
DATA SCIENCE REPORT SERIES

A SOFT INTRODUCTION TO BAYESIAN DATA ANALYSIS
Ehssan Ghashim4, Patrick Boily1,2,3

Abstract
Bayesian analysis is sometimes maligned by data analysts, due in part to the perceived element of
arbitrariness associated with the selection of a meaningful prior distribution for a specific problem and the
(former) difficulties involved with producing posterior distributions for all but the simplest situations. On
the other hand, we have heard it said that “while classical data analysts need a large bag of clever tricks
to unleash on their data, Bayesians only ever really need one.” With the advent of efficient numerical
samplers, modern data analysts cannot shy away from adding the Bayesian arrow to their quiver. In this
short report, we introduce the basic concepts underpinning Bayesian analysis, and we present a small
number of examples that illustrate the strengths of the approach.
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1. Introduction

Bayesian statistics is a system for describing epistemiologi-
cal uncertainty using the mathematical language of proba-
bility; Bayesian inference is the process of fitting a probabil-
ity model to a set of data and summarizing the result with
a probability distribution on the parameters of the model
and on unobserved quantities (such as predictions).

1.1 Background
In 1763, Thomas Bayes published a paper on the problem
of induction, that is, arguing from the specific to the gen-
eral. In modern language and notation, Bayes wanted to
use binomial data comprising r successes out of n attempts
to learn about the underlying chance θ of each attempt
succeeding. Bayes’ key contribution was to use a proba-
bility distribution to represent uncertainty about θ . This
distribution represents ’epistemiological’ uncertainty, due
to lack of knowledge about the world, rather than ’aleatory’
probability arising from the essential unpredictability of
future events, as may be familiar from games of chance.

In this framework, a probability represents a ‘degree-of-
belief’ about a proposition; it is possible that the probability
of an event will be recorded differently by two different
observers, based on the respective background information
to which they have access.
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Modern Bayesian statistics is still based on formulating
probability distributions to express uncertainty about un-
known quantities. These can be underlying parameters of
a system (induction) or future observations (prediction).

1.2 Bayes’ Theorem
Bayes’ Theorem provides an expression for the conditional
probability of A given B, that is:

P(A|B) =
P(B|A)P(A)

P(B)
.

Bayes’ Theorem can be thought of as way of coherently
updating our uncertainty in the light of new evidence. The
use of a probability distribution as a ‘language’ to express
our uncertainty is not an arbitrary choice: it can in fact be
determined from deeper principles of logical reasoning or
rational behaviour.

Example 1. Consider a medical clinic.

A could represent the event “Patient has liver disease.”
Past data suggests that 10% of patients entering the
clinic have liver disease: P(A) = 0.10.
B could represent the litmus test “Patient is alcoholic.”
Perhaps 5% of the clinic’s patients are alcoholics:
P(B) = 0.05.
B|A could represent the scenario that a patient is
alcoholic, given that they have liver disease: perhaps
we have P(B|A) = 0.07, say.

According to Bayes’ Theorem, then, the probability that a
patient has liver disease assuming that they are alcoholic is

P(A|B) =
0.07× 0.10

0.05
= 0.14

While this is a (large) increase over the original 10% sug-
gested by past data, it remains unlikely that any particular
patient has liver disease.

Bayes’ Theorem with Multiple Events
Let D represent some observed data and let A, B, and C be
mutually exclusive (and exhaustive) events conditional on
D. Note that

P(D) = P(A∩ D) + P(B ∩ D) + P(C ∩ D)
= P(D|A)P(A) + P(D|B)P(B) + P(D|C)P(C).

According to Bayes’ theorem,

P(A|D) =
P(D|A)P(A)

P(D)

=
P(D|A)P(A)

P(D|A)P(A) + P(D|B)P(B) + P(D|C)P(C)
.

In general, if there are n exhaustive and mutually exclusive
outcomes A1, ..., An, we have, for any i ∈ {1, ..., n}:

P(Ai |D) =
P(Ai)P(D|Ai)

∑n
k=1 P(Ak)P(D|Ak)

The denominator is simply P(D), the marginal distribu-
tion of the data.

Note that, if the values of Ai are portions of the contin-
uous real line, the sum may be replaced by an integral.

Example 2. In the 1996 General Social Survey, for males
(age 30+):

11% of those in the lowest income quartile were col-
lege graduates.
19% of those in the second-lowest income quartile
were college graduates.
31% of those in the third-lowest income quartile were
college graduates.
53% of those in the highest income quartile were
college graduates.

What is the probability that a college graduate falls in the
lowest income quartile?

Let Q i , i = 1,2,3,4 represent the income quartiles (i.e.
P(Q i) = 0.25) and D represent the event that a male over
30 is a college graduate. Then

P(Q1|D) =
P(D|Q1)P(Q1)

∑4
k=1 P(Qk)P(D|Qk)

=
(0.11)(0.25)

(0.11+ 0.19+ 0.31+ 0.53)(0.25)
= 0.09.

1.3 Bayesian Inference Basics
Bayesian statistical methods start with existing prior beliefs,
and update these using data to provide posterior beliefs,
which may be used as the basis for inferential decisions:

P(θ |D)
︸ ︷︷ ︸

posterior

= P(θ )
︸︷︷︸

prior

× P(D|θ )
︸ ︷︷ ︸

likelihood

/ P(D)
︸︷︷︸

evidence

,

where the evidence is

P(D) =

∫

P(D|θ )P(θ )dθ .

In the vernacular of Bayesian data analysis (BDA),

the prior, P(θ ), represents the strength of the belief
in θ without taking the observed data D into account;
the posterior, P(θ |D), represents the strength of our
belief in θ when the observed data D is taken into
account;
the likelihood, P(D|θ), is the probability that the
observed data D would be generated by the model
with parameter values θ , and
the evidence, P(D), is the probability of observing
the data D according to the model, determined by
summing (or integrating) across all possible parame-
ter values and weighted by the strength of belief in
those parameter values.
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Example 3. Application to neuroscience. Cognitive neuro-
scientists investigate which areas of the brain are active dur-
ing particular mental tasks. In many situations, researchers
observe that a certain region of the brain is active and in-
fer that a particular cognitive function is therefore being
carried out; [41] cautioned that such inferences are not
necessarily firm and need to be made with Bayes’ rule in
mind. The same paper reports the following frequency ta-
ble of previous studies that involved any language-related
task (specifically phonological and semantic processing)
and whether or not a particular region of interest (ROI)
in the brain was activated:

Language (L) Other (L)
Activated (A) 166 199

Not Activated (A) 703 2154

Suppose that a new study is conducted and finds that the
ROI is activated (A). If the prior probability that the task
involves language processing is P(L) = 0.5, what is the pos-
terior probability, P(L|A), given that the ROI is activated?

