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Abstract
With the advent of automatic data collection, it is now possible to store and process large troves of data.
There are technical issues associated to massive data sets, such as the speed and efficiency of analytical
methods, but there are also problems related to the detection of anomalous observations and the analysis
of outliers.

Extreme and irregular values behave very differently from the majority of observations. For instance, they
can represent criminal attacks, fraud attempts, targeted attacks, or data collection errors. As a result,
anomaly detection and outlier analysis play a crucial role in cybersecurity, quality control, etc. [1,3,4]. The
(potentially) heavy human price and technical consequences related to the presence of such observations
go a long way towards explaining why the topic has attracted attention in recent years.

This report contains a review of various detection methods, with particular attention paid to both supervised
and unsupervised methods, as well as an application to time series data and a project suggestion
(comparative analysis of various algorithms applied to 5 real-world datasets).
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1. Introduction

Isaac Asimov, the prolific American author, once wrote that

The most exciting phrase to hear [...], the one
that heralds the most discoveries, is not “Eu-
reka!” but “That’s funny...”.

However, anomalous observations are not only harbingers
of great scientific discoveries – unexpected observations
can spoil analyses or be indicative of the presence of issues
related to data collection or data processing.

Either way, it becomes imperative for decision-makers
and analysts to establish anomaly detection protocols, and
to identify strategies to deal with such observations.

1.1 Basic Notions and Overview
Outlying observations are data points which are atypi-
cal in comparison to the unit’s remaining features (within-
unit), or in comparison to the measurements for other units
(between-units), or as part of a collective subset of observa-
tions. Outliers are thus observations which are dissimilar
to other cases or which contradict known dependencies
or rules.1

Observations could be anomalous in one context, but
not in another. Consider, for instance, an adult male who
is 6-foot tall. Such a man would fall in the 86th percentile
among Canadian males [23], which, while on the tall side,
is not unusual; in Bolivia, however, the same man would
land in the 99.9th percentile [23], which would mark him
as extremely tall and quite dissimilar to the rest of the pop-
ulation.2

A common mistake that analysts make when dealing with
outlying observations is to remove them from the dataset
without carefully studying whether they are influential
data points, that is, observations whose absence leads to
markedly different analysis results.

When influential observations are identified, remedial
measures (such as data transformation strategies) may need
to be applied to minimize any undue effect. Note that
outliers may be influential, and influential data points may
be outliers, but the conditions are neither necessary nor
sufficient.

Anomaly Detection
By definition, anomalies are infrequent and typically shrouded
in uncertainty due to their relatively low numbers, which
makes it difficult to differentiate them from banal noise or
data collection errors.

Furthermore, the boundary between normal and de-
viant observations is usually fuzzy; with the advent of e-

1Outlying observations may be anomalous along any of the individual
variables, or in combination.

2Anomaly detection points towards interesting questions for analysts
and subject matter experts: in this case, why is there such a large discrep-
ancy in the two populations?

shops, for instance, a purchase which is recorded at 3AM
local time does not necessarily raise a red flag anymore.

When anomalies are actually associated to malicious
activities, they are more than often disguised in order to
blend in with normal observations, which obviously com-
plicates the detection process.

Numerous methods exist to identify anomalous observa-
tions; none of them are foolproof and judgement must
be used. Methods that employ graphical aids (such as box-
plots, scatterplots, scatterplot matrices, and 2D tours) to
identify outliers are particularly easy to implement, but
a low-dimensional setting is usually required for ease of
interpretability.

Analytical methods also exist (using Cooke’s or Maha-
lanobis’ distances, say), but in general some additional level
of analysis must be performed, especially when trying to
identify influential points (cf. leverage).

With small datasets, anomaly detection can be conducted
on a case-by-case basis, but with large datasets, the tempta-
tion to use automated detection/removal is strong – care
must be exercised before the analyst decides to go down
that route.3

In the early stages of anomaly detection, simple data
analyses (such as descriptive statistics, 1- and 2-way tables,
and traditional visualisations) may be performed to help
identify anomalous observations, or to obtain insights about
the data, which could eventually lead to modifications of
the analysis plan.

Outlier Tests
How are outliers actually detected? Most methods come
in one of two flavours: supervised and unsupervised (we
will discuss those in detail in later sections).

Supervised methods use a historical record of labeled
(that is to say, previously identified) anomalous observa-
tions to build a predictive classification or regression
model which estimates the probability that a unit is anoma-
lous; domain expertise is required to tag the data. Since
anomalies are typically infrequent, these models often also
have to accommodate the rare occurrence problem.4

Unsupervised methods, on the other hand, use no pre-
viously labeled information or data, and try to determine if
an observation is an outlying one solely by comparing its
behaviour to that of the other observations.

3This stems partly from the fact that once the “anomalous” observations
have been removed from the dataset, previously “regular” observations
can become anomalous in turn in the smaller dataset; it is not clear when
that runaway train will stop.

4Supervised models are built to minimize a cost function; in default
settings, it is often the case that the mis-classification cost is assumed to
be symmetrical, which can lead to technically correct but useless solutions.
For instance, the vast majority (99.999+%) of air passengers emphatically
do not bring weapons with them on flights; a model that predicts that no
passenger is attempting to smuggle a weapon on board a flight would be
99.999+% accurate, but it would miss the point completely.
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Figure 1. Tukey’s boxplot test; suspected outliers are marked by
white disks, outliers by black disks.

The following traditional methods and tests of outlier de-
tection fall into this category:5

Perhaps the most commonly-used test is Tukey’s box-
plot test; for normally distributed data, regular ob-
servations typically lie between the inner fences

Q1 − 1.5(Q3 −Q1) and Q3 + 1.5(Q3 −Q1).

Suspected outliers lie between the inner fences and
their respective outer fences

Q1 − 3(Q3 −Q1) and Q3 + 3(Q3 −Q1).

Points beyond the outer fences are identified as out-
liers (Q1 and Q3 represent the data’s 1st and 3rd quar-
tile, respectively; see Figure 1).
The Grubbs test is another univariate test, which
takes into consideration the number of observations
in the dataset. Let x i be the value of feature X for
the ith unit, 1 ≤ i ≤ N , let (x , sx) be the mean and
standard deviation of feature X , let α be the desired
significance level, and let T (α, N) be the critical value
of the Student t-distribution at significance α/2N .
Then, the ith unit is an outlier along feature X if

|x i − x | ≥
sx(N − 1)
p

N

√

√ T 2(α, N)
N − 2+ T 2(α, N)

.

Other common tests include:

– the Dixon Q test, which is used in the experi-
mental sciences to find outliers in (extremely)
small datasets – it is of dubious validity;

– the Mahalanobis distance, which is linked to
the leverage of an observation (a measure of
influence), can also be used to find multi-dimen-
sional outliers, when all relationships are linear
(or nearly linear);

5Note that normality of the underlying data is an assumption for most
tests; how robust these tests are against departures from this assumption
depends on the situation.

– the Tietjen-Moore test, which is used to find a
specific number of outliers;

– the generalized extreme studentized deviate
test, if the number of outliers is unknown;

– the chi-square test, when outliers affect the
goodness-of-fit, as well as

– DBSCAN and other clustering-based outlier de-
tection methods.

Visual Outlier Detection
The following three (simple) examples illustrate the princi-
ples underlying visual outlier and anomaly detection.

Example 1. On a specific day, the height of several plants
in a nursery are measured. The records also show each
plant’s age (the number of weeks since the seed has been
planted).

Histograms of the data are shown in Figure 2 (age on
the left, height on the middle).

Very little can be said about the data at that stage: the
age of the plants (controlled by the nursery staff) seems
to be somewhat haphazard, as does the response variable
(height). A scatter plot of the data (rightmost chart in Fig-
ure 2), however, reveals that growth is strongly correlated
with age during the early period of a plant’s life for the
observations in the dataset; points clutter around a lin-
ear trend. One point (in yellow) is easily identified as an
outlier. There are (at least) two possibilities: either that
measurement was botched or mis-entered in the database
(representing an invalid entry), or that one specimen has ex-
perienced unusual growth (outlier). Either way, the analyst
has to investigate further.

Example 2. A government department has 11 service points
in a jurisdiction. Service statistics are recorded: the monthly
average arrival rates per teller and monthly average service
rates per teller for each service point are available.

A scatter plot of the service rate per teller (y axis)
against the arrival rate per teller (x axis), with linear re-
gression trend, is shown in the leftmost chart in Figure 3.
The trend is seen to inch upwards with increasing x values.

A similar chart, but with the left-most point removed
from consideration, is shown in the middle chart of Figure 3.
The trend still slopes upward, but the fit is significantly im-
proved, suggesting that the removed observation is unduly
influential (or anomalous) – a better understanding of the
relationship between arrivals and services is afforded if it
is set aside.

Any attempt to fit that data point into the model must
take this information into consideration. Note, however,
that influential observations depend on the analysis that is
ultimately being conducted – a point may be influential for
one analysis, but not for another.

Example 3. Measurements of the length of the appendage
of a certain species of insect have been made on 71 individ-
uals. Descriptive statistics have been computed; the results
are shown in Figure 4.
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Figure 2. Summary visualisations for an (artificial) plant dataset: age distribution (left), height distribution (middle), height vs. age,
with linear trend (right).

Figure 3. Visualisations for an (artificial) service point dataset: trend for 11 service points (left), trend for 10 service points (middle),
influential observations (right).

