information to allow 
the units to consult personal records; associated with high non-response rate.

¡ interviewer-assisted questionnaires use well-trained interviewers to increase the response rate 
and overall quality of the data; face-to-face vs. telephone.

¡ computer-assisted interviews combine data collection and data capture, which saves time.

¡ unobtrusive direct observation

¡ diaries to be filled (paper or electronic)

¡ omnibus surveys

¡ email, Internet, and social media
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SURVEY ERROR

Total Error = Sampling Error + Measurement Error + Non-Response Error + Coverage Error

Statistical sampling can help provide estimates, but importantly, it can also provide 
some control over the total error (TE) of the estimates. 

Ideally, TE= 0. In practice, there are two main contributions to TE: sampling errors 
(due to the choice of sampling scheme), and nonsampling errors (everything else).

survey, not 
census

observations not 
measured accurately

non-respondents 
having systematic 

observation differences

frame decay 
and/or 

corruption
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NONSAMPLING ERROR

Nonsampling error can be controlled, to some extent:

¡ coverage error can be minimized by selecting high quality, up-to-date survey frames; 

¡ non-response error can be minimized by careful choice of the data collection mode and 
questionnaire design, and by using “call-backs” and “follow-ups”;

¡ measurement error can be minimized by careful questionnaire design, pre-testing of the 
measurement apparatus, and cross-validation of answers.

In practice, these suggestions are not that useful in modern times (landline-based survey 
frames are becoming irrelevant due to demographics, response rates for surveys that are not 
mandated by law are low, etc.). This explains, in part, the over-use of web scraping and non-
probabilistic sampling.
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NONPROBABILISTIC SAMPLING

Nonprobabilistic sampling (NPS) methods (designs) select sampling units from the target 
population using subjective, non-random approaches. 

¡ NPS are quick, relatively inexpensive and convenient (no survey frame required). 

¡ NPS methods are ideal for exploratory analysis and survey development.

Unfortunately, NPS are often used instead of probabilistic designs (problematic)

¡ the associated selection bias makes NPS methods unsound when it comes to inferences (they 
cannot be used to provide reliable estimates of the sampling error, the only component of TE under 
the analyst’s direct control);

¡ automated data collection often fall squarely in the NPS camp – we can still analyze data collected 
with a NPS approach, but may not generalize the results to the target population.



data-action-lab.com

NPS METHODS

Haphazard 

¡ man on the street, depends on availability of units and interviewer bias

Volunteer

¡ self-selection bias

Judgement 

¡ biased by inaccurate preconceptions about the target population

Quota 

¡ exit polling, ignores non-response bias
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NPS METHODS

Modified

¡ starts probabilistic, switches to quota as a reaction to high non-response rates

Snowball

¡ “pyramid” scheme

There are contexts where NPS methods might fit a client’s or an organization’s need 
(and that remains their decision to make, ultimately), but they must be informed of 
the drawbacks, and presented with some probabilistic alternatives.
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PROBABILISTIC SAMPLING

Probabilistic sample designs are usually more difficult and expensive to set-up (due 
to the need for a quality survey frame), and take longer to complete. 

They provide reliable estimates for the attribute of interest and the sampling error, 
paving the way for small samples being used to draw inferences about larger target 
populations (in theory, at least; the non-sampling error components can still affect 
results and generalisation).
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BASIC MATHEMATICAL CONCEPTS

Consider a finite population 𝒰, with 𝑁 units and measurements 𝑢$, … , 𝑢. .

The mean and variance of the population for the variable of interest are given by  

𝜇 =
1
𝑁Q
#/$

.

𝑢# , 𝜎( =
1
𝑁Q
#/$

.

𝑢# − 𝜇
(.