P(L|A) =
P(A|L)P(L)

P(A|L)P(L) + P(A|L)P(L)

=
(166/(166+ 703))0.5

(166/(166+ 703))0.5+ (199/(199+ 2154))0.5
= 0.693

Notice that the posterior probability of involving language
processes is slightly higher than the prior.

Exercises
Exercise 1. (1975 British national referendum on whether
the UK should remain part of the European Economic Com-
munity). Suppose 52% of voters supported the Labour Party
and 48% the Conservative Party. Suppose 55% of Labour
voters wanted the UK to remain part of the EEC and 85%
of Conservative voters wanted this. What is the probability
that a person voting “Yes” to remaining in EEC is a Labour
voter? [3]

Exercise 2. Given the following statistics, what is the prob-
ability that a woman has cancer if she has a positive mam-
mogram result? [20]

1% of women over 50 have breast cancer.
90% of women who have breast cancer test positive
on mammograms.
8% of women will have false positives.

2. Bayesian Methods Applied to Data Analysis

The essential characteristic of Bayesian methods is their
explicit use of probability for quantifying uncertainty in
inferences based on statistical data analysis.

2.1 The 3 Steps of Bayesian Data Analysis
The process of Bayesian data analysis (BDA) can be ideal-
ized by dividing it into the following 3 steps:

1. Setting up a full probability model (the prior) – a
joint probability distribution for all observable and
unobservable quantities in a problem. The model
should be consistent with knowledge about the un-
derlying scientific problem and the data collection
process (when available).

2. Conditioning on observed data (new data) – calculat-
ing and interpreting the appropriate posterior distri-
bution (i.e. the conditional probability distribution of
the unobserved quantities of ultimate interest, given
the observed data).

3. Evaluating the fit of the model and the implications of
the resulting posterior distribution (the posterior) –
how well does the model fit the data? are the substan-
tive conclusions reasonable? how sensitive are the
results to the modeling assumptions made in step 1?
Depending on the responses, one can alter or expand
the model and repeat the 3 steps.

The essence of Bayesian methods consists in identifying
the prior beliefs about what results are likely, and then
updating those according to the collected data.

For example, if the current success rate of a gambling strat-
egy is 5%, we may say that it’s reasonably likely that a small
strategy modification could further improve that rate by 5
percentage points, but that it is most likely that the change
will have little effect, and that it is entirely unlikely that the
success rate would shoot up to 30% (after all, it is only a
small modification).

As the data start coming in, we start updating our be-
liefs. If the incoming data points to an improvement in the
success rate, we start moving our prior estimate of the ef-
fect upwards; the more data we collect, the more confident
we are in the estimate of the effect and the further we can
leave the prior behind.

The end result is called the posterior – a probability
distribution describing the likely effect of the strategy.

3. Prior Distributions

Specifying a model means, by necessity, providing a prior
distribution for the unknown parameters. The prior plays
a critical role in Bayesian inference through the updating
statement :

P(θ |D)∝ P(θ )× P(D|θ ).

In the Bayesian approach, all unknown quantities are de-
scribed probabilistically, even before the data has been
observed. All priors are subjective in the sense that the
decision to use any prior is left completely up to the re-
searcher. But the choice of priors is no more subjective
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than the choice of likelihood, the selection or collec-
tion of a sample, the estimation, or the statistic used
for data reduction. The choice of a prior can substantially
affect posterior conclusions, however, especially when the
sample size is not large.

We now examine several broad methods of determining
prior distributions.

3.1 Conjugate Priors
The main challenge of Bayesian methods is that the pos-
terior distribution of the vector θ might not have an an-
alytical form. Specifically, producing marginal posterior
distributions from high-dimensional posteriors by repeated
analytical integration may be difficult or even impossible
mathematically. There are exceptions however, providing
easily obtainable computational posteriors through the use
of a conjugate prior. Conjugacy is a joint property of a
prior and a likelihood that implies that the posterior distri-
bution has the same distributional form as the prior, but
with different parameter(s).

The table below represents some common likelihoods and
their conjugate priors (an extensive list can be found in [27]).

Likelihood Prior Hyperparameters
Bernouilli Beta α > 0,β > 0
Binomial Beta α > 0,β > 0
Poisson Gamma α > 0, β > 0

Normal for µ Normal µ ∈ R, σ2 > 0
Normal for σ2 Inverse Gamma α > 0, β > 0
Exponential Gamma α > 0, β > 0

For instance, if the probability of s successes in n trials (the
likelihood) is given by

P(s, n|q) =
n!

s!(n− s)!
qs(1− q)n−s, q ∈ [0,1],

and the prior probability for q follows a Beta(α,β) distri-
bution with α > 0,β > 0 (so that

P(q) =
qα−1(1− q)β−1

B(α,β)
,

for q ∈ [0, 1]), then the posterior distribution for q given s
successes in n trials follows a Beta(α+ s,β + n− s) distri-
bution (so that

P(q|s, n) =
P(s, n|q)× P(q)

P(s, n)
=

qα+s−1(1− q)β+n−s−1

B(α+ s,β + n− s)

for q ∈ [0,1]).

Conjugate priors are mathematically convenient, and they
can be quite flexible, depending on the specific hyperparam-
eters we use; but they reflect very specific prior knowl-
edge and should be eschewed unless we truly possess
that prior knowledge.

3.2 Uninformative Prior Distribution
An uninformative prior is one in which little new explana-
tory power about the unknown parameter is provided by
intention. Uninformative priors are very useful from the
perspective of traditional Bayesianism seeking to mitigate
the frequentist criticism of intentional subjectivity. These
priors intentionally provide very little specific information
about the parameter(s).

A classic uninformative prior is the uniform prior. A proper
uniform prior integrates to a finite quantity and is thus nor-
malizable. By example, for data following a Bernoulli(θ)
distribution, a uniform prior on θ is

P(θ ) = 1, 0≤ θ ≤ 1.

