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Abstract
Queuing theory is a branch of mathematics that studies and models the act of waiting in lines, or queues.
As a topic in operational research, it combines elements of a variety of quantitative disciplines, but it is
not often part of the data analyst’s toolbox.

In this report, we introduce the terminology and basic framework of queueing models (including Kendall-
Lee notation, birth-death processes, and Little’s formula), as well as the most commonly-used queueing
system: M/M/c. We also describe an application to pre-board screening at Canadian airports.
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1. Introduction

Queuing theory is a branch of mathematics that studies
and models the act of waiting in lines. The seminal paper
on queuing theory [1] was published in 1909 by Danish
mathematician A.K. Erlang; in it, he studied

the problem of determining how many tele-
phone circuits were necessary to provide phone
service that would prevent customers from wait-
ing too long for an available circuit. In devel-
oping a solution to this problem, he began to
realize that the problem of minimizing wait-
ing time was applicable to many fields, and
began developing the theory further. Erlang’s
switchboard problem laid the path for mod-
ern queuing theory [2].

Queueing theory boils down to answering simple questions:

How likely is it that objects/units/persons will queue
up and wait in line?
How long will the line be?
How long will the wait be?
How busy will the system be?
How much capacity is needed to meet an expected
level of demand?
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Knowing how to think about these kinds of questions will
help analysts and stakeholder anticipate bottlenecks. As
a result, they will build systems and teams to be more
efficient and more scalable, to have higher performance
and lower costs, and to ultimately provide better service to
their customers and end users.

Queueing theory also allows for the quantitative treat-
ment of bottlenecks and effect on performance. For in-
stance, a question such as “how long will the wait be, on
average?” will have an answer, but so will other questions
concerning the variability of wait times, the distribution of
wait times, and the likelihood that a customer will receive
extremely poor service, and so on [11].

Let us consider a simple example. Suppose a grocery store
has a single checkout line and a single cashier. If, on aver-
age, one shopper arrives at the line to pay for their groceries
every 5 minutes and if scanning, bagging, and paying takes
4.5 minutes, on average, would we expect customers to
have to wait in line? When the problem is presented this
way, our intuition says that there should be no waiting in
line, and that the cashier should be idle, on average, 30
seconds every 5 minutes, only being busy 90% of the time.
No one ever has to wait before being served!

If you have ever been in a grocery store, you know that’s
not what happens in reality; many shoppers will wait in
line, and they will have to wait a long time before being
processed. Fundamentally, queueing happens for three
reasons:

irregular arrivals – shoppers do not arrive at the
checkout line on a regular schedule; they are some-
times spaced far apart and sometimes close together,
so they overlap (an overlap automatically causes
queueing and waiting);

irregular job sizes – shoppers do not all get pro-
cessed in 4.5 minutes; someone shopping for a large
family will require much more time than someone
shopping only for themselves, for instance (when this
happens, overlap is again a problem because new
shoppers will arrive and be ready to check out while
the existing ones are still in progress), and

waste – lost time can never be regained; shoppers
overlap because the second shopper arrived too soon,
before the first shopper had the time to finish their
job, but looking at it the other way, perhaps it’s not
the second shopper’s fault; perhaps the first shopper
should have arrived earlier, but they wasted time
reading a gossip magazine while the cashier was idle!
They missed their chance for quick service and, as a
result, made the second shopper have to wait.

Irregular arrival times and job sizes are guaranteed to cause
queueing. The only time there is no queueing is when the
job sizes are uniform, the arrivals are timed evenly, and

there is little enough work for the cashier to keep up with
the arrival. Even when the cashier is barely busy, irregular
arrivals or arrivals in bursts will cause some queueing. In
general, queueing gets worse when the following is true of
the system:

high utilisation – the busier the cashier is, the longer
it takes to recover from wasted time;

high variability – the more variability in arrivals
or job sizes, the more waste and the more overlap
(queueing) occurs, and

insufficient number of servers – fewer cashiers means
less capacity to absorb arrival spikes, leading to more
wasted time and higher utilisation.

2. Terminology

Queueing theory studies systems and processes in terms of
three key concepts:

customers are the units of work that the system
serves – a customer can be a real person, or it can
be whatever the system is supposed to process and
complete: a web request, a database query, a part to
be milled by a machine, etc.;

servers are the objects that do the processing work –
a server might be the cashier at the grocery store, a
web server, a database server, a milling machine, etc.,
and

queues are where the units of work wait if the server
is busy and can not start the work as they arrive – a
queue may be a physical line, reside in memory, etc.