Analysts who are well-versed in statistical methods might
recognize the tell-tale signs that the distribution of ap-
pendage lengths is likely to be asymmetrical (since the
skewness is non-negligible) and to have a “fat” tail (due to
the kurtosis being commensurate with the mean and the
standard deviation, the range being so much larger than
the interquartile range, and the maximum value being so
much larger than the third quartile).

The mode, minimum, and first quartile values belong
to individuals without appendages, so there appears to be
at least two sub-groups in the population (perhaps split
along the lines of juveniles/adults, or males/females). The
maximum value has already been seen to be quite large
compared to the rest of the observations, which at first
suggests that it might belong to an outlier.

The histogram of the measurements, however, shows
that there are 3 individuals with very long appendages (see
right-most chart in Figure 4): it now becomes plausible for
these anomalous entries to belong to individuals from a
different species altogether who were erroneously added
to the dataset. This does not, of course, constitute a proof
of such an error, but it raises the possibility, which is often
the best that an analyst can do in the absence of subject
matter expertise.

This traditional approach to anomaly detection fails for
high-dimensional datasets, however, and a fundamentally
different approach is advocated.

1.2 Anomaly Detection as a Statistical Learning Problem
Fraudulent behaviour is not always easily identifiable, even
after the fact. Credit card fraudsters, for instance, will try
to disguise their transactions as regular and banal, rather
than as outlandish; to fool human observers into confusing
what is merely plausible with what is probable (or at least,
not improbable).

At its most basic level, anomaly detection is a problem in
applied probability: if I denotes what is known about the
dataset (behaviour of individual observations, behaviour of
observations as a group, anomalous/normal verdict for a
number of similar observations, etc.), is

P(obs. is anomalous | I)> P(obs. is normal | I)?

Anomaly detection models usually assume stationarity for
normal observations, which is to say, that the underlying
mechanism that generates data does not change in a sub-
stantial manner over time, or, if it does, that its rate of
change or cyclicity is known.

For time series data, this means that it may be necessary to
first perform trend and seasonality extraction.

Example 4. Supply chains play a crucial role in the trans-
portation of goods from one part of the world to another. As
the saying goes, “a given chain is only as strong as its weak-
est link” – in a multi-modal context, comparing the various
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Figure 4. Summary and visualisation for an (artificial) appendage length dataset: descriptive statistics (left), appendage length
distribution (right).

transportation segments is far from an obvious endeavour:
if shipments departing Shanghai in February 2013 took two
more days, on average, to arrive in Vancouver than those
departing in July 2017, can it be said with any certainty
that the shipping process has improved in the intervening
years? Are February departures always slower to cross the
Pacific Ocean?

The seasonal variability of performance is relevant to
supply chain monitoring; the ability to quantify and account
for the severity of its impact on the data is thus of great
interest.

One way to tackle this problem is to produce an index
to track container transit times. This index should depict
the reliability and the variability of transit times but in
such a way as to be able to allow for performance compari-
son between differing time periods.

To simplify the discussion, assume that the ultimate goal
is to compare quarterly and/or monthly performance data,
irrespective of the transit season, in order to determine how
well the network is performing on the Shanghai → Port
Metro Vancouver/Prince Rupert→ Toronto corridor, say.

Figure 5. Multi-modal supply chain.

The supply chain under investigation has Shanghai as the
point of origin of shipments, with Toronto as the final des-
tination; the containers enter the country either through
Vancouver or Prince Rupert. Containers leave their point of
origin by boat, arrive and dwell in either of the two ports
before reaching their final destination by rail.

For each of the three segments (Marine Transit, Port
Dwell, Rail Transit), the data consists of the monthly em-
pirical distribution of transit times, built from sub-samples
(assumed to be randomly selected and fully representative)
of all containers entering the appropriate segment.

Each segment’s performance is measured using fluidity
indicators, which are computed using various statistics
of the transit/dwelling time distributions for each of the
supply chain segments, such as:

Reliability Indicator (RI) – the ratio of the 95th percentile
to the 5th percentile of transit/dwelling times (a high
RI indicates high volatility, whereas a low RI (≈ 1)
indicates a reliable corridor);

Buffer Index (BI) – the ratio of the positive difference be-
tween the 95th percentile and the mean, to the mean.
A small BI (≈ 0) indicates only slight variability in
the upper (longer) transit/dwelling times; a large
BI indicates that the variability of the longer tran-
sit/dwelling times is high, and that outliers might be
found in that domain;

Coefficient of Variation (CV) – the ratio of the standard
deviation of transit/dwelling times to the mean tran-
sit/dwelling time.

The time series of monthly indicators (which are derived
from the monthly transit/dwelling time distributions in
each segment) are then decomposed into their

trend;
seasonal component (seasonality, trading-day, moving-
holiday), and
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Figure 6. Conceptual time series decomposition; potential
anomalous behaviour should be searched for in the irregular
component.

irregular component.

The trend and the seasonal components provide the ex-
pected behaviour of the indicator time series;6 the irreg-
ular component arise as a consequence of supply chain
volatility. A high irregular component at a given time
point indicates a poor performance against expectations for
that month, which is to say, an anomalous observation.

In general, the decomposition follows a model which is

multiplicative;
additive, or
pseudo-additive.

The choice of a model is driven by data behaviour and
choice of assumptions; the X12 model automates some of
the aspects of the decomposition, but manual intervention
and diagnostics are still required.7 The additive model, for
instance, assumes that:

1. the seasonal component St and the irregular compo-
nent It are independent of the trend Tt ;

2. the seasonal component St remains stable from year
to year; and

3. there is no seasonal fluctuation:
∑12

j=1 St+ j = 0.

Mathematically, the model is expressed as:

Ot = Tt + St + It

All components share the same dimensions and units. After
seasonality adjustment,the seasonality adjusted series is:

SAt = Ot − St = Tt + It

6Before carrying out seasonal adjustment, it is important to identify
and pre-adjust for structural breaks (using the Chow test, for instance), as
their presence can give rise to severe distortions in the estimation of the
Trend and Seasonal effects. Seasonal breaks occur when the usual seasonal
activity level of a particular time reporting unit changes in subsequent
years. Trend breaks occurs when the trend in a data series is lowered or
raised for a prolonged period, either temporarily or permanently. Sources
of these breaks may come from changes in government policies, strike
actions, exceptional events, inclement weather, etc.

7X12 is implemented in SAS and R, among other platforms.

The multiplicative and pseudo-additive models are defined
in similar ways (consult [27–31] for details).8

The data decomposition/preparation process is illustrated
with the 40-month time series of marine transit CVs from
2010-2013, whose values are shown in Figure 7. The size of
the peaks and troughs seems fairly constant with respect to
the changing trend; the SAS implementation of X12 agrees
with that assessment and suggests the additive decomposi-
tion model, with no need for further data transformations.

The diagnostic plots are shown in Figure 8: the CV se-
ries is prior-adjusted from the beginning until OCT2010
after the detection of a level shift. The SI (Seasonal Irreg-
ular) chart shows that there are more than one irregular
component which exhibits volatility. The adjusted series
is shown below in Figure 9; the trend and irregular com-
ponents are also shown separately for readability. It is on
the irregular component that detection anomaly would be
conducted.

The last example shows the importance of domain under-
standing and data preparation to the anomaly detection
process. Given that the vast majority of observations in a
general problem are typically "normal", another conceptu-
ally important approach is to view anomaly detection as
a rare occurrence learning classification problem or as a
novelty detection data stream problem (these problems
will be tackled in other data science reports of this series).

Either way, while there a number of strategies that use
regular classification/clustering algorithms for anomaly de-
tection, they are rarely successful unless they are adapted
or modified for the anomaly detection context.

Basic Concepts
A generic system (such as the monthly transit times from
the previous subsection, say) may be realized in normal
states or in abnormal states. Normality, perhaps counter-
intuitively, is not confined to finding the most likely state,
however, as infrequently occurring states could still be nor-
mal or plausible under some interpretation of the system.

As the authors of [12] see it, a system’s states are the re-
sults of processes or behaviours that follow certain natural
rules and broad principles; the observations are a manifes-
tation of these states. Data, in general, allows for inferences
to be made about the underlying processes, which can then
be tested or invalidated by the collection of additional data.
When the inputs are perturbed, the corresponding outputs

8The simplest way to determine whether to use multiplicative or ad-
ditive decomposition is by graphing the time series. If the size of the
seasonal variation increases/decreases over time, multiplicative decompo-
sition should be used. On the other hand, if the seasonal variation seems to
be constant over time, additive model should be used. A pseudo-additive
model should be used when the data exhibits the characteristics of the
multiplicative series, but parameter values are close to zero.
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Figure 7. Monthly marine transit CVs and estimation summary.

Figure 8. Diagnostic plots. Note that the analysis of a time series starts with estimation of the effects of festivals and trading days.
These pre-calculated estimates are then used for prior adjustment of the series. The prior adjusted original series is subsequently
analyzed using the seasonal adjustment.

are likely to be perturbed as well; if anomalies arise from
perturbed processes, being able to identify when the pro-
cess is abnormal, that is to say, being able to capture the
various normal and abnormal processes, may lead to useful
anomaly detection.

Any supervised anomaly detection algorithm requires a
training set of historical labeled data (which may be costly
to obtain) on which to build the prediction model, and a
testing set on which to evaluate the model’s performance
in terms of True Positives (TP, detected anomalies that
actually arise from process abnormalities); True Negatives
(TN, predicted normal observations that indeed arise from
normal processes); False Positives (FP, detected anomalies
corresponding to regular processes), and False Negatives
(FN, predicted normal observations that are in fact the
product of an abnormal process).