This approach makes sense when θ has bounded support.
But for data following a N(µ, 1) distribution, the uniform
prior on the support of µ is improper as

P(µ) = 1, −∞< µ <∞

diverges; however, such a choice could still be acceptable
as long as the resulting posterior is normalizable (i.e. the
integral of the posterior converges on its support). As there
are instances where an improper prior yields an improper
posterior, care is warranted. The rationale for using unin-
formative prior distributions is often said to be ’to let the
data speak for itself,’ so that inferences are unaffected by
information external to the current data.

3.3 Informative Prior Distributions
Informative priors are those that deliberately insert infor-
mation that researchers have at hand. This seems like a
reasonable approach since previous scientific knowledge
should play a role in doing statistical inference. However,
there are two important requirements for researchers:

1. overt declaration of prior specification, and
2. detailed sensitivity analysis to show the effect of these

priors relative to uninformed types.

Transparency is required to avoid the common pitfall of
data fishing; sensitivity analysis can provide a sense of
exactly how informative the prior is. But where do infor-
mative priors come from, in the first place? Generally these
priors are derived from:

past studies, published work, researcher intuition;
interviewing domain experts;
convenience with conjugacy, and
non-parametric and other data-derived sources.

Prior information from past studies need not be in agree-
ment. One useful strategy is to construct prior specifications
from competing school-of-thoughts in order to contrast
the resulting posteriors and produce informed statements
about the relative strength of each of them.

E. Ghashim, P.Boily (2020) Page 4 of 17



DATA SCIENCE REPORT SERIES A SOFT INTRODUCTION TO BAYESIAN DATA ANALYSIS

Example 4. Influence of the prior. We have noted previously
that a Bernouilli likelihood and a Beta prior form a set of
conjugate priors. For this exercise, we use the R function
BernBeta()) defined in [10] (notice that the function
returns the posterior beta values each time it is called, so
returned values can be fed back into the prior during the
next function call).

(a) Start with a prior distribution that expresses some
uncertainty that a coin is fair: Beta(θ |4,4). Flip the
coin once; assume that a Head is obtained. What is
the posterior distribution of the uncertainty in the
coin’s fairness θ?

Solution: at the R command prompt, type:

> post = BernBeta( c(4,4) , c(1) )

This function uses the conjugacy relation from Sec-
tion 3.1 to determine the posterior distribution Beta
for the uncertainty in the fairness of the coin given
the parameters of the Beta prior and the observed
data assuming a Bernouilli likelihood (1 represents
a H(ead) on the flip, 0 a T(ail)). However, we know
on theoretical grounds that the posterior follows a
Beta(θ |4+ 1, 4+ 1− 1) = Beta(θ |5, 4) distribution:

The label on the y−axis of the posterior distribution
provides the posterior parameters (they are also given
by typing show(post) at the command prompt).

(b) Use the posterior parameters from the previous flip as
the prior for the next flip. Suppose we flip again and
get a H. What is the new posterior on the uncertainty
in the coin’s fairness?

Solution: at the R command prompt, type

> post = BernBeta( post , c(1) )

The posterior distribution is Beta(θ |6,4), which is
shown below.

(c) Using the most recent posterior as the prior for the
next flip, flip a third time and obtain yet again a H.
What is the new posterior?

Solution: in this case, we know that the posterior for
the coin’s fairness follows a Beta(θ |7, 4) distribution
(we won’t provide the code or the output, this time!).
Does 3 H in a row give you pause? Is there enough
evidence to suggest that θ 6= 0.5 (i.e that the coin is
not fair)? What if you flipped 18 H in a row from this
point on?

When working on a problem, it can be easy to get side-
tracked and confused with the notation. In those cases, it
is useful to return to the definition of each of the terms in
Bayes’ theorem (i.e. P(θ |D), P(D), P(D|θ ), etc.).
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Example 5. An unusual prior. Suppose that a friend has a
coin that we know comes from a magic store; as a result,
we believe that the coin is strongly biased in either of the
two directions (it could be a trick coin with both sides being
H, for instance), but we don’t know which one it favours.
We will express the belief of this prior as a Beta distribution.
Let’s say that our friend flips the coin five times; resulting in
4 H and 1 T. What is the posterior distribution of the coin’s
fairness θ?

Solution: at the prompt, type

> post = BernBeta(c(1,1)/100,c(1,1,1,1,0))

yielding the posterior below.

The code above uses a prior given by Beta(θ |0.01,0.01).
This prior captures our belief that the coin is strongly biased
(although we do not know in which direction the bias lies
before seeing data). The choice of 0.01 is arbitrary, in a
sense; 0.1 would have worked as well, for instance.

The posterior distribution is Beta(θ |4.01,1.01) which,
as shown above, has its mode essentially at 1.0, and not
near the mean ≈ 0.8. Is the coin indeed biased? In which
direction? How would your answer change if you had no
reason to suspect that the coin was biased in the first place?

3.4 Maximum Entropy Priors
Whether the priors are uninformative or informative, we
search for the distribution that best encodes the prior state
of knowledge from a set of trial distributions.

Consider a discrete space X of cardinality M with prob-
ability density P(X ) = (p1, ..., pM ). The entropy of a p,
denoted by H(p), is given by

H(p) = −
M
∑

i=1

pi log pi ,
1 with 0 · log(0) = 0.

The maximum entropy principle (MaxEnt) states that,
given a class of trial distributions with constraints, the opti-
mal prior is the trial distribution with the largest entropy.
As an example, the most basic constraint is for p to lie in
the probability simplex, that is,

∑

i pi = 1 and pi ≥ 0 for all
i in the discrete case, or

∫

Ω
P(Z)dZ = 1 and P(Z) ≥ 0 on

Ω in the continuous case.

Example 6. Without constraints, the MaxEnt principle
yields a prior which solves the optimization problem:

max −p1 log p1 − · · · − pM log pM
s.t. p1 + · · ·+ pM = 1 and p1, . . . , pM ≥ 0

Using them method of Lagrange multipliers, this optimiza-
tion reduces to

p∗ = argmaxp{H(p)−λ(p1 + · · ·+ pM − 1)},

whose solution is p∗∝ constant. Hence, subject to no addi-
tional constraints, the uniform distribution is the maximum
entropy prior.

Example 7. Using MaxEnt to build a prior for Bayesian
inference. “The joke about New York is that you can never
get a cab, except when you don’t need a cab, and then there
are cabs everywhere” (quote and example from S.DeDeo’s
Maximum Entropy Methods tutorial [29]). How could we
use Bayesian analysis to predict the cab waiting time? At
various moments, head out to the street, say “I need a cab!”
and keep track of how long you took before a cab was
available. Perhaps the observations (in minutes) look like
this

6,3, 4,6, 2,3, 2,6, 4,4.