In order to describe queues, we must first know and under-
stand some useful probability distributions, as well as input
and output processes.

2.1 Exponential and Poisson Probability Distributions
The Poisson and exponential distributions play a promi-
nent role in queuing theory. The Poisson distribution counts
the number of discrete events occurring in a fixed time pe-
riod; it is closely connected to the exponential distribution,
which (among other applications) measures the time be-
tween arrivals of the events. The Poisson distribution is
a discrete distribution; the random variable can only take
non-negative integer values. The exponential distribution
can take any (nonnegative) real value.

Consider the problem of determining the probability of
n arrivals being observed during a time interval of length t,
where the following assumptions are made:

the probability that an arrival is observed during a
small time interval (say of length ν) is proportional to
the length of interval; let the proportionality constant
be λ, so that the probability is λν;
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Figure 1. Poisson (with λt = 2.3) and exponential distributions
(with parameter λ). The shaded area (bottom image) represents
the probability that a customer will wait up to the length of the
time interval t.

the probability of two or more arrivals in a small
interval is zero, and

the number of arrivals in any time interval is indepen-
dent of the number in non-overlapping time interval
(for example, the number of arrivals occurring be-
tween times 5 and 25 does not provide information
about the number of arrivals occurring between times
30 and 50).

Now, let P(n; t) be the probability of observing n arrivals
in a time interval of length t. Then, for some λ > 0,

Pλ(n; t) =
(λt)n

n!
e−λt , n= 0, 1,2, · · ·

is the p.m.f. of the Poisson distribution for the discrete
random variable n – the number of arrivals – for a given
length of time interval t (see Figure 1). In a queueing sys-
tem, such arrivals are referred to as Poisson arrivals.

The time between successive arrivals is called the inter-
arrival time. If the number of arrivals in a given time
interval follows a Poisson distribution with parameter λt,

the inter-arrival times follow an exponential distribution
with p.d.f.

fλ(t) = λe−λt , for t > 0,

and the probability P(W ≤ t) that a customer’s waiting
time W is smaller than the length of the time interval t is

P(W ≤ t) = 1− e−λt (see Figure 1).

In general, if the arrival rate is stationary, if bulk arrivals
(two or more simultaneous arrivals) cannot occur, and if
past arrivals do not affect future arrivals, then inter-arrival
times follow an exponential distribution with parameter λ,
and the number of arrivals in any interval of length t is
Poisson with parameter λt.

One of the most attractive features of the exponential distri-
bution relating to inter-arrival times is that it is memoryless
– if a random variable X follows an exponential distribution,
then for all non-negative values of t and h,

P(X ≥ t + h|X ≥ t) = P(X ≥ h). (1)

No other density function satisfies (1) [4]. The memory-
less property of the exponential distribution is important
because it implies that the probability distribution of the
time until the next arrival is independent of the time since
the last arrival – imagine if that was the case when waiting
for public transportation!

For instance, if we know that at least t time units have
elapsed since the last arrival, then the distribution of the
time h until the next arrival is independent of t. If h = 4,
say, then (1) yields

P(X > 9|X > 5) = P(X > 7|X > 3) = P(X > 4).

2.2 Erlang Distribution
The exponential distribution is not always an appropriate
model of inter-arrival times, however (perhaps the process
should not be memoryless, say). A common alternative is to
use the Erlang distribution E (R, k), a continuous random
variable with rate and shape parameters R> 0 and k ∈ Z+,
respectively, whose p.d.f. is

fR,k(t) =
R(Rt)k−1e−Rt

(k− 1)!
, t ≥ 0.

When k = 1, the Erlang distribution reduces to an expo-
nential distribution with parameter R. It can be shown that
if X ∼ E (kλ, k), then X ∼ X1 + X2 + · · ·+ Xk, where each
X i is an independent exponential random variable with
parameter kλ.

When we model the inter-arrival process as an Erlang distri-
bution E (kλ, k), we are really saying that it is equivalent to
customers going through k phases (each of which is mem-
oryless) before being served. For this reason, the shape
parameter is often referred to as the number of phases of
the Erlang distribution [14].
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2.3 Input/Arrival Process
The input process is usually called the arrival process. Ar-
rivals are called customers. In the models under consider-
ation, we assume that arrivals cannot be simultaneous (this
might be unrealistic when modeling arrivals at a restaurant,
say). If simultaneous arrivals are possible (in theory and/or
in practice), we say that bulk arrivals are allowed.