As discussed previously, the rare occurrence problem makes
optimizing for maximum accuracy

a =
TN+ TP

TN+ TP+ FN+ FP

a losing strategy; instead, algorithms attempt to minimize
the FP rate and the FN rate under the assumption that the
cost of making a false negative error could be substantially
higher than the cost of making a false positive error.
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Figure 9. Adjusted time series components plots.

Assume that for a testing set with d = FN+TP true outliers,
an anomaly detection algorithm identifies m = FP + TP
suspicious observations, of which n = TP are known to
be true outliers. Performance evaluation in this context is
often measured using:

Precision – the proportion of true outliers among the sus-
picious observations

p =
n
m
=

TP
FP+ TP

;

when most of the points identified by the algorithm
are true outliers, p ≈ 1;

Recall – the proportion of true outliers detected by the
algorithm

r =
n
d
=

TP
FN+ TP

;

when most of the true outliers are identified by the
algorithm, r ≈ 1;

F1−Score – the harmonic mean of the algorithm’s precision
and its recall

F1 =
2pr
p+ r

=
2TP

2TP+ FP+ FN
;

one drawback of precision, recall, and the F1−score is
that they do not incorporate TN in the evaluation pro-
cess, but this is unlikely to be problematic as regular
observations that are correctly seen as unsuspicious
are not usually the observations of interest.9;

Example 5. Consider a test dataset with 5000 observations,
100 of which are anomalous. An algorithm which predicts
all observations to be anomalous would score a = p = 0.02,
r = 1, and F1 ≈ 0.04, whereas an algorithm that detects 10
of the true outliers would score r = 0.1 (the other values
would change according to the TN and FN counts).

9Nevertheless, the analyst for whom the full picture is important might
want to further evaluate the algorithm with the help of the Matthews
Correlation Coefficient [32] or the specificity s = TN

FP+TN .

Another supervised approach is to estimate the relative
abnormality of various observations: it is usually quite
difficult to estimate the probability that an observation x1
is anomalous with any certainty, but it might be possible
to determine that it is more likely to be anomalous than
another observation x2, say (denoted by x1 � x2).

This paradigm allows the suspicious observations to be
ranked; let ki ∈ {1, . . . , m} be the rank of the ith true outlier,
i ∈ {1, . . . , n}, in the sorted list of suspicious observations

x1 � xk1
� · · · � xki

� · · ·xkn
� xm;

the rank power of the algorithm is

RP =
n(n+ 1)
2
∑n

i=1 ki
.

When the d actual anomalies are ranked in (or near) the
top d suspicious observations, RP≈ 1.

Rank power is well-defined only when m≥ d; as with
most performance evaluation metrics, a single raw number
is meaningless – it is in comparison with the performance
of other algorithms that it is most useful.

On the unsupervised front, where anomalous/normal la-
bels are not known or used, if anomalies are those obser-
vations that are dissimilar to other observations, and if
clusters represent groupings of similar observations, then
observations that do not naturally fit into a cluster could
be potential anomalies (see Figure 10).

There are a number of challenges, not the least of which
being that most clustering algorithms do not recognize po-
tential outliers (DBSCAN is a happy exception) and that
some appropriate measure of similarity/dissimilarity of ob-
servations has to be agreed upon (different measures could
lead to different cluster assignments).

Finally, it is worth mentioning that the definitions of terms
like normal and anomalous are kept purposely vague, to
allow for flexibility.
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Figure 10. Clusters of customers (red, green, blue) and potential anomalies/outliers (grey) in an artificial dataset.

1.3 Suggested References
The main references that were consulted in the preparation
fo this report are:

Aggarwal, C.C. [2017], Outlier Analysis (2nd ed.),
Springer [1]
Mehrotra, K.G., Mohan, C.K., Huang, H. [2017], Ano-
maly Detection Principles and Algorithms, Springer
[12]

Other good survey documents include Chandola, Banerjee,
and Kumar’s Outlier detection: a survey [21], and Hodge
and Austin’s A survey of outlier detection methodologies [22].

Specific methods and approaches are the focus of other
papers: [2,8,41] (high-dimensional data), [7] (DOBIN), [9]
(outlier ensembles), [17,24] (isolation forest), [18,25] (DB-
SCAN), [39] (LOF), [37,38,40,42,43] (subspace method),
[35] (time series data).

On the practical side of things, we would be remiss if we
didn’t mention Arora’s An Awesome Tutorial to Learn Outlier
Detection in Python using PyOD Library [13]; note that there
is a plethora of quality tutorials for anomaly detection in
the programming language of your choice online.

1.4 Structure and Organization
In this report, we aim to provide a better understanding
of anomaly detection, outlier techniques and some of the
field’s challenges. We also provide some step-by step appli-
cations of the techniques over real-life examples.

The purpose of Section 2 is to provide a comprehensive
and structured overview of different methods of anomaly
detection and outliers analysis in the quantitative case;
the qualitative case is tackled in Section 3. In these sec-
tions, particular attention is paid to supervised and unsu-
pervised methods, including distance-based and density-
based methods.

Section 4 is dedicated to approaches for large data
sets, known as HDLSS (high dimension low sample size)
where the sample size n is smaller than the dimension p.
Outlier detection in HDLSS dataset is even more challen-
gin, mostly due to the curse of dimensionality. Feature
bagging, ensemble methods, and various dimension re-
duction methods are also discussed.

Finally, in Sections 5 and 6, we provide detailed prac-
tical, real-life examples of anomaly detection in stock ex-
change data, and suggest project work for airline data and
fatal driving collision data.
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2. Quantitative Methods of Anomaly Detection

Quantitative methods are divided into distance- and density-
based methods.

2.1 Distance-Based Methods
In order to determine whether an observation is anomalous
or not, it must be compared to a set of other observations
(anomalies are relative, not absolute). In the distance-
based context, one natural way to compare observations is
to consider their distance from one another, with increasing
distance from the others being increasingly suggestive of
anomalous status.

This approach works both in continuous and discrete
cases, as long as a distance function or a pre-computed ta-
ble of pair-wise distances between observations is given.

The choice of which sets of points to use in this compar-
ison distinguishes the different distance-based algorithms.

This discussion begins with the introduction of some nota-
tion. Let D ⊂ Rn be an n-dimensional data set, p,q ∈ D,
P ⊂ D be a subset of D, and d : D×D→ R gives the distance
between p and q, written d(p,q).

An anomaly detection algorithm provides a function
a : D→ R that describes how anomalous a given point is.
This induces an ordering on the points of D: if a(p)< a(q)
for p,q ∈ D, then p is less anomalous than q.

It could be necessary to define a threshold beyond which
a point is considered anomalous; if α ∈ R is such a thresh-
old, then any p ∈ D is absolutely anomalous if a(p)> α.

Similarity Measures
A similarity measure is a real-valued function that de-
scribes the similarity between two objects. A common con-
struction is to define the similarity w between two points
p,q as

w(p,q) =
1

1+ d(p,q)
, for some distance d,

so that w→ 1 as d → 0, and w→ 0 as d →∞.
A similarity measure can also be constructed between

probability distributions. Let X and Y be two n-dimensional
random vectors of (possibly) different distribution with
probability mass/density functions (p.m.f./p.d.f.) fX and
fY , respectively. Let Ω be their shared domain. For discrete
random variables, the Hellinger distance is defined by

H(X , Y ) =

�

1−
∑

z∈Ω

Æ

fX (z) fY (z)

�1/2

;

for continuous random variables, it is defined by

H(X , Y ) =

�

1−
∫

Ω

Æ

fX (z) fY (z) dz

�1/2

.

If fX = fY (or fX = fY almost everywhere in the continuous
case, that is, except over a countable set), then

∑

Ω

Æ

fx fY = 1 or

∫

Ω

Æ

fX fY dz= 1

and H(X , Y ) = 0. The fact that H(X , Y ) ∈ [0,1] is a
consequence of Cauchy’s inequality, with f ∗X =

p

fX and
f ∗Y =

p

fY :

0≤
∫

Ω

Æ

fX fY dz=

∫

Ω

f ∗X f ∗Y dz

≤
�∫

Ω

| f ∗X |
2 dz

�1/2�∫

Ω

| f ∗Y |
2 dz

�1/2

=

�∫

Ω

fX dz

�1/2�∫

Ω

fY dz

�1/2

= 1;

(a similar argument holds for discrete random variables).

Recall that the covariance matrices ΣX and ΣY are n× n-
matrices whose (i, j)-th entries are the covariance between
the i-th and j-th positions of X and Y , respectively. Given
a collection of identically distributed samples, these covari-
ance matrices can be estimated.

We can also consider a single point p to represent prob-
ability distribution. In that case, the Hellinger distance
between that point and any other distribution with mean
µ and covariance matrix Σ can be studied using the frame-
work above, using the Mahalanobis distance:

M(p) =
Æ

(p−µ)>Σ−1(p−µ).

Alternatively, if p and q are drawn from the same distribu-
tion with covariance Σ, then the Mahalanobis distance is a
dissimilarity measure between p and q:

dM (p,q) =
Æ

(p− q)>Σ−1(p− q).

Now, if Σ is diagonal, then

dM (p,q) =

√

√

√

n
∑

i=1

(pi − qi)2

σ2
i

,

whereσ2
i is the variance along the i-th dimension. IfΣ is the

identity matrix, then we recover the Euclidean distance

d2(p,q) =

√

√

√

n
∑

i=1

(pi − qi)2.