What can you conclude about the waiting time for a New
York City cab? In the best case scenario a cab is waiting for
us as we get to the curb ( j = 0), while in the worst case
scenario (a zombie apocalypse, say?), no cab ever comes
( j→∞). But can anything else be said?

To use MaxEnt in this situation, we need to find – among
all of the trial distributions that could have generated the

1In the case of a continuous pdf P(X1, . . . , Xn) on some domain Ω ⊆ Rn,
the entropy is given by H(p) = −

∫

Ω
P(Z) log(P(Z))dZ .
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observed waiting times – the one with the highest entropy.
Unfortunately, there are infinitely many such distributions.
We can narrow the search by including a constraint stating
that the expected value of the trial distributions should be
the same as the mean of the sample, namely 4.

The two constraints translate to

g1(p) =
∞
∑

j=0

j · p j − 4= 0 and g2(p) =
∞
∑

j=0

p j − 1= 0,

where p j is the probability of having to wait j minutes for
a cab.

The method of Lagrange multipliers reduces the problem
to solving

argmaxp {{H(p)−λ1 g1(p)−λ2 g2(p)} .

This requires solving the gradient equation

∇pH(p) = λ1∇p g1(p) +λ2∇p g2(p),

which gives rise to equations of the form

−(ln p j + 1) = λ1 j +λ2, j = 0,1, . . . ,

or simply p j = exp(−λ1 j)exp(−1 − λ2) for j = 0,1, . . .
Since

1=
∞
∑

j=0

p j = exp(−1−λ2)
∞
∑

j=0

exp(−λ1 j),

so that

exp(1+λ2) =
∞
∑

j=0

exp(−λ1 j) =
1

1− exp(−λ1)
, (1)

assuming that |exp(−λ1)|< 1. Similarly,

4=
∞
∑

j=0

jp j = exp(−1−λ2)
∞
∑

j=0

j exp(−λ1 j),

so that

4exp(1+λ2) =
∞
∑

j=0

j exp(−λ1 j) =
exp(−λ1)

(1− exp(−λ1))2
. (2)

Substituting (1) into (2) and solving for λ1, we see that
λ1 = ln(5/4). Substituting that result back into (1), we
obtain exp(−1−λ2) =

1
5 , so that

p j = exp(−1−λ2)exp(−λ1 j) =
1
5

�

4
5

� j

, j = 0, . . .

It is easy to see that this defines a distribution; a “verifica-
tion” is provided by the following code.

pmf_maxent <- function(x,lambda=4/5)
(1-lambda)*(\lambda)^x

sum(pmf_maxent(0:100)) # check if it’s a
distribution

mp <- barplot(pmf_maxent(0:15),
ylim=c(0,.25), xlab="waiting
minutes")

axis(1,at=mp,labels=paste(0:15))

This distribution (see below) could be used as a prior in a
Bayesian analysis of the situation. Notice that some infor-
mation about the data (in this case, only the sample mean)
is used to define the MaxEnt prior.

Exercises
Exercise 3. In this exercise you will study the possible
effect that the choice of prior has on conclusions.

(a) Suppose you have in your possession a coin that you
know was minted by the federal government and for
which you have no reason to suspect tampering of
any kind. Your prior belief about fairness of the coin
is thus strong. You flip the coin 10 times and record
9 H(eads). What is your predicted probability of
obtaining 1H on the 11th flip? Explain your answer
carefully; justify your choice of prior. How would
your answer change (if at all) if you use a frequentist
viewpoint?

(b) A mysterious stranger hands you a different coin, this
one made of some strange-to-the-touch material, on
which the words “Global Tricksters Association” You
flip the coin 10 times and once again record 9H. What
is your predicted probability of obtaining 1H on the
11th flip? Explain your answer carefully; justify your
choice of prior. Hint: Use the prior from Example 5.
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4. Posterior Distributions

The posterior distribution is used to estimate a variety of
model parameters of interest, such as the mean, the median,
the mode, and so forth.

It is possible to construct credible intervals/regions
directly from the posterior (in contrast to the “confidence”
intervals of frequentist inference).

Given a posterior distribution on a parameter θ , a 1− α
credible interval [L, U] is an interval such that

P(L ≤ θ ≤ U |D)≥ 1−α.

Because the posterior is a full distribution on the parameters,
it is possible to make all sorts of probabilistic statements
about their values, such as:

“I am 95% sure that the true parameter value is bigger
than 0.5.”
There is a 50% chance that θ1 is larger than θ2 .
etc.

The best approach is to build the credible interval of θ -
values using the highest density interval (HDI), i.e. to
define a region Ck in the parameter space with

Ck = {θ : P(θ |D)≥ k} ,

where k is the largest number such that
∫

Ck

P(θ |D) dθ = 1−α.

This typically has the effect of finding the smallest (in mea-
sure) region Ck meeting the criterion.

The value k can be thought of the height of a horizontal
line (or hyperplane, in the case of multivariate posteriors)
overlaid on the posterior and whose intersection(s) with
the latter define a region over which the integral of the
posterior is 1−α. In most cases, the value k can be found
numerically.

Example 8. HDIs, elections, and iterative data collection.
It is an election year and you are interested in knowing
whether the general population prefers candidate A or can-
didate B. A recently published poll states that of 400 ran-
domly sampled people, 232 preferred candidate A, while
the remainder preferred candidate B.

(a) Suppose that before the poll was published, your
prior belief was that the overall preference follows a
uniform distribution. What is the 95% HDI on your
belief after learning of the poll result?

Solution: let preference for candidate A be denoted
by 1, and preference for candidate B by 0. We can
use the R function BernBeta() as in Example 4.

At the prompt, type

> post=BernBeta(c(1,1),c(rep(1,232),rep(0,168)))

yielding a posterior with a 95% HDI from 0.531 to
0.628 for probability of candidate A.

(b) Based on the poll, is it credible to believe that the pop-
ulation is equally divided in its preferences among
candidates?

Solution: the HDI from Part (a) shows that θ = 0.5
is not among the credible values, hence it is not cred-
ible to believe that the population is equally divided
in its preferences (at the 95%) level.