Usually, we assume that the arrival process is unaf-
fected by the number of customers in the system. In
the context of a bank, this would imply that whether there
are 500 or 5 people at the bank, the process governing
arrivals remains unchanged.

There are two common situations in which the arrival pro-
cess may depend on the number of customers present. The
first occurs when arrivals are drawn from a small popula-
tion – the so-called finite source models – if all members
of the population are already in the system, there cannot
be another arrival!

Another such situation arises when the rate at which
customers arrive at the facility decreases when the facility
becomes too crowded. For example, when customers see
that a restaurant’s parking lot is full, they might very well
decide to go to another restaurant or forego eating out
altogether. If a customer arrives but fails to enter the system,
we say that the customer has balked.

2.4 Output/Service Process
To describe the output process (often called the service
process) of a queuing system, we usually specify a proba-
bility distribution – the service time distribution – which
governs the customers’ service time.

In most cases, we assume that the service time distribu-
tion is independent of the number of customers present in
the system. This implies, for example, that the server does
not work faster when more customers are present.

We can distinguish two types of servers: in parallel and in
series. Servers are in parallel if they all provide the same
type of service and a customer only needs to pass through
one of them to complete their service. For example, the
tellers in a bank are usually arranged in parallel; typically,
customers only need to be serviced by one teller, and any
teller can perform the desired service.

Servers are in series if a customer must pass through
several servers before their service is complete. An assem-
bly line is an example of such a queuing system.

Input and output processes occur in a variety of situations:

situation: purchasing Blue Jays tickets at the Rogers
Centre
input: baseball fans arrive at the ticket office
output: tellers serve the baseball fans;

situation: pizza parlour
input: requests for pizza delivery are received;

output: pizza parlour prepares and bakes pizzas, and
sends them to be delivered;

situation: government service centre
input: citizen/residents enter the service centre
output: receptionist assigns them to a specific queue
based on their needs
. input: citizen/residents enter a specific queue
. based on their needs
. output: public servant addresses their needs;

situation: hospital blood bank
input: pints of blood arrive
output: patients use up pints of blood;

situation: garage
input: cars break down and are sent to the garage for
repairs
output: cars are repaired by mechanics and sent back
on the streets.

The relevant computations are fairly easy to execute, as the
following examples demonstrate.

Example 1. On average, 4.6 customers enter a coffee shop
each hour. If the arrivals follow a Poisson process, the
probability that at most two customers will enter in a 30
minute period is

Pλ=4.6(n≤ 2; t = 0.5) = P4.6(0,0.5) + P4.6(1, 0.5) + P4.6(2, 0.5)

= e−4.6·0.5

�

(4.6 · 0.5)0

0!
+
(4.6 · 0.5)1

1!
+
(4.6 · 0.5)2

2!

�

≈ 0.5960;

the corresponding Poisson distribution is shown in Figure 1.

Example 2. In a fast food restaurant, a cashier serves on
average 9 customers in a one-hour time period. If the
service time follows an exponential distribution, 77.7% and
1.1% of customers will be served in 10 minutes or less, and
after 30 minutes, respectively. Indeed,

P(W ≤ 10/60) = 1− e−9·10/60 ≈ 0.7769

P(W > 30/60) = e−9·30/60 ≈ 0.0111.

2.5 Queue Discipline
To describe a queuing system completely, we must also
describe the queue discipline and the manner in which
customers join lines. The queue discipline describes the
method used to determine the order in which customers
are served:

the most common queue discipline is the first come,
first served (FCFS) discipline, in which customers
are served in the order of their arrival, as one would
expect to see in an Ottawa coffee shop;
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under the last come, first served (LCFS) discipline,
the most recent arrivals are the first to enter service;
for example, if we consider exiting from an elevator
to be the service, then a crowded elevator illustrates
such a discipline;

sometimes the order in which customers arrive has
no effect on the order in which they are served; this
would be the case if the next customer to enter service
is randomly chosen from those customers waiting for
service, a situation referred to as service in random
order (SIRO) discipline; when callers to an inter-city
bus company are put on hold, the luck of the draw
often determines which caller will next be serviced
by an operator,

finally, priority discipline classifies each arrival into
one of several categories, each of which is assigned a
priority level (a triage process); within each priority
level, customers enter the queue on a FCFS basis;
such a discipline is often used in emergency rooms
to determine the order in which customers receive
treatment, and in copying and computer time-sharing
facilities, where priority is usually given to jobs with
shorter processing times.

