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Abstract
Data mining is the collection of processes by which we can extract useful insights from data. Inherent in
this definition is the idea of data reduction: useful insights (whether in the form of summaries, sentiment
analyses, etc.) ought to be “smaller” and “more organized” than the original raw data.

The challenges presented by high data dimensionality (the so-called curse of dimensionality) must be
addressed in order to achieve insightful and interpretable analytical results.

In this report, we introduce the basic principles of dimensionality reduction and a number of feature
selection methods (filter, wrapper, regularization), discuss some advanced topics (SVD, spectral feature
selection, UMAP), and provide examples (with code).
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1. Data Reduction for Insight

For small datasets, the benefits of data mining may not
always be evident. Consider, for instance, the following
excerpt from a lawn mowing instruction manual:

Before starting your mower inspect it carefully
to ensure that there are no loose parts and that
it is in good working order.

It is a fairly short and organized way to convey a message.
It could be further shortened and organized, perhaps, but
it’s not clear that one would gain much from the process.

1.1 Reduction of an NHL Game
For a meatier example, consider the NHL game that took
place between the Ottawa Senators and the Toronto Maple
Leafs on February 18, 2017 [7].

As a first approximation, we shall think of a hockey
game as a series of sequential and non-overlapping “events”
involving two teams of skaters. What does it mean to have
extracted useful insights from such a series of events?

At some level, the most complete raw understanding of
that night’s game belongs to the game’s active and passive



DATA SCIENCE REPORT SERIES Feature Selection and Data Reduction

participants (players, referees, coaches, general managers,
official scorer and time-keeper, etc.).1

The larger group of individuals who attended the game
in person, watched it on TV/Internet, or listened to it on the
radio presumably also have a lot of the facts at their disposal,
with some contamination, as it were, by commentators (in
the two latter cases).

Presumably, the participants and the witnesses also pos-
sess insights into the specific game: how could that infor-
mation best be relayed to members of the public who did
not catch the game? There are many ways to do so, de-
pending on the intended level of abstraction and on the
target audience (see Figure 1).

Play-by-Play Text File If a hockey game is a series of
events, why not simply list the events, in the order in which
they occurred? Of course, not everything that happens in
the “raw” game requires reporting – it might be impressive
to see Auston Matthews skate by Dion Phaneuf on his way
to the Senators’ net at the 8:45 mark of the 2nd period, but
reporting this “event” would only serve to highlight the fact
that Matthews is a better skater than Phaneuf. It is true, to
be sure, but some level of filtering will be applied in order
to retain only relevant (or “high-level”) information, such
as:

blocked shots, face-off wins, giveaways, goals,
hits, missed shots, penalties, power play events,
saves, shorthanded events, shots on goal, stop-
page (goalie stopped, icing, offside, puck in
benches), takeaways, etc.

In a typical game, between 300 and 400 events are recorded
(see Table 4 for an extract of the play-by-play file for the
game under consideration and pp.30-38 for a full list).

A certain amount of knowledge about the sport is re-
quired to make sense of some of the entries (colouring, use
of bold text, etc.), but if one has the patience, one can pretty
much re-constitute the flow of the game. This approach is,
of course, fully descriptive.

Boxscore The play-by-play does convey the game’s
events, but the relevance of its entries is sometimes ques-
tionable. In the general context of the game, how useful is
to know that Nikita Zaitsev blocked a shot by Erik Karlsson
at the 2:38 mark of the 1st period (see Table 4)? Had this
blocked shot saved a certain Ottawa goal or directly lead
to a Toronto goal, one could have argued for its inclusion
in the list of crucial events to report, but only the most
fastidious observer (or a statistical analyst) would bemoan
its removal from the game’s report.

The game’s boxscore provides relevant information, at
the cost of completeness: it distils the play-by-play file into

1This simple assumption is rather old-fashioned and would be disputed
by many in the age of hockey analytics, but let it stand for now.

a series of meaningful statistics and summaries, providing
insights into the game that even a fan in attendance might
have missed while the game was going on (see Tables 5, 6,
and 7).

Once again, a certain amount of knowledge about the
sport is required to make sense of the statistics, and to place
them in the right context: is it meaningful that the Sena-
tors won 36 faceoffs to the Maple Leafs’ 31 (see Table 5,
top right)? That Mark Stone was a +4 on the night (see
Table 6)? That both teams went 1-for-4 on the powerplay
(see Table 7)?