(c) You want to conduct a follow-up poll to narrow down
your estimate of the population’s preference. In the
follow-up poll, you randomly sample 100 people and
find that 57 prefer candidate A. Assuming that the
opinion of people have have not changed between
polls, what is the 95% HDI on the posterior?

Solution: at the prompt, type

> post=BernBeta(post,c(rep(1,57),rep(0,43)))

yields the figure on the next page. The 95% HDI
is a bit narrower for preference for candidate A is a
bit nanarrower, from 0.534 to 0.621.
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(d) Based on the follow-up poll, is it credible to believe
that the population is equally divided in its prefer-
ences among candidates?

Solution: the HDI from (c) excludes θ = 0.5; both
the follow-up poll and the original poll suggest that
the population is not equally divided (and actually
prefers candidate A).

4.1 Markov Chain Monte Carlo (MCMC) Methods
The true power of Bayesian inference is most keenly felt
when the model specifications lead to a posteriors that can-
not be manipulated analytically; in that case, it is usually
possible to recreate a synthetic (or simulated) set of val-
ues that share the properties with a given posterior. Such
processes are known as Monte Carlo simulations.

A Markov chain is an ordered, indexed set of random vari-
ables (a stochastic process) in which the values of the quan-
tities at a given state depends probabilistically only on the
values of the quantities at the preceding state. Markov
chain Monte Carlo (MCMC) methods are a class of algo-
rithms for sampling from a probability distribution based
on the construction of a Markov chain with the desired
distribution as its equilibrium distribution. The state of the
chain after a number of steps is then used as a sample of the
desired distribution. The quality of the sample improves as
a function of the number of steps.

MCMC techniques are often applied to solve integration and
optimization problems in large-dimensional spaces. These
two types of problem play a fundamental role in machine
learning, physics, statistics, econometrics and decision anal-
ysis. For instance, given variables θ ∈ Θ and data D, the
following (typically intractable) integration problems are
central to Bayesian inference:

normalisation – in order to obtain the posterior P(θ |D)
given the prior P(θ ) and likelihood P(D|θ ), the nor-
malizing (denominator) factor in Bayes’ theorem needs
to be computed

P(θ |D) =
P(θ )P(D|θ )

∫

P(D|θ )P(θ )dθ
.

marginalisation – given the joint posterior of (θ , x),
we may often be interested in the marginal posterior

P(θ |D) =
∫

P(θ , x |D)d x .

expectation – the final objective of the analysis is
often to obtain summary statistics of the form

E( f (θ )) =

∫

Θ

f (θ )P(θ |D)dθ

for some function of interest (i.e. f (θ) = θ (mean),
or f (θ ) = (θ − E(θ ))2 (variance)).

The Metropolis-Hastings (MH) Algorithm
The Metropolis-Hastings (MH) algoirthm is a specific type
of Monte Carlo process; it is likely among the ten algorithms
that have had the greatest influence on the development
and practice of science and engineering in recent times.

MH generates a random walk (that is, it generates a
succession of posterior samples) in such a way that each
step in the walk is completely independent of the preced-
ing steps; the decision to reject or accept the proposed step
is also independent of the walk’s history.

Any process for which the current step is independent (for-
getful) of the previous states, namely

P(Xn+1 = x |X1 = x1, . . . , Xn = xn) = P(Xn+1 = x |Xn = xn)

for all n, X j and x j , j = 1, . . . , n, is called a (first order)
Markov process, and a succession of such steps is a (first
order) Markov chain.

MH uses a candidate or proposal distribution for the poste-
rior, say q(·, θ), where θ is a vector of parameters that is
fixed by the user-called tuning parameters; MH then con-
structs a Markov Chain by proposing a value for θ from
this candidate distribution, and then either accepting or
rejecting this value (with a certain probability).
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Theoretically the proposal distributions can be nearly any
distribution, but in practice it is recommended that (really)
simple ones be selected: a normal if the parameter of inter-
est can be any real number (e.g. µ), or a log-normal if it
has positive support (e.g. σ2), say.

The Metropolis-Hastings (MH) algorithm simulates sam-
ples from a probability distribution by making use of the
full joint density function and (independent) proposal dis-
tributions for each of the variables of interest.

Algorithm 1: Metropolis-Hastings Algorithm

1 Initialize x (0) ∼ q(x)
2 for i = 1, 2, · · · do
3 Propose: x∗ ∼ q(x (i)|x (i−1))
4 Acceptance Probability:

α(x∗|x (i−1)) = min

�

1,
q(x (i−1)|x∗)π(x∗)

q(x∗|x (i−1))π(x (i−1))

�

5 u∼ U(0, 1)
6 if u< α then
7 Accept the proposal: x (i)← x∗

8 else
9 Reject the proposal: x (i)← x (i−1)

10 end
11 end

The first step is to initialize the sample value for each
random variable (often obtained by sampling from the vari-
able’s prior distribution). The main loop of Algorithm 1
consists of three components:

generate a candidate sample x∗ from the proposal
distribution q(x (i)|x (i−1));
compute the acceptance probability via the accep-
tance function α(x∗|x (i−1)) based on the proposal
distribution and the full joint density π(·);
accept the candidate sample with probability α, the
acceptance probability, or reject it otherwise.

Example 9. The MH algorithm and simple linear regres-
sion. The test data for this example is genreated using the
following code.

t.A <- 10 # true slope
t.B <- 0 # true intercept
t.sd <- 20 # true noise
s.Size <- 50 # sample size
# create independent x-values
x <- (-(s.Size-1)/2):((s.Size-1)/2)
# create dependent values according to

ax + b + N(0,sd)
y <- t.A * x + t.B +

rnorm(n=s.Size,mean=0,sd=t.sd)
plot(x,y, main="Test Data")

Notice that the x values are balanced around zero to "de-
correlate" slope and intercept. The result should look like
the chart below.

Defining the statistical model. The next step is to specify
the statistical model. We already know that the data was
created with a linear relationship y = ax + b together with
a normal error model N(0, sd) with standard deviation sd,
so we might as well use the same model for the fit and
see if we can retrieve our original parameter values. Note
however that, in general, the generating model is unknown.