2.6 Method Used by Arrivals to Join Queue
Another important factor for the behaviour of the queu-
ing system is the method used by customers to determine
which line to join. For example, in some banks, customers
must join a single line, but in other banks, customers may
choose the line they want to join.

When there are several lines, customers often join the
shortest line. Unfortunately, in many situations (such as at
the supermarket), it is difficult to define the shortest line.
If there are several lines at a queuing facility, it is important
to know whether or not customers are allowed to switch,
or jockey, between lines. In most queuing systems with
multiple lines, jockeying is permitted, but jockeying at a
custom inspection booth would not be recommended, for
instance.

3. Queueing Theory Framework

There is a standard notation that is used to describe large
families of queueing systems: the Kendall-Lee notation
[10].

3.1 Kendall-Lee Notation
Queuing systems can be described via six characteristics:

x1/x2/x3/x4/x5/x6.

The first characteristic x1 specifies the nature of the arrival
process. The following standard abbreviations are used:

M = inter-arrival times are independent identically
distributed (iid) exponentials

D = inter-arrival times are iid and deterministic
Ek = inter-arrival times are iid Erlangs with shape

parameter k
G = inter-arrival times are iid and governed by

some general distribution.

The second characteristic x2 specifies the nature of the
service times:

M = service times are iid and exponential
D = service times are iid and deterministic.
Ek = service times are iid Erlang with shape

parameter k
G = service times are iid and follow some general

distribution.

The third characteristic x3 represents the number of par-
allel servers; it is a positive integer.

The fourth characteristic x4 describes the queue discipline:

FCFS = first come, first served
LCFS = last come, first served
SIRO = service in random order
GD = general queue discipline.

The fifth characteristic x5 specifies the maximum allow-
able number of customers in the system (including cus-
tomers who are waiting and customers who are in service).

The sixth characteristic x6 gives the size of the popula-
tion from which customers are drawn. Unless the number
of potential customers is of the same order of magnitude
as the number of servers, the population size is considered
to be infinite.

In many important models x4/x5/x6 is GD/∞/∞;
when this is the case, these characteristics are often omitted.

As an example, M/M/3/FCFS/20/∞ could represent a
bank with 3 tellers, exponential arrival times, exponential
service times, a “first come, first served” queue discipline, a
total capacity of 20 customers, and an infinite population
pool from which to draw. The situation is partly illustrated
in Figure 2.

3.2 Birth-Death Processes
The state of a queueing system at time t is defined to be the
number of customers in the queuing system, either waiting
in line or in service, at time t. At t = 0, the state of the
system is the initial number of customers in the system.
This state is worth recording because it clearly affects the
state at future times t.

Knowing this, we define Pi, j(t) as the probability that
the state at time t is j, given that the state at t = 0 was i. For
large t, Pi, j(t) becomes independent of i and approaches a
limit π j . This limit is known as the steady-state of state j.
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Figure 2. Single line at bank with three tellers –
M/M/3/FCFS/20/∞.

Figure 3. Birth-death process; queueing states indexed by
integers; birth rates and death rates indicated by λn and µm,
respectively (source unknown).

It is generally quite difficult to determine the steps of ar-
rivals and services that lead to a steady-state π j . Likewise,
starting from an early t, it is difficult to determine exactly
when a system will reach its steady state π j , if such a state
even exists.

For simplicity’s sake, when a queuing system is studied,
we begin by assuming that the steady-state has already been
reached.

A birth-death process is a Markov process in which states
are indexed by non-negative integers, and transitions are
only permitted between “neighbouring” states. After a
“birth”, the state increases from n to n+ 1; after a “death”,
the state decreases from m to m− 1. Typically, we denote
the set of birth rates and death rates by λn and µm, re-
spectively (see Figure 3). Pure birth processes are those
for which µm = 0 for all m; pure death processes those
for which λn = 0 for all n. The steady-state solution of a
birth-death process, i.e. the probability πn of being in state
n, can actually be computed:

πn = π0
λ0λ1 · · ·λn−1

µ1µ2 · · ·µn
, for n= 1, 2, · · · , (2)

where π0 is the probability of being in state 0 (i.e. without
users). It can further be shown [11] that:

π0 =
1

1+
∑∞

n=1

∏n−1
j=0

λ j

µ j+1

.