One cannot re-constitute the full flow of the game from
the boxscore alone, but the approach is not solely descrip-
tive – questions can be asked, and answers provided... the
analytical game is afoot!

Recap/Highlights One of the boxscore’s shortcomings
is that it does not provide much in the way of narrative,
which has become a staple of sports reporting – what re-
ally happened during that game? How does it impact the
current season for either team?

Associated Press, 19 February 2017
TORONTO – The Ottawa Senators have the Atlantic Divi-
sion lead in their sights.

Mark Stone had a goal and four assists, Derick Brassard
scored twice in the third period and the Senators recovered
after blowing a two-goal lead to beat the Toronto Maple
Leafs 6-3 on Saturday night.

The Senators pulled within two points of Montreal for first
place in the Atlantic Division with three games in hand.

“We like where we’re at. We’re in a good spot,” Stone said.
“But there’s a little bit more that we want. Obviously, there’s
teams coming and we want to try and create separation,
so the only way to do that is keep winning hockey games.”

Ottawa led 2-0 after one period but trailed 3-2 in the third
before getting a tying goal from Mike Hoffman and a power-
play goal from Brassard. Stone and Brassard added empty-
netters, and Chris Wideman and Ryan Dzingel also scored
for the Senators.

Ottawa has won four of five overall and three of four against
the Leafs this season. Craig Anderson stopped 34 shots.

Morgan Rielly, Nazem Kadri and William Nylander scored
and Auston Matthews had two assists for the Maple Leafs.
Frederik Andersen allowed four goals on 40 shots.

Toronto has lost eight of 11 and entered the night with
a tenuous grip on the final wild-card spot in the Eastern
Conference.

“The reality is we’re all big boys, we can read the standings.
You’ve got to win hockey games,” Babcock said. After
Nylander made it 3-2 with a power-play goal 2:04 into the
third, Hoffman tied it by rifling a shot from the right faceoff
circle off the post and in. On a power play 54 seconds later,
Andersen stopped Erik Karlsson’s point shot, but Brassard
jumped on the rebound and put it in for a 4-3 lead.

Wideman started the scoring in the first, firing a point shot
through traffic moments after Stone beat Nikita Zaitsev for
a puck behind the Leafs goal. Dzingel added to the lead
when he deflected Marc Methot’s point shot 20 seconds
later.
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Figure 1. A schematic diagram of data reduction as it applies to a professional hockey game.

Andersen stopped three shots during a lengthy 5-on-3 dur-
ing the second period, and the Leafs got on the board about
three minutes later. Rielly scored with 5:22 left in the sec-
ond by chasing down a wide shot from Matthews, carrying
it to the point and shooting through a crowd in front.

About three minutes later, Zaitsev fired a shot from the
right point that sneaked through Anderson’s pads and slid
behind the net. Kadri chased it down and banked it off
Dzingel’s helmet and in for his 24th goal of the season.
Dzingel had fallen in the crease trying to prevent Kadri
from stuffing the rebound in.

“Our game plan didn’t change for the third period, and
that’s just the maturity we’re gaining over time,” Senators
coach Guy Boucher said. “Our leaders have been doing a
great job, but collectively, the team has grown dramatically
in terms of having poise, executing under pressure.”

Game notes: Mitch Marner sat out for Toronto with an
upper-body injury. Marner leads Toronto with 48 points
and is also expected to sit Sunday night against Carolina.

UP NEXT

Senators: Host Winnipeg on Sunday night.

Maple Leafs: Travel to Carolina for a game Sunday night

Simple Boxscore A hockey pool participant might be
interested in the fact that Auston Matthews spent nearly
4 minutes on the powerplay (see Table 6), but a casual
observer is likely to find the full boxscore monstrous overkill.
How much crucial information is lost/provided by Table 1?

Table 1. Simple Boxscore, Ottawa Senators @ Toronto
Maple Leafs, February 18, 2017 [7].

Headline If one takes the view that human beings im-
pose a narrative on sporting events (rather than unearth
it), it could be argued that the only “true” informational
content is found in the following headline (courtesy of AP):

Sens rally after blowing lead, beat Leafs, gain
on Habs.