Deriving the likelihood function from the model. A lin-
ear model of the form y = ax + b + N(0, sd) takes the
parameters (a, b, sd) as inputs. The output should be the
probability of obtaining the test data under this model: in
this case, we only need to calculate the difference between
the predictions y = ax + b and the observed y, and then
look up the probability (using dnorm) for such deviations
to occur.

likehd <- function(param){
a = param[1]
b = param[2]
sd = param[3]
pred = a*x + b
singlelikelihoods = dnorm(y, mean =

pred, sd = sd, log = T)
sumll = sum(singlelikelihoods)
return(sumll) }

# Example: plot the likelihood profile
of the slope a

s.values <-
function(x){return(likehd(c(x, t.B,
t.sd)))}

s.likehds <- lapply(seq(1/2*t.A,
3/2*t.A, by=.05), s.values )
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plot(seq(1/2*t.A, 3/2*t.A, by=.05),
s.likehds , type="l", xlab = "values
of slope parameter a", ylab = "Log
likelihood")

As an illustration, the last lines of the code plot the Likeli-
hood for a range of parameter values of the slope parameter
a. The result should look like the image below.

Defining the priors. In Bayesian analysis, the next step is
always required: we have to specify a prior distribution for
each of the model parameters. To keep things simple, we
will use a uniform distribution for and normal distributions
for all three parameters are used.2

# Prior distribution
prior <- function(param){

a = param[1]
b = param[2]
sd = param[3]
aprior = dunif(a, min=0, max=2*t.A,

log = T)
bprior = dnorm(b, mean=t.B, sd = 5,

log = T)
sdprior = dunif(sd, min=0,

max=2*t.sd, log = T)
return(aprior+bprior+sdprior)

}

The posterior. The product of prior by likelihood is the
actual quantity that MCMC works with (it is not, strictly
speaking, the posterior as it is not normalized).

posterior <- function(param){
return (likehd(param) + prior(param))

}

2We work with the logarithms of all quantities, so that the likelihood is
a sum and not a product as would usually be the case.

Applying the MH algorithm. One of the most frequent
applications of MH (as in this example) is sampling from
the posterior density in Bayesian statistics.3 The aim of
the algorithm is to jump around in parameter space, but in
such a way as to have the probability to land at a point be
proportional to the function we sample from (this is usually
called the target function). In this case, the target function
is the posterior defined previously.

This is achieved by

1. starting with a random parameter vector;
2. choosing a new parameter vector near the old value

based on some probability density (the proposal func-
tion), and

3. jumping to this new point with a probability α =
min{1, g(new)/g(old)}, where g is the target.

The distribution of the parameter vectors MH visits con-
verges to the target distribution g.

######## MH ################
proposalfunction <- function(param){

return(rnorm(3,mean = param, sd=
c(0.1,0.5,0.3)))

}

run_metropolis_MCMC <-
function(startvalue, iterations){
chain = array(dim = c(iterations+1,3))
chain[1,] = startvalue
for (i in 1:iterations){

proposal =
proposalfunction(chain[i,])

probab = exP(posterior(proposal) -
posterior(chain[i,]))

if (runif(1) < probab){
chain[i+1,] = proposal

}else{
chain[i+1,] = chain[i,]

}
}
return(chain)

}

startvalue = c(4,0,10)
chain = run_metropolis_MCMC(startvalue,

10000)

burnIn = 5000
acceptance =

1-mean(duplicated(chain[-(1:burnIn),]))

The first steps of the algorithm may be biased by the initial-
ization process; they are usually discarded for the analysis
(this is referred to as the burn-in time).

3The algorithm may be used to sample from any integrable function.
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An interesting output to study is the acceptance rate: how
often was a proposal rejected by the MH acceptance crite-
rion? The acceptance rate can be influenced by the proposal
function: generally, the nearer the proposal is to the latest
value, the larger the acceptance rate.

Very high acceptance rates, however, are usually not
beneficial, as this implies that the algorithms is “staying”
in the same neighbourhood or point, which results in sub-
optimal probing of the parameter space (there is very litte
mixing). Acceptance rates between 20% and 30% are con-
sidered optimal for typical applications [25].

Finally, we can plot the results.

### Summary: #######################
par(mfrow = c(2,3))
hist(chain[-(1:burnIn),1],nclass=30, ,

main="Posterior of a", xlab="True
value = red line" )

abline(v = mean(chain[-(1:burnIn),1]))
abline(v = t.A, col="red" )
hist(chain[-(1:burnIn),2],nclass=30,

main="Posterior of b", xlab="True
value = red line")

abline(v = mean(chain[-(1:burnIn),2]))
abline(v = t.B, col="red" )
hist(chain[-(1:burnIn),3],nclass=30,

main="Posterior of sd", xlab="True
value = red line")

abline(v = mean(chain[-(1:burnIn),3]) )
abline(v = t.sd, col="red" )
plot(chain[-(1:burnIn),1], type = "l",

xlab="True value = red line" , main
= "Chain values of a", )

abline(h = t.A, col="red" )
plot(chain[-(1:burnIn),2], type = "l",

xlab="True value = red line" , main
= "Chain values of b", )

abline(h = t.B, col="red" )
plot(chain[-(1:burnIn),3], type = "l",

xlab="True value = red line" , main
= "Chain values of sd", )

abline(h = t.sd, col="red" )

# for comparison:
summary(lm(y~x))

The resulting plots should look something like those seen in
the column on the right: the upper row shows posterior esti-
mates for the slope a, intercept (b) and standard deviation
of the error (sd); the lower row shows the Markov Chain of
parameter values. We retrieve (more or less) the original
parameters that were used to create the data, and there
is a certain area around the highest posterior values that
also show some support by the data, which is the Bayesian
equivalent of confidence intervals.

The posterior distributions above are marginal distribu-
tions, the joint distributions are shown below.

By way of comparison, the lm() function in R yields the
following estimates: a – 9.9880 (se: 0.2092), b – 0.5840
(se: 3.0185), and sd – 21.34 (48 d.f.).

Exercises
Exercise 4. A group of adults are doing a simple learn-
ing experiment: when they see the two words “radio” and
“ocean” appear simultaneously on a computer screen, they
are asked to press the F key on the keyboard; whenever
the words “radio” and “mountain” appear on the screen,
they are asked to press the J key. After several practice
repetitions, two new tasks are introduced: in the first,
the word “radio” appears by itself and the participants are
asked to provide the best response (F or J) based on what
they learned before; in the second, the words “ocean” and
“mountain” appear simultaneously and the participants are
once again asked to provide the best response. This is re-
peated with 50 people. The data shows that, for the first
test, 40 participants answered with F and 10 with J; while
for the second test, 15 responded with F and 35 with J. Are
people biased toward F or toward J for either of the two
tests? To answer this question, assume a uniform prior, and
use a 95% HDI to decide which biases can be declared to
be credible.
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5. Uncertainty

According to [12],

the central feature of Bayesian inference is the
direct quantification of uncertainty.