3.3 Little’s Queuing Formula
It is often the case that clients and end users are interested
in determining the amount of time that a typical customer
spends in the queuing system. Let W be the expected wait-
ing time spent in the queuing system, including time in
line plus time in service, and Wq be the expected time a
customer spends waiting in line. Both W and Wq are
computed under the assumption that the steady state has
been reached. By using a powerful result known as Lit-
tle’s queuing formula, W and Wq are easily related to the
number of customers in the queue and those waiting in line.

For any queuing system (or any subset of a queuing system),
consider the following quantities:

λ= average number of arrivals entering the system
per unit time;
L = average number of customers present in the
queuing system;
Lq = average number of customers waiting in line;
Ls = average number of customers in service;
W = average time a customer spends in the system;
Wq = average time a customer spends in line, and
Ws = average time a customer spends in service.

Customers in the system can only be found in the queue
or being serviced, so that L = Lq + Ls and W = Wq +Ws.
In these definitions, all averages are steady-state averages.
For most queuing systems in which a steady-state exists,
Little’s queuing formula can be summarized as

L = λW, Lq = λWq, and Ls = λWs.

Example 3. If, on average, 46 customers enter a restaurant
each hour it is opened, and if they spend, on average, 10
minutes waiting to be served, then we should expect 46 ·
1/6≈ 7.7 customers in the queue at all time (on average).

4. The M/M/1 Queuing System

We now discuss the simplest non-trivial queueing system.

4.1 Basics
An M/M/1/GD/∞/∞ queueing system has exponential
inter-arrival times, exponential service times, and a single
server. It can be modeled as a birth-death process with

λ j = λ, j = 0, 1,2, . . .

µ0 = 0

µ j = µ, j = 1, 2,3, . . .

Substituting these rates in (2) yields

π j =
λ jπ0

µ j
= ρ jπ0,

where ρ = λ/µ is the traffic intensity of the system.
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Since the system has to be in exactly one of the states at
any given moment, the sum of all probabilities is 1:

π0 +π1 +π2 + · · ·= π0(1+ρ +ρ
2 + · · · ) = 1.

If 0 ≤ ρ < 1, the infinite series converges to 1
1−ρ from

which we derive

π0·
1

1−ρ
= 1 =⇒ π0 = 1−ρ =⇒ π j = ρ

jπ0 = ρ
j(1−ρ)

as the steady-state probability of state j. If ρ ≥ 1, the
infinite series diverges and no steady-state exists. Intu-
itively, this happens when λ≥ µ, that is, if the arrival rate
is greater than the service rate, then the state of the system
grows without bounds and the queue is never cleared.

From this point on, we assume ρ < 1 to guarantee that
the steady-state probabilities π j exist, from which we can
determine several quantities of interest.

Assuming that the steady state has been reached, it can
be shown that L, Ls, and Lq are given respectively by:

L =
λ

µ−λ
=

ρ

1−ρ
Ls = ρ

Lq =
ρ2

1−ρ
.

Using Little’s queuing formula, we can also solve for W ,
Ws, and Wq by dividing each of the corresponding L values
by λ:

W =
1

µ−λ

Ws =
1
µ

Wq =
λ

µ(µ−λ)
.

Notice that, as expected, both W, Wq → +∞ when ρ→ 1.
On the other hand, Wq → 0 and W → 1

µ (the mean service
time) as ρ→ 0.

Example 4. (Based on [3]) An average of 10 cars arrive
at a single-server drive-in teller every hour. If the average
customer is served in 4 minutes, and both inter-arrival times
and service times are exponential, then:

(a) What is the probability that the teller is idle?
(b) Excluding the car that is being served, what is the

average number of cars waiting in line at the teller?
(c) What is the average amount of time a drive-in cus-

tomer spends in the bank parking lot (including time
in service)?

(d) On average, how many customers per hour will be
served by the teller?

Solution: by assumption, we are dealing with an

M/M/1/GD/∞/∞

queuing system for which λ = 10 cars/hr and µ = 15
cars/hr, and as such ρ = 10/15= 2/3.

(a) The teller is idle one third of the time on average
because π0 = 1−ρ = 1/3.

(b) There are Lq = ρ2/(1−ρ) = 4/3 cars waiting in line
for the teller.