When using the Euclidean distance in an anomaly detection
context, a linear normalization is usually applied to each
dimension so that each entry lies in the hypercube [−1, 1]n.
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The Minkowski distance of order p is a generalization of
the Euclidean distance:

dp(p,q) =

�

n
∑

i=1

|pi − qi |p
�1/p

For p = 2 we recover the Euclidean distance d2, for p = 1
the Manhattan distance

d1(p,q) =
n
∑

i=1

|pi − qi |,

and for p =∞ the supremum distance

d∞(p,q) =
n

max
i=1
|pi − qi |.

The Minkowski distance dp is only actually a distance func-
tion (i.e., a metric) when p ≥ 1, but an exception is made
for

d−∞(p,q) =
n

min
i=1
|pi − qi |

to fall within the same framework.

The Jaccard similarity of two datasets P and Q, is defined
as the size of their intersection divided by the size of their
union

J(P,Q) =
|P ∩Q|
|P ∪Q|

=
|P ∩Q|

|P|+ |Q| − |P ∩Q|

Their Jaccard distance is then taken to be 1− J(P,Q).
This definition can be extended to compare binary vec-

tors (i.e. vectors with entries in {0, 1}) of the same length.
Given two binary vectors p and q of length n, consider an
arbitrary set D of size n. Then p and q can be viewed as
subsets of D: if pi = 1 then p is said to contain the i-th
element of D, while if pi = 0 then it does not. Viewing
p and q in this way allows us to compute their Jaccard
similarity, and thus their Jaccard distance.

Finally, let p,q 6= 0. Recall that p · q = ‖p‖‖q‖ cosθ , where
θ is the angle between p and q. The cosine similarity be-
tween p and q is the cosine of θ , which can be computed
as

cosθ =
p · q
‖p‖‖q‖

=

∑n
i=1 piqi

q

∑n
i=1 p2

i

q

∑n
i=1 q2

i

.

This value ranges between 1 and −1, with 1 attained when
p= q, −1 when p= −q, and 0 when p and q are perpen-
dicular.

Armed with these concepts, we can now explore distance-
(and eventually density-) based methods for anomaly de-
tection.

Distance-Based Approaches
All these distance functions can be used to create basic
anomaly detection algorithms (the ideas can also be ex-
tended to more complex algorithms).

Given some distance function d, dataset D, and integers
k,ν ≤ |D|, the distance to all points anomaly detection
algorithm considers each point p in D and adds the distance
from p to every other point in D, i.e.

a(p) =
∑

q6=p∈D

d(q,p).

The ν points with largest values for a are then said to be
anomalous according to a. This approach often selects
the most extreme observations as anomalous, which may
be of limited use in practice.

The distance to nearest neighbour algorithm defines

a(p) = min
q6=p∈D

d(q,p),

with a similar definition for the ν anomalous points.
The average distance to k nearest neighbours and

median distance to k nearest neighbours are defined sim-
ilarly.

2.2 Density-Based Methods
Density-based approaches, on the other hand, view points
as anomalous if they occur in low density regions.

Local Outlier Factor
The Local Outlier Factor (LOF) algorithm was proposed
in 2000 by [39] (a summary can be found in Section 6.4.2
of [12]). LOF works by measuring the local deviation of
each point in a dataset from its k nearest neighbours, with
a point said to be anomalous if this deviation is large.

A local k−region around a point p is defined as the k
nearest neighbours of p. The density of points in each of
their respective local k−neighbourhoods is estimated, and
compared to the density of the local k−neighbourhoods of
the point within their own k−neighbourhood.

This can then be used to identify outliers that inhabit re-
gions of lower density than their neighbours, as p would be
in Figure 11. The formal procedure is shown in Algorithm 1.

p

Figure 11. For k = 2, p is an outlier as it has lower density
than its neighbours.
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Algorithm 1: Local Outlier Factor (LOF)

1 Input: dataset D, point p ∈ D, integer k for
number of nearest neighbours to consider,
distance function d

2 Compute the distance between all points in D
3 for p ∈ D do
4 for q ∈ D \ {p} do
5 Compute d(p,q)
6 end
7 Order D by increasing distance from p
8 Set dk(p) = d(p,qk)
9 end

10 Find the k nearest neighbours of p
11 Set Nk(p) = {q ∈ D \ {p} : d(p,q)≤ dk(p)}
12 Define the reachability distance

dreach(p,q) =max{dk(q), d(p,q)}
13 Define the average reachability distance

dreach(p) =
∑

q∈Nk (p)
dreach(p,q)

|Nk(p)|
14 Define the local reachability density

`k(p) =
�

dreach(p)
�−1

15 Compute the local outlier factor ak(p) =
∑

q∈Nk (p)
`k (q)
`k (p)

|Nk(p)|
16 Output: LOF ak(p)

LOF is able to identify local outliers, but selecting a thresh-
old beyond which a point is considered an outlier is difficult.

LOF introduces the idea of a reachability distance, which
improves the stability of results within clusters/regions:
within a local k−region around p, it is simply the maximal
distance to its k−neighbours; outside of that region, it is
the actual distance from p.

In Figure 12 (with k = 3), for instance, the points
q1,q2,q3 all have the same reachability distance from p
as they are all 3-neighbours of p, that is,

dreach(p,q1) = dreach(p,q2) = dreach(p,q3) = d(p,q3).

The point q4, on the other hand, has dreach(p,q4) = d(p,q4)
as it is not a k-neighbour of p.

p q1

q2

q3
q4

Figure 12. The region of uniform reachability distance
around p for k = 3.

DBSCAN
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) was proposed in 1996 by [18] (a summary can
be found in Section 4.1.5 of [12]). As its name suggests, it
is a density-based clustering algorithm that groups nearby
points together and labels points that do not fall in the
clusters as anomalies.

Hierarchical DBSCAN (HDBSCAN) [25] was introduced
in 2013. It notably removes the problem of choosing the pa-
rameter for the radius of a neighbourhood by considering all
possible radii. Further documentation can be found at [26].

In DBSCAN,

a point p is a core point if there are a minimum
number m of points within distance r of p;
a point q is a border point if it is not itself a core
point but is within distance r of one, and
a point o is an outlier if it is neither a core nor a
border point.

DBSCAN considers each point in the dataset individually. If
that point is an outlier, then it is added to a list of outliers.
Otherwise if it is a core point, then its r-neighbourhood
forms the beginning of a new cluster. Each point in this
r-neighbourhood is then considered in turn, with the r-
neighbourhoods of other core points contained in the neigh-
bourhood being added to the cluster.

This expansion repeats until all points have been exam-
ined. During this step points that were previously labelled
as outliers may be updated as they become border points
in this new cluster. This process continues until every point
has either been assigned to a cluster or labelled as an outlier
(see Algorithm 2 and Figure 13).

While DBSCAN’s dual use as a clustering algorithm may
seem irrelevant in the outlier detection setting, its ability to
succesfully identify clusters is crucial to being able to label
the remaining points as outliers.

On the one hand, in DBSCAN the number of clusters does
not need to be known beforehand (unlike in k−means and
other clustering algorithms) and clusters of arbitrary shape
can be detected.

Furthermore, when using HDBSCAN, only the parame-
ter for the minimum cluster size m is required, which can

o pq1 q2

Figure 13. For minimum neighbourhood size m= 2 and
this fixed radius r, o is an outlier, p a core point, and q1
and q2 are border points.
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Algorithm 2: DBSCAN

1 Input: dataset D, distance function d,
neighbourhood radius r > 0, minimum number of
points to be considered a cluster m ∈ N

2 Clusters= {}
3 Outliers= {}
4 for p ∈ D do
5 if p ∈ Outliers∪ (∪C∈ClustersC) then
6 continue
7 end
8 Set N(p) = {q ∈ D : d(p,q)≤ r}
9 if |N(p)|< m then

10 Add p to Outliers
11 continue
12 end
13 else
14 Cluster= N(p)
15 for q ∈ Cluster \ {p} do
16 if q ∈ Outliers then
17 Remove q from Outliers
18 end
19 else if q ∈ ∪C∈ClustersC then
20 continue
21 end
22 Set N(q) = {q′ ∈ D : d(q, q′)≤ r}
23 if |N(q)| ≥ m then
24 Cluster= Cluster∪ N(q)
25 end
26 end
27 end
28 Add Cluster to Clusters
29 end
30 return Outliers
31 Output: a list of outliers

be set fairly intuitively, which is not the case for the param-
eters in general clustering algorithms: if the elements of
D are n−dimensional, take m ≥ n+ 1 (larger values of m
allow for better noise identification).

On the other hand, DBSCAN is not deterministic, as border
points can be assigned to different clusters depending on
the order in which core points are considered (this does not
affect its use as an anomaly detection algorithm, however).

In high dimensions, the ability of any distance function
based on Euclidean distance to distinguish near and distant
points diminishes due to the Curse of Dimensionality; thus
in high dimension spaces, it become ineffective (as do other
clustering algorithms).

Finally, DBSCAN cannot handle differences in local den-
sities as the radius of a neighbourhood r is fixed; this could
lead to sparser clusters being labelled as outliers, or to out-
liers surrounding a denser cluster being included in the

cluster. This issue is overcome in HDBSCAN.