Bayesian approach to modeling uncertainty is particularly
useful when:

the available data is limited;
there is some concern about overfitting;
some facts are more likely to be true than others, but
that information is not contained in the data, or
the precise likelihood of certain facts is more impor-
tant than solely determining which fact is most likely
(or least likely).

The following example represents a Bayesian approach
to dealing with the uncertainty of the so-called envelope
paradox.

Example 10. You are given two indistinguishable envelopes,
each containing a cheque, one being twice as much as the
other. You may pick one envelope and keep the money it
contains. Having chosen an envelope at will, but before
inspecting it, you are given the chance to switch envelopes.
Should you switch? What is the expected outcome in doing
so? Explain how this game leads to infinite cycling.

Solution: let V be the (unknown) value found in the en-
velope after the first selection. The other envelope then
contains either 1

2 V or 2V , both with probability 0.5, and
the expected value of trading is

E[trade] = 0.5×
1
2

V + 0.5× 2V =
5
4

V > V ;

and so it appears that trading is advantageous. Let the
(still unknown) value of the cheque in the new envelope be
W . The same argument shows that the expected value of
trading that envelope is 5

4 W >W , so it would make sense
to trade the envelope once more, and yet once more, and
so on, leading to infinite cycling.

There is a Bayesian approach to the problem, however.
Let V be the (uncertain) value in the original selection, and
W be the (also uncertain) value in the second envelope. A
proper resolution requires a joint (prior) distribution for V
and W . Now, in the absence of any other information, the
most we can say about this distribution using the maximum
entropy principle is that P(V <W ) = P(V >W ) = 0.5.

By definition, if V <W , then W = 2V ; if, on the other
hand, V >W then W = V

2 . We now show that the expected
value in both envelopes is the same, and thus that trading
envelope is no better strategy than keeping the original
selection.

Using Bayes’ Theorem, we compute that

E[W ] = E[W |V <W ]P(V <W ) + E[W |V >W ]P(V >W )
= E[2V |V <W ] · 0.5+ E[0.5V |V >W ] · 0.5

= E[V |V <W ] + 0.25 · E[V |V >W ],

while

E[V ] = E[V |V <W ]P(V <W ) + E[V |V >W ]P(V >W )
= 0.5 · E[V |V <W ] + 0.5 · E[V |V >W ].

Before we can proceed any further, we must have some infor-
mation about the joint distribution P(V, W ) (note, however,
that E[W ] will not typically be equal to 5

4 V , as had been
assumed at the start of the solution).

The domain Ω of the joint probability consists of those pairs
(V, W ) satisfying V = 2W (V > W ) or W = 2V (V < W )
for 0 < V, W < M , where M <∞ is some upper limit on
the value of each cheque.4

We have assumed that the probability weight on each branch
of Ω is 1/2; if we further assume, say, that the cheque
value is as likely to be any of the allowable values on these
branches, then the joint distribution is

P(V, W ) =







1
M if V <W
1

2M if V >W
0 otherwise

and the expectations listed above are

E[V |V <W ] =

∫

V<W

V · P(V, W ) dΩ=

∫ M/2

0

V ·
1
M

dV =
M
8

4In the worst case scenario, M would have to be smaller than the total
amount of wealth available to humanity throughout history, although in
practice M should be substantially smaller. Obviously, a different argument
will need to be made in the case M =∞.
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and

E[V |V >W ] =

∫

V>W

V · P(V, W ) dΩ=

∫ M

0

V ·
1

2M
dV =

M
4

.

Therefore,

E[W ] =
M
8
+ 0.25 ·

M
4
=

3M
16

and

E[V ] = 0.5 ·
M
8
+ 0.5 ·

M
4
=

3M
16

,

and switching the envelope does not change the expected
value of the outcome. There is no paradox; no infinite
cycling.

Example 11. Bayes in the courtroom. After the sudden
death of her two baby sons, Sally Clark was sentenced by
a U.K. court to life in prison in 1996. Among other errors,
expert witness Sir Roy Meadow had wrongly interpreted the
small probability of two cot deaths as a small probability of
Clark’s innocence. After a long campaign, which included
the refutation of Meadow’s statistics using Bayesian statis-
tics, Clark was released in 2003. While Clark’s innocence
could not be proven beyond the shadow of a doubt using
such methods, her culpability could also not be established
beyond reasonable doubt and she was cleared. An interest-
ing write-up of the situation can be found online [39].

6. Why Use Bayesian Methods

As discussed previously, Bayesian methods have a number
powerful features: they allow analysts to

incorporate specific previous knowledge about pa-
rameters of interest;
logically update knowledge about the parameter after
observing sample data;
make formal probability statements about parameters
of interest;
specify model assumptions and check model quality
and sensitivity to these assumptions in a straightfor-
ward manner;
provide probability distributions rather than point
estimates, and
treat the data values in the sample as interchangeable.

6.1 Problems and Solutions
In particular, Bayesian methods are indicated in order to
solve a number of problematic challenges in data analysis.

1. The dataset is small, but external related information
is available: use the information in a prior.

2. The model is extremely flexible (high-variance model)
and so is prone to overfitting: use priors that with
peaks close to 0 (this is roughly equivalent to the
concept of regularization in machine learning).

3. There is an interest in determining the likelihood of
parameter values, rather than just producing a “best
guess”: construct the full posterior for the parameter-
s/variable of interest.

6.2 Bayesian A/B Testing
A/B testing is an excellent tool for deciding whether or not
to roll out incremental features. To perform an A/B test, we
divide users randomly into a test and control group, then
provide the new feature to the test group while letting the
control group continue to experience the current version of
the product.

If the randomization procedure is appropriate, we may
be able attribute any difference in outcomes between the
two groups to the changes we are rolling out without having
to account for other sources of variation affecting the user
behaviour. Before acting on these results, however, it is
important to understand the likelihood that any observed
differences is merely due to chance rather than to product
modification.

For example, it is perfectly possible to obtain different
H/T ratios between two fair coins if we only conduct a
limited number of tosses; In the same manner, it is possible
to observe a change between the A and B groups even if
the underlying user behavior is identical.