(c) We know that L = λ/(µ − λ) = 10/(15 − 10) = 2,
and so W = L/λ= 0.2 hr= 12 min.

(d) If the teller were always busy, it would serve an av-
erage of µ = 15 customers per hour. From (a), we
know that the teller is only busy two-thirds of the
time, thus during each hour, the teller serves an av-
erage of 15 · 2/3= 10 customers. This is reasonable
since, in a steady-state, 10 customers are arriving
each hour and 10 customers must leave the system
every hour.

Example 5. (Based on [17]) Suppose that all car owners
fill up when their tanks are exactly half full. At the present
time, an average of 7.5 customers arrive every hour at a
single-pump gas station. It takes an average of 4 minutes
to fuel a car. Assume that inter-arrival times and service
times are both exponential.

(a) What are the values of L and W in this scenario?
(b) Suppose that a gas shortage occurs and panic buying

takes place. To model this phenomenon, assume that
all car owners now purchase gas when their tanks are
exactly three-quarters full. Since each car owner is
now putting less gas into the tank during each visit to
the station, we assume that the average service time
has been reduced to 10/3 minutes. How has panic
buying affected the values of L and W?

Solution: by assumption, we again have an

M/M/1/GD/∞/∞

queuing system, with λ= 7.5 cars/hr and µ= 60/4= 15
cars/hr. Thus, ρ = 7.5/15= 1/2.

(a) By definition, L = λ/(µ − λ) = 7.5/(15 − 7.5) = 1
and W = 1/7.5≈ 0.13 hr = 7.8 min. Hence, in this
situation, everything is under control, and long lines
appear to be unlikely.

(b) Under the panic buying scenario, λ = 2(7.5) = 15
cars/hr as each car owner now fills up twice as often,
and µ = 60 · 3/10 = 18 cars/hr, so ρ = λ/µ = 5/6.
In that scenario,

L =
ρ

1−ρ
= 5 cars, and W =

L
λ
=

5
15
= 20 min.

Thus, panic buying has more than doubled the wait
time in line.
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In a M/M/1 queueing system, we have

L =
ρ

1−ρ
= −1+

1
1−ρ

,

and it is easy to see that L →∞ as ρ → 1. The 5−fold
increase in L when ρ jumps from 1/2 to 5/6 (with accom-
panying jumps in W ) illustrates that fact.

4.2 Limited Capacity
In the real world, queues never become infinite – they
are limited due to requirements of space and/or time, or
service operating policy. Such a queuing model falls under
the purview of finite queues.

Finite queue models restrict the number of customers al-
lowed in the service system. Let N represent the maximum
allowable number of customers in the system. If the system
is at capacity, the arrival of a (N + 1)th customer results in
a failure to enter the queue – the customer is assumed to
balk and depart without seeking service.

Finite queues can also be modeled as a birth-death pro-
cess, but with a slight modification in its parameters:

λ j = λ, j = 0,1, 2, . . . , N − 1

λN = 0, µ0 = 0

µ j = µ, j = 1, 2,3, . . . , N

The restriction λN = 0 is what sets this model apart from
the M/M/1/∞. It makes it impossible to reach a state
greater than N . Because of this restriction, a steady-state
always exist because even if λ≥ µ, there can never be more
than N customers in the system.

Mathematically, this has the effect of replacing the infinite
series linking the π j ’s by a finite geometric series, which
always converges:

π0 +π1 ++ · · ·+πN = π0(1+ρ + · · ·+ρN ) = 1,

from which we can derive

π0 ·
1−ρN+1

1−ρ
= 1 =⇒ π0 =

1−ρ
1−ρN+1

=⇒ π j =

¨

ρ j 1−ρ
1−ρN+1 for j = 0, . . . , N

0 for j > N

Since L =
∑N

j=0 j ·π j (why?),

L =
ρ[1+ NρN+1 − (N + 1)ρN ]

(1−ρ) (1−ρN+1)

when λ 6= µ.

As in the M/M/1/∞ queue, Ls = 1−π0, and Lq = L − Ls.

In a finite capacity model, only λ− λπN = λ (1−πN ) ar-
rivals per unit time actually enter the system on average (λ
arrive, but λπN find the system full). With this fact,

W =
L

λ (1−πN )
and Wq =

Lq

λ (1−πN )
.

What does that look like in practice?