Visualization It is easy to get lost in row after row of
statistics and events description, or in large bodies of text –
doubly so for a machine in the latter case. Visualizations
can help complement our understanding of any data ana-
lytic situation.

While visualizations can be appealing on their own, a cer-
tain amount of external context is required to make sense
of most of them (see Figure 2).
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Offensive Zone Unblocked Shots Heat Map Gameflow Chart, Corsi +/- (All Situations)

Player Shift Chart Shots and Goals

Figure 2. Visualizations, Ottawa Senators @ Toronto Maple Leafs, February 18, 2017 [8].

Figure 3. A schematic diagram of data reduction as it applies to a “corpus” of professional hockey games, with
visualization and summarizing of regular season games between the Ottawa Senators and Toronto Maple Leafs
(1993-2017).
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General Context A document which is prepared for
analysis is often part of a more general context or collec-
tion. Can the analysis of all the games between the Senators
and the Maple Leafs shed some light on their rivalry on the
ice? Obviously, the more arcane the representation method,
the more in-depth knowledge of the game and its statistics
is required, but to those in the know, summaries and visu-
alizations can provide valuable insight (see Figure 3).

There are thus various ways to understand a single hockey
game – and a series of games – depending on the desired
(or required) levels of abstraction and complexity.

Clearly, the specific details of data reduction as applied to a
hockey game are not always portable, but the main concept
is. It would be easy to create similar schematic diagrams
for Macbeth, for instance.

1.2 Meaning in Macbeth

A Metaphor for Meaning?

It is a tale told by an idiot, full of sound and fury,
signifying nothing.

– Macbeth, Act V, Scene 5, Line 30

In a sense, in order to extract the full meaning out of a
document, said document needs to be read and understood
in its entirety. But even if we have the luxury of doing so,
some issues appear:

do all readers extract the same meaning?
does meaning stay constant over time?
is meaning retained by the language of the document?
do the author’s intentions constitute the true (base-
line) meaning?
does re-reading the document change its meaning?

Given the uncertain nature of what a document’s meaning
actually is, it is counter-productive to talk about insight or
meaning (in the singular); rather we look for insights and
meanings (in the plural).

Consider the following passage from Macbeth (Act I, Scene
5, Lines 45-52):

[Enter MACBETH]
LADY MACBETH: Great Glamis, worthy Cawdor,

Greater than both, by the all-hail hereafter,
Thy letters have transported me beyond
This ignorant present, and I feel now
The future in the instant

MACBETH: My dearest love, Duncan comes here tonight.
LADY MACBETH: And when goes hence?
MACBETH: Tomorrow, as he purposes.

What is the “meaning” of this scene? What is the “meaning”
of Macbeth as a whole?2

For non-native English speakers (and for a number of na-
tive speakers as well...), the preceding passage might prove
difficult to parse and understand.

A modern translation (which is a form of data reduction)
is available at No Fear Shakespeare, shedding some light on
the semantic role of the scene:

MACBETH enters.
LADY MACBETH: Great thane of Glamis! Worthy thane of
Cawdor! You’ll soon be greater than both those titles, once
you become king! Your letter has transported me from the
present moment, when who knows what will happen, and
has made me feel like the future is already here.
MACBETH: My dearest love, Duncan is coming here
tonight.
LADY MACBETH: And when is he leaving?
MACBETH: He plans to leave tomorrow.

Consider, also, the French translation by F. Victor Hugo:

Entre MACBETH.
LADY MACBETH, continuant: Grand Glamis! Digne
Cawdor! plus grand que tout cela par le salut futur! Ta
lettre m’a transportée au delà de ce présent ignorant, et je
ne ne sens plus dans l’instant que l’avenir.
MACBETH: Mon cher amour, Duncan arrive ici ce soir.
LADY MACBETH: Et quand repart-il?
MACBETH: Demain... C’est son intention.

Do these all carry a Macbeth essence? Are they all Mac-
beth? How much, if anything, of Macbeth do they preserve?
The French translation, for instance, seems to add a very
ominous tone to Macbeth’s last reply.

One way or another, similar questions must be addressed
when investigating aspects of the universe through data
analysis (see Figure 4).