Isolation Forest
The previously discussed approaches first construct models
of what normal points look like, and then identify points
that do not fit this model. The Isolation Forest algorithm
[17] introduced in 2008 instead tries to explicitly identify
outliers under the assumptions that there are few outliers
and that these outliers have very different attributes com-
pared to normal points. Doing so allows the use of sampling
techniques that increase algorithmic speed while decreasing
memory requirements.

The Isolation Forest algorithm tries to isolate anoma-
lous points. It does this by randomly selecting an attribute
and then randomly selecting a split value between that at-
tribute’s min and max values. This recursively partitions
the points until every point is isolated in its own partition.

Recursive partitioning yields a binary tree called an Iso-
lation Tree. The root of this tree is the entire dataset; each
node is a subset of the observations, and each branch cor-
responds to one of the generated partitions. The leaf nodes
are singleton sets containing a single isolated point. Each
point is then assigned a score derived from how deep in
the tree its singleton partition appears (see Figure 14 and
Algorithm 3).

As points that are shallower in the tree were easier to
separate from the rest, these are the likely outliers. Since
only shallow points are of interest, once the height of the
tree has reached a given threshold (the expected height of
a random binary tree, say), further construction of the tree
can be stopped to decrease computational cost.

Additionally, instead of building a tree from the entire
dataset, a tree can be constructed from a subset. The loca-
tion of any point within this smaller tree can then be esti-
mated, again saving computational and memory resources.
These two improvements are detailed in the original pa-
per [17].

Once a number of Isolation Trees have been randomly gen-
erated (Isolation Forest), a score can be computed for each
point. This is done by searching each tree for the location
of a given point and noting the path length required to
reach it. Once a point’s path length in each tree has been
computed, the average path length is taken to be its score.

Figure 14. A partitioning constructed during Isolation
Tree generation.
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Algorithm 3: Recursive Isolation Tree Construc-
tion: iTree(D)
1 Input: dataset D
2 if |D| ≤ 1 then
3 return {}
4 end
5 else
6 Let A be a list of attributes in D
7 Randomly select an attribute A∈ A
8 Randomly sample a point s from

[minq∈D A(q), maxq∈D A(q)]
9 Return

Node







LeftChild = iTree({q ∈ D : A(q)≤ s})
RightChild = iTree({q ∈ D : A(q)> s})
NodeValue = D

10 end
11 Output: Binary tree with node values that are

subsets of D

It can be desirable to construct a normalized anomaly score
that is independent of the size of the dataset. In order to
do this, the expected path length of a random point in an
Isolation Tree (i.e. binary tree) must be estimated. With
n= |D|, it can be shown that the expected length is

c(n) = 2H(n− 1)−
2(n− 1)

n
,

where H(n− 1) is the (n− 1)th harmonic number, which
can be approximated by ln(n−1)+0.577; c(n) is then used
to normalize the final anomaly score a(p) for p ∈ D, which
is given by

log2 a(p) = −
average path length to p in the Isolation Trees

c(n)
.

Thus defined, a(p) ∈ [0,1], with a(p)≈ 1 suggesting p is
an anomaly, a(p) ≤ 0.5 suggesting p is a normal point;
if all points receive a score around 0.5, this suggests that
there are no anomalies present.

Isolation Forests have small time and memory requirements;
can handle high dimensional data, and do not need observa-
tions to have been labeled anomalies in the training set, but
the anomaly score assigned to a given point can have high
variance over multiple runs of the algorithm. The authors
of [24] propose some solutions.

In general, density-based schemes are more powerful than
distance-based schemes when a dataset contains patterns
with diverse characteristics, but less effective when the
patterns are of comparable densities with the outliers [44].

Algorithm 4: Isolation Forest

1 Input: dataset D, integer t number of Isolation
Trees

2 Forest = {}
3 for i = 1 to t do
4 Tree = iTree(D)
5 Add Tree to Forest
6 end
7 for p ∈ D do
8 PathLengths= {}
9 for Tree in Forest do

10 Find the path length ` from the root of Tree
to node {p}

11 Add ` to PathLengths
12 end

13 AveragePathLength=
∑

`∈PathLengths `

t

14 Set a(p) = 2−
AveragePathLength

c(|D|)

15 end
16 Output: Anomaly score a(p) ∈ [0,1] for each

p ∈ D

3. Qualitative Methods of Anomaly Detection

New challenges are presented by non-numerical variables.

3.1 Definitions and Challenges
Categorical Variables
A categorical variable (or qualitative variable) is one whose
levels are measured on a nominal scale; examples include
an object’s colour, the mother tongue of an individual, her
favourite meal, and so forth.

The central tendency of the values of a categorical
variable is usually given by its mode; measures of spread
are harder to define consistently (the proportion of levels
with more than a certain percentage of the observations
above a given threshold could be used as rough gauge, but
difficulties with this approach are readily apparent).

We often associate qualitative feature to numerical val-
ues, but with the caveat that these should not be interpreted
as numerals; if we use the code “red” = 1 and “blond” = 2
to represent hair colour, for instance, we obviously cannot
conclude that “blond” > “red”, even though 2> 1.

A categorical variable that has exactly two levels is
called a dichotomous feature (or a binairy variable); those
with more than two levels are called polytomous vari-
ables.

Challenges of Anomaly Detection with Categorical Data
Representing categorical variables with numerical features
can lead to traps; consequently, using anomaly detection
methods based on distance metrics or on density is not
recommended in the qualitiative context, unless they have
first been modified appropriately.

Y.Cissokho, S.Fadel, R.Millson, R.Pourhasan, P.Boily (2020) Page 14 of 25



DATA SCIENCE REPORT SERIES ANOMALY DETECTION AND OUTLIER ANALYSIS

3.2 Review of Two Methods
We present two of the categorical methods below.

AVF Algorithm
The Attribute Value Frequency (AVF) algorithm offers a
fast and simple way to detect outlying observations in cate-
gorical data, which minimizes the amount of data analyses,
without having to create or search through various combi-
nations feature levels (which increase the search time).

Intuitively, outlying observations are points which occur rel-
atively infrequently in the (categorical) dataset; an “ideal”
anomalous point is one for which each feature value is
extremely anomalous (or relatively infrequent).

The rarity of an attribute level can be measured by sum-
ming the number of times the corresponding feature takes
that value in the dataset.

Let’s say that there are n observations in the dataset:
{xi}, i = 1, . . . , n, and that each observation is a collection
of m features. We write

xi = (x i,1, · · · , x i,`, · · · , x i,m),

where x i,` `th feature’s level. Using the reasoning presented
above, the AVF score (shown below) is a good tool to
determine whether xi should be considered an outlier or
not:

AVFscore(xi) =
1
m

m
∑

`=1

f (x i,`),

where f (x i,`) is the number of observations xi for which
the `th feature takes on the level x i,`. A low AVF score
indicates that the observation is more likely to be an outlier.

Since AVFscore(xi) is essentially a sum of m positive num-
bers, it is minimized when each of the sum’s term is mini-
mized, individually. Thus, the “ideal” anomalous observa-
tion described above minimizes the AVF score; the minimal
score is reached when each of the observation’s features’
levels occurs only once in the dataset.

As shown by the AVF pseudocode (see Algorithm 5), once
the AVF score is calculated for all points, the k outliers
returned by the algorithms are the k observations with the
smallest AVF scores (the algorithm’s complexity is O (nm)).

Greedy Algorithm
The greedy algorithm “greedyAlg1” is an algorithm which
identifies the set OS of candidate anomalous observations
in an efficient manner.

The mathematical formulation of the problem is simple
– given a dataset D and a number k of anomalous observa-
tions to identify, we solve the optimization problem

OS= argmin
O⊆D
{H(D \O)}, subject to |O|= k,

Algorithm 5: AVF

1 Inputs: dataset D (n observations, m features),
number of anomalous observations k

2 while i ≤ n do
3 j = 1
4 AVFscore(xi) = f (x i, j)
5 while j ≤ m do
6 AVFscore(xi) = AVFscore(xi) + f (x i, j);

j = j + 1
7 end
8 AVFscore(xi) =Mean(AVFscore(xi))
9 i = i + 1

10 end
11 Outputs: k observations with smallest AVF scores

where the entropy of the subset D \ O is the sum of the
entropy of each of feature on D \O:

H(D \O) = H(X1; D \O) + · · ·+H(Xm; D \O)

et
H(X`; D \O) = −

∑

z`∈S(X`;D\O)

p(z`) log p(z`),

where S(X`; D \O) is the set of levels that the `th feature
takes in D \O.

The "greedyAlg1" algorithm solves the optimization prob-
lem as follows:

1. The set of outlying and/or anomalous observations
OS is initially set to be empty, and all observations of
D \OS are identified as normal (or regular).

2. Compute H(D \OS).

3. Scan the dataset in order to select a candidate anoma-
lous observation: every normal observation x is tem-
porarily taken out of D \ OS to create a subset D′x,
whose entropy H(D′x) is also computed.

4. The observation z which provides the maximal en-
tropy impact, i.e. the one that minimizes

H(D \OS)−H(D′x), x ∈ D \OS,

is added to OS.

5. Repeat steps 2-4 another k− 1 times to obtain a set
OS of k candidate anomalous observations.

You can find more details in the in the source article [46];
an interesting detail is that the complexity of the algorithm
is expected to be O (nmp), which implies that it is scalable.
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4. Anomalies in High-Dimensional Datasets

Anomaly detection is a broad field of study that has been
applied to a large number of areas. Nowadays, many real
datasets are very large; in some scenarios, the observa-
tions may contain hundreds or thousands of features (or
dimensions).