If 𝒴 ⊆ 𝒰 is a sample of the population with 𝑛 units and measurements 𝑦$, … , 𝑦' , then the 
sample mean and sample variance are given by 

V𝑦 =
1
𝑛
Q
!/$

'

𝑦! , 𝑠( =
1

𝑛 − 1
Q
!/$

'

𝑦! − V𝑦 (.
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BASIC MATHEMATICAL CONCEPTS

Let 𝑋%, … , 𝑋N be random variables, 𝑏%, … , 𝑏N ∈ ℝ, and E, V, Cov be the expectation, 
variance, and covariance operators, respectively, i.e.: 

§ E 𝑋$ = 𝜇$

§ Cov 𝑋$, 𝑋% = E 𝑋$𝑋% − E 𝑋$ E 𝑋%

§ V 𝑋$ = Cov 𝑋$, 𝑋$ = E 𝑋$# − E# 𝑋$ = E 𝑋$# − 𝜇$# = 𝜎$# and 

E 9
$&!

"
𝑏$𝑋$ =9

$&!

"
𝑏$E 𝑋$ =9

$&!

"
𝑏$𝜇$

V 9
$&!

"
𝑏$𝑋$ =9

$&!

"
𝑏$#V 𝑋$ +9

$'%
𝑏$𝑏% Cov 𝑋$, 𝑋%
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BASIC MATHEMATICAL CONCEPTS

The bias in an error component is the average of that error component if the survey 
is repeated many times independently under the same conditions. An unbiased
estimate is one for which the bias is nil. 

The variability in an error component is the extent to which that component would 
vary about its average value in the ideal scenario described above. 

The mean square error of an error component is a measure of its size:

MSE Z𝛽 = V Z𝛽 + Bias& Z𝛽 ,

Where Z𝛽 is an estimator of 𝛽.
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CONFIDENCE INTERVALS

If the estimate Z𝛽 is unbiased, E Z𝛽 − 𝛽 = 0, then an approximate 95% confidence 
interval (95% CI) for 𝛽 is given approximately by

Z𝛽 ± 2 aV Z𝛽 ,

where aV Z𝛽 is a sampling design-specific estimate of V Z𝛽 .

But what is a 95% CI, exactly? 
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SAMPLING DESIGN

Different sampling designs have distinct advantages and disadvantages. 

They can be used to compute estimates 

¡ for various population attributes: mean, total, proportion, ratio, difference, etc.

¡ for the corresponding 95% CI. 

We might also want to  compute sample sizes for a given error bound (an upper limit 
on the radius of the desired 95% CI), and how to determine the sample allocation 
(how many units to be sampled in various sub-population groups).
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SAMPLING DESIGN – UNIVERSE OF DISCOURSE

Target population: 
¡ 𝑁 units and measurements 𝒰 = 𝑢!, … , 𝑢.

True population attributes:
¡ mean 𝜇, variance 𝜎#, total 𝜏, proportion 𝑝

Sample population:
¡ 𝑛 units and measurements 𝒴 = 𝑦!, … , 𝑦" ⊆ 𝒰

Sample population attributes:
¡ sample mean V𝑦, sample variance 𝑠#, sample total �̂�, sample proportion Y𝑝
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PROBABILISTIC SAMPLING DESIGNS

Simple random sampling (SRS)

Stratified random sampling (StS)

Systematic sampling (SyS)

Cluster sampling (ClS)

Probability proportional-to-size sampling (PPS)

Replicated sampling (ReS)

Multi-stage sampling (MSS)

Multi-phase sampling (MPS)
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SAMPLING DESIGN – UNIVERSE OF DISCOURSE

¡ Goal: estimate the true population attributes 𝜇,
𝜎&, 𝜏, 𝑝 via the sample population attributes �𝑦,
𝑠& , �̂� , �̂� , 𝑛 , and the size 𝑁 of the target
population.

¡ For a given characteristic, we define 𝛿# as 1 or 0
depending on whether the sample unit 𝑦#
possesses the characteristic in question or not.

¡ We use the error bound 𝐵 = 2 aV.
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SIMPLE RANDOM SAMPLING (SRS)

¡ In SRS, 𝑛 units are selected randomly from the frame.