Example 12. (derived from [28]) Wakefield Tiles is a com-
pany that sells floor tiles by mail order. They are trying to
become an active player into the lucrative Chelsea market
by offering a new type of tile to the region’s contractors.
The marketing department have conducted a pilot study
and tried two different marketing methods:

A – sending a colourful brochure in the mail to invite
contractors to visit the company’s showroom;
B – sending a colourful brochure in the mail to invite
contractors to visit the company’s showroom, while
including free tile samples.

The marketing department sent out 16 mail packages of
type A and 16 mail packages of type B. Four Chelseaites
that received a package of type A visited the showroom,
while 8 of those receiving a package of type B did the same.
The company is aware that:

a mailing of type A costs 30$ (includes the printing
cost and postage);
a mailing of type B costs 300$ (additionnaly includes
the cost of the free tile samples);
a visit to the showroom yields, on average, 1000$ in
revenue during the next year.

Which of the methods (A or B) is most advantageous to
Wakefield Tiles?

Solution: the Bayesian solution requires the construction
of a prior distribution and of a generative model; as part of
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the generative model, we will need to produce n replicates
of samples from the binomial distribution (which can be
done in R using rbinom(n,size,prob)).

The binomial distribution simulates n times the number
of “successes” when performing size trials (mailings),
where the probability of a “success” is prob. A commonly
used prior for prob is the uniform distribution U(0,1),
from which we can sample in R via runif(1, min =
0, max = 1).

# Number of replicates from the prior
n.draws <- 200000

# Prior
# This generates a probability of
# success for mailings A and B,
# for each of the replicates
prior <- data.frame(p.A = runif(n.draws,

0, 1), p.B = runif(n.draws, 0, 1))

# Generative model
# This tells us how many visitors to

expect
# for mailing types A, B
generative.model <- function(p.A, p.B) {
visitors.A <- rbinom(1, 16, p.A)
visitors.B <- rbinom(1, 16, p.B)
c(visitors.A = visitors.A, visitors.B

= visitors.B)
}

# Simulate data using the parameters
# from the prior and the gen. model
# This generates the actual number of
# visitors for each replicate
sim.data <- as.data.frame(

t(sapply(1:n.draws, function(i) {
generative.model(prior$p.A[i],

prior$p.B[i])})))

# Only those prior probabilities for
# which the generative model match the
# observed data are retained
posterior <- prior[sim.data$visitors.A

== 4 & sim.data$visitors.B == 8, ]

# Visualize the posteriors
par(mfrow = c(1,3))
hist(posterior$p.A, main = "Posterior --

probability of success with mailing
A", xlab="p.A")

hist(posterior$p.B, main = "Posterior --
probability of success with mailing
B", xlab="p.B")

plot(posterior,main = "Scatterplot of
probabilitie of success for mailing
types A and B", xlab="p.A",
ylab="p.B")

The posterior distributions for the probability of success for
each mailing types are shown in the figure below.

In order to estimate the average profit for each mailing
type, we use the posterior distributions for the probability
of success.

# Compute the estimated average profit
per mailing type

avg.profit.A <- -30 + posterior$p.A *
1000

avg.profit.B <- -300 + posterior$p.B *
1000

hist(avg.profit.A, main = "Average
Profit -- mailing A",
xlab="profit.A")

hist(avg.profit.B, main = "Average
Profit -- mailing B",
xlab="profit.B")

The expected profit is thus given by the following code:

# Total expected profit
hist(avg.profit.A - avg.profit.B)
expected.avg.profit.diff <-

mean(avg.profit.A - avg.profit.B)
abline(v = expected.avg.profit.diff ,

col = "red", lwd =2)

The expected profit for mailing type A is around 52$ higher
than for mailing type B (your numbers may vary). Keeping
it simple seems to be a better idea in this context.
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7. Summary

What?

Bayesian data analysis is a flexible method to fit
any type of statistical model.

Maximum likelihood is actually a special case
of Bayesian model fitting.

Why?

Makes it possible to define highly customizable
models.

Makes it possible to include information from
many sources, such as data and expert knowl-
edge.

Quantifies and retains the uncertainty in param-
eter estimates and predictions.

How?

R! Using ABC, MCMCpack, JAGS, STAN, R-inla,
Python, etc.

Exercises – Solutions
Exercise 1:

P(L|Y ) =
P(Y |L)P(L)

P(Y )

Note that

P(Y ) = P(Y, L)+P(Y, L) = P(Y |L)P(L)+P(Y |L)P(L),

so

P(L|Y ) =
(.55)(.52)

(.55)(.52) + (.85)(.48)
= 0.41.

Exercise 2:

Step 1: assign events to A or X . You want to know
what a woman’s probability of having cancer is,
given a positive mammogram. For this problem,
actually having cancer is A and a positive test
result is X .

Step 2: list out the parts of the equation (this makes
it easier to work the actual equation):

P(A) = 0.01, P(A) = 0.99, P(X |A) = 0.9, P(X |A).

Step 3: insert the parts into the equation and solve.
Note that as this is a medical test we have

0.9 · 0.01
(0.9)(0.01) + (0.08)(0.99)

= 0.10.

The probability of a woman having cancer, given
a positive test result, is thus 10%.

Exercise 3

1. To justify a prior, we might say that our strength
of fairness is equivalent to having previously
seen the coin flipped 100 times and coming up
heads in 50% of those flips. Hence the prior
would be Beta(θ |50,50) (this is not the only
correct answer, of course; you might instead be
more confident, and use, say, Beta(θ |500, 500)
if you suppose you’ve previously seen 1,000 flips
with 50% heads).

The posterior is then Beta(θ |50 + 9,50 + 1),
which has a mean of 59

59+51 = 0.536. This is
the predicted probability of heads for the next
(11th) flip.

2. In this case, we use a Beta(θ |0.5, 0.5) prior, like
the one used in Example5, because it expresses
a belief that the coin is either head-biased or
tail-biased.

The posterior is Beta(θ |0.5+ 9, 0.5+ 1), which
has a mean of 9.5

9.5+1.5 = 0.863. This is the pre-
dicted probability of heads for the next (11th)
flip. Notice that it is quite different than the
conclusion from Part 1.

Exercise 4
The commands

> post = BernBeta(c(1,1),
c(rep(1,40),rep(0,10)))
> post = BernBeta(c(1,1),
c(rep(1,15),rep(0,35)))

yield the display below.

In both cases, the 95% HDI excludes θ = 0.5, and so
we conclude that people are indeed biased in their
responses, toward F in the first case and toward J in
the second case.
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