Many classical methods use proximity (distance) con-
cepts for anomaly detection (see Section 2 for a sample of
such methods) and can only be applied in cases where the
sample size n is larger than the dimension p (n> p).

The management of high-dimensional data (n < p) of-
fers specific difficulties: indeed, in such spaces observations
are often isolated and scattered (or sparse) and the notion
of proximity fails to maintain its relevance.

In that case, the notion of defining significant outliers is
much more complex and not obvious: many conventional
methods of detecting outliers are simply not efficient in the
high-dimensional context, due to this curse of dimension-
ality.

The remainder of this section is organized as follows: first,
an attempt is made to define the concept and the challenges;
then, anomaly detection techniques are discussed; finally,
we end with a detailed description of ensembles and sub-
space methods. Our approach mainly follows those found
in [1,9,10,12,16].

4.1 Definitions and Challenges
As we have seen previously, an anomalous observation is
one that deviates or behaves differently from other the
observations in the dataset, which makes us suspect that
it was generated by some other mechanism [1]; such an
observation would, of course, be considered to be irregular.

The challenges of anomaly and outlier detection in high-
dimensional data lie in the facts that:

the notion of distance fails to retain its relevance due
to the curse of dimensionality (whence “the prob-
lem of detecting outliers is like finding a needle in a
haystack” [16]);
every point in such datasets has a tendency to be an
outlier, and
datasets become more sparse as the dimension of the
feature space increases.

The authors of [2] consider that in order to deal properly
with large datasets, detection methods should:

1. allow for effective management of sparse data issues;
2. provide interpretability of the discrepancies (i.e. how

the behaviour of such observations is different);
3. allow anomalie measurements to be compared, and
4. consider the local data behaviour to determine whether

an observation is abnormal or not.

4.2 Projection-Based Methods
Nowadays, it is common to deal with very large data sets
known as HDLSS (high dimension, low sample size),
which can contain hundreds of variables (or even more).

As a result, the curse of dimensionality affects the effi-
ciency of conventional anomaly/outlier detection methods.

One solution to this problem is to reduce the dimension-
ality of the dataset while preserving its essential character-
istics. Such projecion-based methods

principal component analysis,
linear discriminant analysis,
feature selection, etc.

In this section, We provide details on one such method:
PCA.

Principal Components Analysis
Principal components analysis (PCA) aims to find a rep-
resentation of the original dataset in a lower-dimensional
subspace (such as a line or a plane) containing the greatest
possible variation.

PCA corresponds to an orthogonal linear transforma-
tion of the data into a new coordinate system, such that the
largest variance resulting from a scalar projection of the
data is on the first coordinate (the first principal compo-
nent), the second largest variance on the second coordinate,
and so forth.

PCA is used in various contexts:

as a dimension reduction method used during the
data pre-processing step;
as a data visualization aid, and, in the scenario of
interest for this report,
as an anomaly and outlier detection method.

Let the dataset be represented by a numerical, centered,
and scaled n× p matrix X = [X1, · · · ,Xp] with n observa-
tions (number of rows) and p features (number of columns).
The principal components can be written as linear combi-
nations of the variables

Yi =
>̀
i X= `1,iX1 + · · ·+ `p,iXp; i = 1, · · · , k,

with k ≤ p, yielding the largest variance subjet to the con-
straint ‖`i‖ = 1 (where ‖·‖ represents the Euclidean norm).
We can thus deduce that

Var (Yi) = Var
� >̀

i X
�

= >̀
i Σ`i ,

Cov (Yi , Yk) = Cov
� >̀

i X , >̀k X
�

= >̀
i Σ`k .

In other words, PCA finds the loadings vector `1 which
maximizes the variance of Y1, i.e.

`1 = arg max
‖`1‖=1

� >̀
1X>X`1

	

,
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then the loadings vector `2 (not correlated with `1) which
maximizes the variance of Y2, i.e.

`2 = arg max
‖`2‖=1, >̀1`2=0

� >̀
2X>X`2

	

.

Similarly, the loadings vector `k is not correlated with any
of the `i , i < k, and maximizes the variance of Yk, i.e.

`k = argmax
‖`k‖=1,

>̀
i `k=0, ∀ i<k

� >̀
k X>X`k

	

. (1)

We solve (1) for all i < k through the Lagrangian

L = >̀
k X>X`k −λk(

>̀
k`k − 1)−w >̀

i `k.

The critical points are found by differentiating with respect
to each of the entries of `k, λk and w, and setting the result
to 0. Simplifying, we obtain

X>X`k = λk`k

>̀
k`k = 1 et >̀

k`i = 0, for all i < k.

The loadings vector `k is thus the eigenvector of the design
matrix X>X associated to the kth largest eigenvalue.

The proportion of the variance which can be explained
by the PCA can be calculated by first noting that

p
∑

i=1

Var (Yi) =
p
∑

i=1

>̀
i Σ`i =

p
∑

i=1

λi .

Consequently, the proportion of the total variance explained
by the ith principal component is

0≤
λi

∑p
i=1λi

≤ 1

The quality of the PCA results is strongly dependent on the
number of retained principal components, that is, on the
dimension k of the subspace on which the observations are
projected. There are multiple ways to select the “right” k –
we will briefly present two of them.

The proportion of the total variance explained by the first
k principal components is given by

pk =

∑k
i=1λi

∑p
i=1λi

.

One approach is to retain k principal components, where
k is the smallest value for which pk surpasses some pre-
established threshold (often taken between 80% and 90%).

The scree plot method, on the other hand, consists in
drawing the curve given by the decreasing eigenvalues (the
scree plot), and to identify the curve’s “elbows”. These
points correspond to principal components for which the
variance decreases at a slower rate with added components.
If such an elbow exists, we would retain the eigenvalues up
to it (and thus, the corresponding principal components).

Example 6. PCA is applied on a dataset of genetic ex-
pression measurements, for n= 72 leukemia patients and
p = 7128 genes [47]. The scree plot suggests that only one
principal component should be retained; the projection on
the first 3 principal components is also shown in Figure 15
(on the right). Some R code is given below.

leukemia.big <-
read.csv("http://web.stanford.edu/~hastie/
CASI_files/DATA/leukemia_big.csv")

leukemia.big <- t(leukemia.big)
leukemia.big.scaled <-

scale(leukemia.big)
pca.leukemia <-

prcomp(leukemia.big.scaled)
plot(pca.leukemia)
pca.leukemia.s <- summary(pca.leukemia)
plot(pca.leukemia.s$importance[3,])

There are other PCA-associated dimension reduction meth-
ods, such as the singular value decomposition, kernel PCA,
and so forth; more details are available in [48].

What is the link with anomaly and/or outlier detection?
Once the dataset has been projected on a lower-dimensional
subspace, the curse of dimensionality is mitigated – it is on
the projected data that the traditional detection methods
are applied.

Note, however, that any such reduction necessarily leads
to a loss of information, which can affect the accuracy of
the detection procedure, especially if the presence/absence
of anomalies is not aligned with the dataset’s principal
components.

Distance-Based Outlier Basis Using Neighbours
Using PCA for anomaly detection is potentially problematic,
however: whether an observation is anomalous or not does
not figure in the construction of the principal component
basis {PC1, . . . , PCk} – there isn’t necessarily a correlation
between the axes of heightened variance and the presence
or absence of anomalies.

The distance-based outlier basis using neighbours algo-
rithm (DOBIN) builds a basis which is better suited for the
eventual detection of outlying observations. DOBIN’s main
idea is to search for nearest neighbours that are in fact
relatively distant from one another:

1. We start by building a space Y = {y`} which contains
M � n(n+ 1)/2 vectors of the form

y` = (xi − x j)� (xi − x j),

where � is the element-by-element Hadamard multi-
plication, and for which the 1−norm

‖y`‖1 = (x1,1 − x2,1)
2 + · · ·+ (x1,p − x2,p)

2
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Figure 15. Scree plot (left); projection on the first 3 principal components (right).

is the square of the distance between xi ,x j ∈ X (the
selection of each of the M observation pairs is made
according to a rather complex procedure which only
considers xi and x j if they are part of one another’s
k−neighbourhood, for k ∈ {k1, . . . , k2}); the set Y
thus contains points for which ‖y`‖1 is relatively large,
which is to say that the observations xi are x j fairly dis-
tant from one another even if they are k−neighbours
of each other;

2. we next build a basis {η1, . . . ,ηp} ⊂ Rp where each
ηi is a unit vector given by a particular linear com-
bination of points in Y; they can be found using a
Gram-Schmidt-like procedure:

y`0
= y`, `= 1, . . . , M

y`b−1
= y`b−2

− 〈ηb−1 | y`b−2
〉, `= 1, . . . , M

ηb =

∑M
`=1 y`b−1







∑M
`=1 y`p−1







2

,

for b = 1, . . . , p,
3. and we tranform the original dataset X according to

X̂= T (X)Θ, where T (X) normalizes each feature of
X according to a problem-specific scheme (Min-Max
or Median-IQR, say) and

Θ = [η1 | · · · | ηp]

is a orthogonal p× p matrix.

It is on the transformed space (which plays an analogous
role to the subspace projection of X in PCA) that we apply
the various outlier and anomaly detection algorithms.

The full details contain a fair number of technical complica-
tions; the interested reader is invited to consult the original
documentation [7] (note that the algorithm is implemented
in R via the module dobin).

4.3 Ensembles Methods
In the preceding sections, we have described various anomaly
detection algorithms whose relative performance varies
with the type of data being considered. It’s usually impossi-
ble to come up with an algorithm that outperforms all the
others.