¡ Advantages:

¡ easiest sampling design to implement

¡ sampling errors are well-known and easy to estimate

¡ does not require auxiliary information

¡ Disadvantages:

¡ makes no use of auxiliary information

¡ no guarantee that the sample is representative

¡ costly if sample is widely spread out, geographically
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SRS ESTIMATORS

Estimators: 

�𝑦 =
1
𝑛
�
#W%

N

𝑦# , �̂� = 𝑁�𝑦, �̂� =
1
𝑛
�
#W%

N

𝛿#

Sample Design-Specific Variance Estimates: 

aV �𝑦 = d!
N 1 − N

e , aV �̂� = 𝑁&aV �𝑦 , aV �̂� = fg(%P fg)
N 1 − N

e

Sample Allocation:

𝑛 hi = jekl!
eP% \!mjkl!, 𝑛fn = je"kl!

eP% \!mje!kl!, 𝑛 fg = j og (%P og)
eP% \!mj og (%P og)
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STRATIFIED RANDOM SAMPLING (STS)

¡ In StS, 𝑛 = 𝑛$ +⋯+ 𝑛0 units are selected randomly
from 𝑘 frame strata.

¡ Advantages:
¡ may produce smaller error bound on estimation than SRS

¡ may be less expensive if elements are conveniently strat.

¡ may provide estimates for sub-populations

¡ Disadvantages:
¡ no major disadvantage

¡ if there are no natural ways to stratify the frame into homo-
geneous groupings, StS is roughly equivalent to SRS
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STS ESTIMATORS

Estimators: 

�𝑦dp =�
`W%

^
𝑁
𝑁
�𝑦 , �̂�dp= 𝑁�𝑦dp, �̂�dp=�

`W%

^
𝑁
𝑁
�̂�`

Sample Design-Specific Variance Estimates: 

aV �𝑦dp = %
e!�

`W%

^

𝑁&aV �𝑦 , aV �̂�dp = 𝑁&aV �𝑦dp , aV �̂�dp = %
e!�

`W%

^

𝑁&aV �̂�`
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OTHER EXAMPLES OF SAMPLING DESIGNS

Cluster Sampling (ClS) Multi-Stage Sampling 
(MSS)

Multi-Phase Sampling 
(MPS)

Replicated Sampling 
(ReS)
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EXERCISES

You are charged with estimating the yearly salary of data scientists in Canada. 

Identify potential: 

¡ populations (target, study, respondent, sampling frames)

¡ samples (intended, achieved)

¡ unit information (unit, response variate, population attribute)

¡ sources of bias (coverage, nonresponse, sampling, measurement) and variability (sampling, 
measurement).  
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CONFIDENCE INTERVALS (COMING SOON)
STATISTICAL AND MATHEMATICAL FOUNDATIONS



data-action-lab.com

HYPOTHESIS TESTING (COMING SOON)
STATISTICAL AND MATHEMATICAL FOUNDATIONS
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REGRESSION
STATISTICAL AND MATHEMATICAL FOUNDATIONS
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LEARNING OBJECTIVES

What is regression modelling?

What are some types of regression modeling?

When is regression modeling useful?
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REGRESSION MODELING

The most common data modeling methods are regressions, both linear and logistic

¡ ~90% of real data applications end up using a simple regression as their final model, typically
after very careful data preparation, encoding, and creation of variables.

There are several reasons for their frequent use:

¡ generally straightforward to understand and to train

¡ mean square error (MSE) objective function has a closed-form linear solution

¡ system of equations can usually be solved through matrix inversion or linear manipulation
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REGRESSION MODELING

The data structure of a general modeling task
is represented by 

We consider 𝑝 independent variables 𝑋#
to try to predict the dependent variable 𝑌.  

In order to simplify the discussion in the following, we introduce the matrix notation
𝑿[𝑛×𝑝], 𝒀 𝑛×1 , 𝜷 𝑝×1 , where 𝑛 is the # of observations and 𝑝 is the # of
independent variables.
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LINEAR REGRESSION

The basic assumption of linear regression is that the dependent variable 𝑦 can be
approximated by a linear combination of the independent variables as follows:

𝒀 = 𝑿𝜷 + 𝜺,

where 𝛽 ∈ ℝgis to be determined based on the training set, and for which

E 𝜺 𝑿 = 0, E 𝜺𝜺O 𝑿 = 𝜎&𝐼.