Example 6. Consider a one-man barber shop with a total
of 10 seats. Assume, as has always been the case so far
(but need not be), that inter-arrival times are exponentially
distributed with an average of 20 prospective customers
arriving each hour at the shop. Those customers who find
the shop full do not enter (perhaps they do not like stand-
ing). The barber takes an average of 12 minutes to cut
each customer’s hair; assume that haircut times are also
exponentially distributed.

(a) On average, how many haircuts per hour will the
barber complete?

(b) On average, how much time will be spent in the shop
by a customer who enters?

Solution: there is not that much to say. Let’s dive in!

(a) A fraction π10 of all arrivals will find the shop full.
Thus, an average of λ (1−π10)will actually enter the
shop each hour. All entering customers receive a hair-
cut, so the barber will give an average of λ (1−π10)
haircuts per hour. In this scenario, N = 10, λ = 20
customers/hr, and µ = 60/12 = 5 customers/hr.
Thus ρ = 20/5= 4 and we have

π0 =
1−ρ

1−ρN+1
=

1− 4
1− 411

≈ 7.15× 10−7 and

π10 = 410π0 =
3
4

(from formula in opposite column).

Thus, an average of 20(1− 3/4) = 5 customers per
hour will receive haircuts. This means that an average
of 20− 5 = 15 prospective customers per hour will
not enter the shop.

(b) To determine W , we must first compute

L =
4[1+ (10)411 − (11)410]
(1− 4) (1− 411)

= 9.67.

Using the formulas described above, we obtain

W =
L

λ (1−π10)
=

9.67
5
= 1.93 hr.

This barber shop is crowded – the barber would be
well-advised to hire at least one more barber!

What would be the effect of hiring a second barber? In order
to answer this question, we will study M/M/c queueing
systems.
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Figure 4. Schematics of various queueing systems (M/M/1, M/M/c, tandem); customers arrive from the left, enter the queue and
progress through it until they are served, at which point the exit the queue.

5. The M/M/c Queuing System

An M/M/c/GD/∞ queueing system also has exponential
inter-arrival and service times, with rates λ and µ, respec-
tively. What sets this system apart is that there are now
c > 1 servers willing to serve from a single line of customers,
perhaps like one would find in a bank (see Figure 4).

If j ≤ c customers are present in the system, then every
customer is being served and there is no wait time; if j > c
customers are in the system, then c customers are being
served and the remaining j − c customers are waiting in
the queue.

To model this as a birth-death process, we have to observe
that the death rate is dependent on how many servers are
actually being used.

If each server completes service at a rate of µ (which
may not be the case in practice as there might be variations
in servers, at least for human servers), then the actual
death rate is µ× the number of customers actually being
served. The parameters for this process are

λn = λ, n= 0,1, 2, . . .

µn =

¨

nµ, n= 0,1, 2, . . . , c
cµ, n= c + 1, c + 2, . . .

The traffic intensity for the M/M/c system is ρ = λ/(cµ)
and the steady-state solution is

πn =

¨

(cρ)n

n! π0, 1≤ n≤ c
ccρn

c! π0, n≥ c

where

π0 =

�

1+
(cρ)c

c! (1−ρ)
+

c−1
∑

n=1

cρn

n!

�−1

.

Note that, as was the case in a M/M/1 system, if ρ ≥ 1,
there can be no steady state – in other words, if the arrival

ρ c = 2 c = 3 c = 4 c = 5 c = 6 c = 7
.10 .02 .00 .00 .00 .00 .00
.20 .07 .02 .00 .00 .00 .00
.30 .14 .07 .04 .02 .01 .00
.40 .23 .14 .09 .06 .04 .03
.50 .33 .24 .17 .13 .10 .08
.55 .39 .29 .23 .18 .14 .11
.60 .45 .35 .29 .24 .20 .17
.65 .51 .42 .35 .30 .26 .21
.70 .57 .51 .43 .38 .34 .30
.75 .64 .57 .51 .46 .42 .39
.80 .71 .65 .60 .55 .52 .49
.85 .78 .73 .69 .65 .62 .60
.90 .85 .83 .79 .76 .74 .72
.95 .92 .91 .89 .88 .87 .85

Table 1. Probabilities P(n≥ c) that all servers are busy in an
M/M/c system for c = 2, . . . , 7 and values of ρ between 0.1 and
0.95 [3, p.1088].

rate is at least as large as the maximum possible service
rate (λ≥ cµ), then the system “blows up”.