This is because a particular anomaly detection algorithm
may be well adapted to a data set and may be successful
in detecting abnormal or outlier observations, but it may
not work with other data sets whose characteristics do not
match the first data set.

The impact of such a mismatch between algorithms can be
mitigated by using ensemble methods, where the results
of several algorithms are considered before making a final
decision. Such an approach often provides the best results
and thus improves the performance of the base anomaly
detection algorithms [12].

We will consider two tyes of ensemble methods: sequential
ensembles (boosting) and independent ensembles,

Sequential Ensembles
Sequential ensembles requires a given algorithm (or a set of
algorithms) to be applied to a dataset in a sequential man-
ntter, each time on a slightly different dataset derived from
the previous step’s dataset based on the previous steps’ re-
sults, and so forth. At each step, the weight associated with
each observation is modified according to the preceding
results using some “boosting” method (such as AdaBoost
or XGBoost, for instance).

The final result is either some weighted combination of
all preceding results, or simply the results output by the
last step in the sequence (see Algorithme 6).

The details are out-of-scope for this report, but can be
studied in [49].
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Algorithm 6: SequentialEnsemble

1 Inputs: dataset D, base algorithms A1, . . . , Ar
2 j = 1;
3 while stopping criteria are not met do
4 Select an algorithm A j based on the results from

the preceding steps;
5 Create a new dataset Dj from D by modifying

the weight of each observation based on the
results from the preceding steps;

6 Apply A j to Dj;
7 j = j + 1;
8 end
9 Output: anomalous observations obtained by

weighing the results of all previous steps

Algorithm 7: IndependantEnsemble

1 Inputs: dataset D, base algorithms A1, . . . , Ar
2 j = 1;
3 while stopping criteria are not met do
4 Select an algorithm A j;
5 Create a new dataset Dj from D by (potential)

re-sampling, but independently of the
preceding steps’ results;

6 Apply A j to Dj;
7 j = j + 1;
8 end
9 Output: anomalous observations obtained by

combining the results of all previous steps

Independent Ensembles
In an independent ensemble, we instead apply different al-
gorithms (or different instanciations of the same algorithm)
to the dataset (or some resampled dataset).

Choices made at the data and algorithm level are inde-
pendent of the results obtained in previous runs (unlike in
a sequential ensemble). The results are then combined to
obtain more robust outliers (see Algorithm 7).

Every base anomaly detection algorithm provides an ano-
maly score (or an abnormal/regular classification) for each
observation in D; observations with higher scores are con-
sidered to be more anomalous, observations with lower
scores more normal.

The results are then combined using a task-specific
method in order to provide a more robust classification
of anomalous or outlying observations.

Many such combination techniques used in practice:

majority vote,
average,
minimal rank, etc.

Let αi(p) represent the (normalized) anomaly score of
p ∈ D, according to algorithm Ai . If αi(p)≈ 0, it is unlikely
that p is an anomaly according to Ai , whereas if αi(p)≈ 1,
it is quite likely that p according to Ai .

The rank of p ∈ D according to Ai , on the other hand,
is denoted by ri(p): the higher the rank (smaller number),
the higher the anomaly score vice versa. In a dataset with n
observations, the rank varies from 1 to n (ties are allowed).

If the base detection algorithms are A1, . . . , Am, the anomaly
score and the rank of an observation p ∈ D according to
the independent ensemble method are, respectively,

α(p) =
1
m

m
∑

i=1

αi(p) and r(p) = min
1≤i≤m

{ri(p)}.

If n= m= 3, for instance, we could end up with

α1 (p1) = 1.0, α1 (p2) = 0.9, α1 (p3) = 0.0;

α2 (p1) = 1.0, α2 (p2) = 0.8, α2 (p3) = 0.0;

α3 (p1) = 0.1, α3 (p2) = 1.0, α3 (p3) = 0.0.

Using the mean as the combination techniques, we obtain

α (p1) = 0.7, α (p2) = 0.9, α (p3) = 0.0,

whence
p2 � p1 � p3,

that is, p2 is more anomalous than p1, which is itself more
anomalous than p3 (see the notation introduced on page 8).

Using the minimal rank method, we obtain

r1 (p1) = 1, r1 (p2) = 2, r1 (p3) = 3;

r2 (p1) = 1, r2 (p2) = 2, r2 (p3) = 3;

r3 (p1) = 2, r3 (p2) = 1, r3 (p3) = 3,

from which

r (p1) = r (p2) = 1, r (p3) = 3,

whence p1 � p3 and p2 � p3, but p1 and p2 have the same
anomalous levels.

Evidently, the results depend not only on the data set under
consideration and on the base algorithms that are used in
the ensemble, but also on how the results are combined.

In the context of HDLSS data, ensemble methods can some-
times allow the analyst to mitigate some of the effects of the
curse of dimensionality by selecting fast base algorithms
(which can be run multiple times) and focusing on building
robust relative anomaly scores.

Another suggested approach is to use a different subset
of the original dataset’s features at each step, in order to
de-correlate the base detection models.
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4.4 Subspace Methods
Subspace methods have been used particularly effectively
by analysts for anomaly and outlier detection in high-dimen-
sional data sets [9, 15, 16]; it is often easier to find the
sought-after observations by exploring lower-dimensional
subspaces (rather than the original set).

There is thus an intrinsic interest in exploring subspaces
in their own right [1,10]. This approach eliminates addi-
tive noise effects often found in high dimensional spaces
and leads to more robust outliers (that is, outliers which
are identified as such even when using different methods).

The problem is rather difficult to solve effectively and effi-
ciently, since the potential number of subspace projections
of high-dimensional data is related exponentially to the
number of features in the dataset.

The Feature Bagging algorithm formalizes the idea pre-
sented at the end of the preceding sub-section; it officially
uses the LOF algorithm of Section 2, but any fast anomaly
detection algorithm can be used instead. The anomaly
scores and rankings from each run are aggregated as they
are in the Independent Ensemble approach.

Algorithm 8: FeatureBagging

1 Input: dataset D
2 j = 1;
3 while stopping criteria are not met do
4 Sample an integer r between p/2 et p− 1;
5 Randomly select r features (variables) of D in

order to create a projected dataset D̃r in the
corresponding r−dimensional sub-space;

6 Compute the LOF result for each observation in
the projected D̃r ;

7 j = j + 1;
8 end
9 Output: anomaly scores given by the independent

ensemble method (average, minimal rank, etc.).

There are other, more sophisticated, subspace anomaly de-
tection methods, including:

High-dimensional Outlying Subspaces (HOS) [37];
Subspace Outlier Degree (SOD) [38];
Projected Clustering Ensembles (OutRank) [40];
Local Selection of Subspace Projections (OUTRES)
[42].

It should be noted that anomaly detection and outlier analy-
sis is still very active as an area of research, with numerous
challenges. The “No Free Lunch” Theorem suggests that,
importantly, there is no magic method: all methods have
strengths and limitations, and the results depend heavily
on the data.

5. Applications to Time Series

In this section, we discuss outliers and anomalies in time
series. A time series is a sequential set of values tracked
over a time period. The additional structure of time series
makes detection of anomalies challenging; yet many algo-
rithms attempt the task (R provides implementations of a
number of these approaches). In this section, we discuss
two of the most commonly-used methods.

5.1 Outliers and Anomalies in Time Series
Outliers in time series are sudden changes in the dynamics
of the data that can be temporary or permanent. These
anomalous recordings are usually inconsistent with the rest
of the series and cannot be explained by standard time
series models. If left as is, they can have a tremendous
impact on the analysis (on model selection and parameter
estimation, for instance).

They may, therefore, affect the forecasting power of the
fitted model. It is thus important to detect and treat outliers
in time series before fitting a model.

Outliers that only change the mean level of the series are
said to be deterministic. A simple procedure can be used
to detect deterministic outliers in time series: compare a
time series model with no outliers to a model that includes
the outliers [34]. We can then estimate the effect of pro-
cessing the anomalies by looking at the differences between
the models.

In general, detecting outliers in applied time series con-
sists of determining the location, type, and magnitude of
any existing outliers. There are several types of outliers:

an additive outlier (AO) is an abrupt change for only
one observed value – such an outlier has no effect on
the subsequent observations;10

an innovational outlier (IO) is an unsual innova-
tion11 in the generating process that affects all later
observation – the influence of such outliers may in-
crease with the passage of time;
a level shift outlier (LS) affects the mean level of
observations so that all the observations after the
outlier shift to a new level – clearly such outliers
have a permanent effect on the time series, and it is
important to detect and process them prior to building
any forecasting model;12

a transient change outlier (TC) is similar to a LS
but its effect is not permanent and disappears over
subsequent observations.

10An AO is a seasonal additive outlier (SAO) when the additive outlier
reappears at regular intervals.

11The innovations in time series play the same role as errors in cross-
sectional analysis (such as OLS).

12A LS is called a seasonal level shift outlier (SLS) when the mean
level shift occurs at regular intervals.
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Essentially, we view anomalies as outliers; regularly oc-
curing events are part of the the series trend, while rarely
occuring deviances from the trend are anomalous.

The rest of this section is devoted to application of R pack-
ages to detect outliers and anomalies.

5.2 R Package: tsoutliers
The package tsoutlier automatically detects outliers in
time series based on the procedure outlined in [35]. In this
approach, the outlier effects are estimated simultaneously
using multiple ARIMA-based regression, and the model
parameters and the outlier effects are estimated jointly.