Typically, the errors are also assumed to be normally distributed, that is :

𝜺|𝑿 ~ 𝑁(0, 𝜎&𝐼).
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LINEAR REGRESSION

If Z𝛽# is the estimate of the true coefficient 𝛽#, the linear regression model associated
with the data is

a𝒀 𝒙 = Z𝛽$ + Z𝛽%𝑥% +⋯+ Z𝛽g𝑥g

In matrix form, the regression problem requires a solution a𝜷 to the normal equation
𝑿O𝑿𝜷 = 𝑿O𝒀.

When the symmetric positive definite matrix 𝑿O𝑿 is invertible, the fitted coefficient is
simply a𝜷 = (𝑿O𝑿)P%(𝑿O𝒀). Note that 𝑿O𝑿 is a 𝑝×𝑝 matrix, which makes the
inversion “easier” to compute, relatively speaking, when 𝑛 is large.
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GENERALIZED LINEAR REGRESSION

Generalized linear models (GLMs) extend linear statistical models by
accommodating response variables with non-normal conditional distributions.

Except for the error structure, a GLM is essentially the same as for a linear model:

𝑌#~ some distribution with mean 𝜇#, where 𝑔(𝜇#)= 𝑥#O𝛽

A GLM therefore consists of three parts:

¡ a systematic component 𝑥$/𝛽

¡ a random component – specified distribution for 𝑌$
¡ a link function 𝑔
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GENERALIZED LINEAR REGRESSION

We could specify any distribution for the outcome variable 𝑌…

¡ but the mathematics of GLM work nicely only for the exponential family of distributions
(most common statistical distributions fall into this family: such as the normal, binomial,
Poisson, gamma, and others).

Linear regression is an example of GLM:

¡ systematic component: 𝑥$/𝛽

¡ random component: 𝑌$ ~ 𝑁 𝜇$ , 𝜎#

¡ link: 𝑔 𝜇 = 𝜇, the identity link
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EXAMPLE

In the early stages of an epidemic, the rate at which new cases occur increases
exponentially through time.

If 𝜇# is the expected number of new cases on day 𝑡#, a model taking the form

𝜇# = 𝛾 exp 𝛿𝑡#
might be appropriate. If we take the log of both sides, we get

log 𝜇# = log 𝛾 + 𝛿𝑡# = 𝛽$ + 𝛽%𝑡# = 1, 𝑡# O 𝛽$, 𝛽% .

Furthermore, since the we measure the number of new cases (a count), the Poisson
distribution could be a reasonable choice.

systematic componentlink

random component
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ADVANTAGES OF GLM

No need to transform 𝑌 to have a normal distribution

Choice of link is separate from the choice of random component

¡ more modeling flexibility

If link produces additive effects, no need for constant variance

Models are fitted via ML estimation

¡ optimal properties of the estimators

Inference tools and model checks apply to other GLMs

¡ Wald ratio test, likelihood ratio test, deviance, residuals, confidence intervals, etc.

See PROC GENMOD in SAS, or glm() in R
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EXERCISE

An auto part is manufactured by a company once a month in lots that vary in
size as demand fluctuates. The data below represent observations on lot size
(𝑦), and number of employee-hours of labor (𝑥) for 10 recent production runs.

Fit a simple regression model 𝑦$ = 𝛽% + 𝛽!𝑥$ + 𝜀$ , where E 𝜀$ = 0, E 𝜀$𝜀& = 0
for 𝑖 ≠ 𝑗, and V(𝜀$)= 𝜎# if the observations are:

𝒀 = 73,50,128,170,87,108,135,69,148,132 ',

𝒙 = 30,20,60,80,40,50,60,30,70,60 '. 
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REFERENCES
STATISTICAL AND MATHEMATICAL FOUNDATIONS
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