From the end user’s point of view, there might be a desire
to ensure that customers do not wait in line an inordinate
amount of time, but there might also be a desire to minimise
the amount of time for which at least one of the server is idle.
In a M/M/c queueing system, this steady-state probability
is given by

P(n≥ c) =
(cρ)c

c! (1−ρ)
π0.

Table 1 shows P(n≥ c) for a variety of situations depending
on s and ρ. Cumbersome calculations, using Ws =

1
µ , yield

Lq = P(n≥ c)
ρ

1−ρ
, Wq =

Lq

λ
, W =

1
µ
+Wq, L =

λ

µ
+ Lq.
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Example 7. Consider, for instance, a bank with two tellers.
An average of 80 customers arrive at the bank each hour
and wait in a single line for an idle teller. For this specific
bank, the average service time is 1.2 minutes. Assume
that inter-arrival times and service times are exponential.
Determine:

(a) The expected number of customers in the bank.
(b) The expected length of time a customer spends in the

bank.
(c) The fraction of time that a particular teller is idle.

Solutions: we are dealing with an M/M/2 system with
λ = 80 customers/hr and µ = 50 customers/hr. Thus,
ρ = 80

2·50 = 0.80< 1 and the steady-state exists.

(a) From the above table, P(n≥ 2) = 0.71, from which
we compute

Lq = P(n≥ 2) ·
.8

1− .8
= 2.84 customers

L =
80
50
+ Lq = 4.44 customers.

(b) We know that W = L
λ =

4.44
80 = 0.055 hr = 3.3 min.

(c) To determine the fraction of time that a particular
server is idle, note that tellers are idle during all mo-
ments when n= 0, and half the time (by symmetry)
when n = 1. The probability that a server is idle is
thus given by π0 + 0.5π1. But

π0 =

�

1+
(2 · .8)2

2! (1− .8)
+

2−1
∑

n=1

2 · .8n

n!

�−1

=
1
9

and

π1 =
1.6
1!
π0 = 0.176

and so the probability that particular teller is idle is
0.111+ 0.5(0.176) = 0.199.

Important Note: general queueing models are not under-
stood to the same extent as M/M/1 (and M/M/c to a lesser
extent), and their given performance measurements may
only be approximate and highly-dependent on the specifics
of the problem at hand.

For this reason, M/M/c models are sometimes used
even when their use is not supported by the data (the situ-
ation is not unlike the widespread use of the normal distri-
bution in a variety of probability and statistics problems).

In numerous applications, the empirical distributions
of arrivals and service times are nearly Poisson and expo-
nential, respectively, so that the assumption is not entirely
off the mark, but numerical simulations should not be es-
chewed when departures from the M/M/c model are too
pronounced.

6. Application: Wait Time at Canadian Airports

By providing efficient and effective pre-board screening
(PBS), the Canadian Air Transport Security Authority (CATSA)
ensures the safety of all passengers and crew aboard flights
departing Canadian airports while maintaining an appropri-
ate balance between staffing and the wait time experienced
by passengers.

The number of active screening stations and the number
of passengers affect the wait times, and, as a result, budget
cuts have a strong impact on the system, both in Canada
and abroad.

Numerous factors influence the wait time at PBS check-
points at Canadian airports: the schedule intensity of de-
parting flights, the volume of passengers on these flights,
the number of servers and processing rates at a given check-
point, etc.

One of CATSA’s goals is to ensure that the pre-board
screening experience at Canadian airports is made as effi-
cient as possible by minimizing the waiting time at check-
points. With this in mind, the Wait-Time Impact Model
(WTIM) was designed to achieve the following tasks:

1. provide estimates of the passenger arrival rates λ,
the processing rates µ and the number of servers c at
each checkpoints, using available field data;

2. calculate the Quality of Service (QoS) level (px , x)
and determine what service level can be achieved at
each checkpoint (i.e. the percentage p of passengers
which will wait less than x minutes, for x fixed) for
a given arrival rate λ, processing rate µ, number of
servers c;

3. provide the average number of servers c∗ required
to achieve a prescribed QoS level (px , x), given an
arrival profile λ∗;

4. provide QoS level curves (px(x), x) (i.e. cumulative
distribution curves) under various arrival rate and
number of active servers for each checkpoint (where
x is allowed to vary).

The queueing structure leads to some interesting insights
(see Figure 5). More details are available in the accompa-
nying presentation.
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