The main interface to the automatic detection proce-
dure is through the funtion tso(x, types), where x
is a time series object and types is a character vector indi-
cating the type of outliers to be considered by the procedure.
All five types of outliers described in the previous section
can be considered; AO, IO, LS, SLS and TC. If types is
not specified, then AO, LS, and TC are be considered by
default.

Example 7. The DJ30 index consists of 30 stocks that are
meant to reflect US market performance. Historical data
of all stocks currently involved in the Dow Jones Industrial
Average is available online on Kaggle [36]. For each of the
30 components of the index, there is one CSV file named
by the stock’s symbol (e.g. AAPL for Apple Inc.). Each file
provides historically adjusted market-wide data (daily, max.
5 years back).

After reading all the CSV files in R via read.csv(),
the daily closing return for each component is sorted by
date and stored in a data frame named data. Outliers
are identified with tsoutliers’s tso() function. For
Apple Inc.’s stock, for instance, the outliers are found to be:

tso(ts(data$AAPL),
types=c("TC","AO","LS","IO","SLS"))

Outliers:
type ind time coefhat tstat

1 TC 159 159 4.040 4.074
2 AO 302 302 -6.116 -4.405
3 AO 305 305 5.735 4.130
4 AO 410 410 -6.571 -4.732
5 TC 473 473 -4.521 -4.560
6 AO 536 536 6.496 4.678
7 AO 666 666 6.098 4.392
8 AO 791 791 6.629 4.774
9 AO 1043 1043 5.891 4.243
10 AO 1109 1109 -6.633 -4.777
11 AO 1144 1144 7.042 5.072
12 AO 1149 1149 -9.961 -7.174
13 AO 1167 1167 6.833 4.921
14 AO 1238 1238 -5.812 -4.186

Figure 16. Outliers detection for Apple Inc. daily closing return.
The x−axis is labelled by the date index.

The algorithm finds 14 outliers, with two being of transient
change (TC) type while the rest are additive outliers (AO).
The outliers are shown in Figure 16;

The isolated sharp spikes represent AO, while a spike
that takes a few periods to disappear represents a TC. Note
that the x−axis is labelled by the time (date) index, not
the actual date. The latter can easily be extracted using the
following code:

ots=out_tso$outliers
cbind.data.frame(type=ots$type,

date=data[ots$ind,1])

yields

type date type date
1 TC 2015-01-28 8 AO 2017-08-01
2 AO 2015-08-21 9 AO 2018-08-01
3 AO 2015-08-26 10 AO 2018-11-02
4 AO 2016-01-27 11 AO 2018-12-26
5 TC 2016-04-27 12 AO 2019-01-03
6 AO 2016-07-27 13 AO 2019-01-30
7 AO 2017-02-01 14 AO 2019-05-13

5.3 R Package: anomalize
In this section, we will show how to use anomalize
to detect anomalies in time series data. The package is
available on CRAN, with the latest version always available
on github.

It is recommended to first install the package from CRAN
(so that the dependencies are also installed locally), then
update the package using devtools as shown below:

install.packages(’anomalize’)
library(devtools)
install_github("business-science/anomalize")
library(anomalize)
library(tidyverse)
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The anomalize() function is used to detect outliers in
a distribution with no trend or seasonality for tidy data,
and returns three columns:

remainder-l1 (lower limit for anomalies);
remainder-l2 (upper limit for anomalies, and
anomaly (Yes/No).

The first argument of the function is the “tibble” or “tbl_time“
object data; the second argument is the column target,
to which the function is applied; the third is the anomaly
detection method, either iqr geds.

The IQR method (inter-quartile range Q3 −Q1) is a gener-
alization of Tukey’s test (see Section 1). By defaults, the
limits are set at 3 times the IQR above Q3 and below Q1
(corresponding to α= 0.05); anything beyond those limits
is considered to be an anomalous observation.

The alpha parameter can be adjusted; at α = 0.025, the
limits are 6 times the IQR above Q3 and below Q1, making
it more difficult for data to be an anomaly. Conversely,
α= 0.1 contracts the limits to 1.5 times the IQR above Q3
and below Q1, making it more likely that observations will
be deemed anomalous.

The IQR method does not depend on loops and is there-
fore fast and easily scaled, but it may not be as accurate in
detecting anomalies since the high leverage anomalies can
skew the centerline (median) of the IQR.

The GESD method (generlized extreme studentized devi-
ate test) progressively eliminates outliers using a Student’s
T−test comparing the test statistic to a critical value. Each
time an outlier is removed, the test statistic is updated.
Once the test statistic drops below the critical value, all
outliers are considered removed.

The α parameter adjusts the width of the critical values.
By default, α = 0.05. Because this method involves contin-
uous updating via a loop, it is slower than the IQR method.
However, it tends to outperform IQR for outlier detection
and removal.

Other arguments include max_anoms (the maximum per-
centage of observations that can be identified as anomalies)
and verbose (boolean linked to the type of output).

Example 8. In the previous sub-section, we used the func-
tion tsoutliers() to detect outliers of daily closing
return for one of the components of DJ30, namely Apple
Inc. An alternative manner to detect anomalies in R is to
use anomalize(), as follows:

data_tb=data %>% as.tibble()
data_tb %>%

time_decompose(AAPL,
method="stl",
frequency=10,
trend="auto") %>%

Figure 17. Anomaly detection for Apple Inc.’s daily closing
returns, computed with anomalize().

anomalize(remainder,
method="gesd",
alpha=0.05,
max_anoms=0.2) %>%

plot_anomaly_decomposition()

The output is shown in Figure 17, where the top plot dis-
plays the observations, the second and third plot displays
the trend and seasonality components, respectively, and the
bottom plot displays the extracted data on which anomalies
are detected. The red markers show the anomalies found
by anomalize(). The recomposed series can also be
plotted via time_recomposed():

data_tb %>% time_decompose(AAPL) %>%
anomalize(remainder) %>%
time_recompose() %>%
plot_anomalies(time_recomposed=TRUE,

ncol=3,
alpha_dots=0.5)

The output is shown in Figure 18. Anomalous points that
are shown in red can be extracted by the following code:

anomalies=data_tb %>%
time_decompose(AAPL) %>%
anomalize(remainder) %>%
time_recompose() %>%
filter(anomaly==’Yes’)

The output is a time tibble with 16 rows (with date and
observed as the first two variables); these are the 16
observations that anomalize() reports. Recall that in
previous section, tsoutliers() detected 14 outliers.

It is interesting to compare the outlier/anomaly dates for
Apple Inc. data from both approaches. This can be done
with the code on the following page:
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Figure 18. Anomaly detection for Apple Inc.’s daily closing
returns with recomposed data; the grey portion represent the
expected (normal) trend.

odates=cbind.data.frame(type=ots$type,
date=data[ots$ind,1])

adates=cbind.data.frame(date=anomalies$date,
observed=anomalies$observed)

left_join(adates,odates,by="date")

The list of detected outliers is found below:

date observed type
1 2015-01-28 5.653 TC
2 2015-08-11 -5.204 <NA>
3 2015-08-21 -6.116 AO
4 2015-08-26 5.735 AO
5 2016-01-22 5.317 <NA>
6 2016-01-27 -6.571 AO
7 2016-04-27 -6.258 TC
8 2016-07-27 6.496 AO
9 2017-02-01 6.098 AO

10 2017-08-01 6.629 AO
11 2018-08-01 5.891 AO
12 2018-11-02 -6.633 AO
13 2018-12-26 7.042 AO
14 2019-01-03 -9.961 AO
15 2019-01-30 6.833 AO
16 2019-05-13 -5.812 AO

All the observations that have been detected by the original
approach (tsoutliers()) match the ones reported by
this new approach (anomalize()), butanomalize()
also detects two extra points, for which the type cannot be
specified. The comparison is also illustrated in Figure 19.

5.4 Summary
For time series data, anomaly detection is usually performed
on time series remainders, where both the seasonal and
the trend components were removed; the former is the pres-
ence of variations that occur at specific regular intervals

Figure 19. Comparing two methods of outlier/anomaly
detection for Apple Inc.’s daily closing returns.

shorter than a year, such as daily, weekly, monthly, or quar-
terly while the later consists of longer term growth patterns.

The first task in the anomaly detection of a time series
is thus to generate its remainders.

There are different ways to decompose a time series
to produce remainders: ARIMA and X12 are popular algo-
rithms to do so.13

In general, high performance machine learning techniques
are not recommended for anomaly detection since the over-
fitting reduces the difference between the observed and
fitted values whereas in anomaly detection this difference
is essential to highlight the anomaly.

On the other hand, seasonal decomposition performs
best for this task by removing the right features (i.e. sea-
sonal and trend components) while preserving the charac-
teristics of anomalies in the remainders.

Finally, we note that there are other popular R outlier analy-
sis packages in R, such as AnomalyDetection, which
uses a method similar to anomalize’s GESD. Interested
readers are invited to try this package and compare their
results with the functions reviewed in this section.

6. Project

There is no substitute for practice: for the accompanying
project, we ask you to test the performance and limitations
of four outlier detection algorithms (LOF, IsolationForest,
kNN, and PCA) on five datasets:

the Airline dataset;
the Distracted Driving Fatality dataset;
the House Prices dataset;
the Melbourne Temperature dataset, and
the Sale Transactions dataset.

Consult the project statement for a series of guided steps.

13tsoutliers() uses ARIMA while anomalize() uses seasonal
decomposition.
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