2As a starting point, it’s crucial to note that the “meaning” of the scene
is not independent of the play’s context up to this scene (a description of
the plot in modern prose is provided on pp. 38). Does the plot description
carry the same “meaning” as the play itself? What about TVTropes.org’s
laconic description of Macbeth [10]:

Hen-pecked Scottish nobleman murders his king and
spends the rest of the play regretting it.

Or Mister Apple’s haiku description:

Macbeth and his wife
Want to become the royals

So they kill ’em all.

Or this literary description, from an unknown author:

Macbeth dramatizes the battle between good and evil, ex-
ploring the psychological effects of King Duncan’s murder
on Macbeth and Lady Macbeth. His conflicting feelings of
guilt and ambition embody this timeless battle of good vs
evil.

Or the 2001 W. Morrissette movie Scotland, PA, featuring James LeGros,
Maura Tierney, and Christopher Walken [11]?
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Figure 4. A schematic diagram of data reduction as it applies to a general problem (with J.Schellinck).

2. Dimension Reduction
There are many advantages to working with reduced, low-
dimensional data:

visualisation methods of all kinds are available and
(more) readily applicable to such data in order to
extract and present insights;
high-dimensional datasets are subject to the so-called
curse of dimensionality(CoD), which asserts (among
other things) that multi-dimensional spaces are well,
vast, and when the number of features in a model
increases, the number of observations required to
maintain predictive power also increases, but at a
substantially larger rate (see Figure 5 for an illus-
tration of CoD and Section 2.2);
another consequence of the curse is that in high-
dimension sets, all observations are roughly dissimi-
lar to one another – observations tend to be nearer
the dataset’s boundaries than they are to one another.

Dimension reduction techniques such as the ubiquitous
principal component analysis, independent component
analysis, factor analysis (for numerical data), or multi-
ple correspondence analysis (for categorical data) project
multi-dimensional datasets onto low-dimensional but high-
information spaces (the so-called Manifold Hypothesis,
see Section 2.4).

Some information is necessarily lost in the process, but
in many instances the drain can be kept under control and

the gains made by working with smaller datasets can offset
the losses of completeness.

2.1 Sampling Observations
Datasets can be “big” in a variety of ways:

they can be too large for the hardware to handle (that
is to say, they cannot be stored or accessed properly
due to the number of observations, the number of
features, or the overall size of the dataset), or

the dimensions can go against specific modeling as-
sumptions (such as the number of features being
much larger than the number of observations, say).

For instance, multiple sensors which record 100+ observa-
tions per second in a large geographical area over a long
time period can lead to excessively big datasets, say.A nat-
ural question then, regarding such a dataset, is whether
every one of its row needs to be used: if rows are selected
randomly (with or without replacement), the resulting sam-
ple might be representative3 of the entire dataset, and the
smaller set might be easier to handle.

There are some drawbacks to the sampling approach,
however:

if the signal of interest is rare, sampling might lose it
altogether;

3An entire field of statistical endeavour – statistical survey sampling
– has been developed to quantify the extent to which the sample is repre-
sentative of the population, but that’s outside the scope of this report.
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if aggregation happens down the road, sampling will
necessarily affect the totals4, and
even simple operations on large files (finding the
number of lines, say) can be taxing on the memory
or in term of computation time – some knowledge
or prior information about the dataset structure can
help.

Sampled datasets can also be used to work the kinks out
of the data analysis workflows, but the key take-away is
that if data is too big to store, access, and manipulate in a
reasonable amount of time, the issue is mostly a Big Data
problem – this is the time to start considering the use of
distributed computing5.

2.2 The Curse of Dimensionality
A model is said to be local if it depends solely on the obser-
vations near the input vector (k nearest neigbours classifi-
cation is local, whereas linear regression is global). With
a large training set, increasing k in a kNN model, say, will
yield enough data points to provide a solid approximation
to the theoretical classification boundary.

The curse of dimensionality is the breakdown of this
approach in high-dimensional spaces: when the number
of features increases, the number of observations required
to maintain predictive power also increases, but at a sub-
stantially higher rate.

Manifestations of CoD
Let x i ∼ U1(0, 1) be i.i.d. for i = 1, . . . , N . For any z ∈ [0, 1]
and ε > 0 such that

I1(z;ε) = {y ∈ R : |z − y|∞ < ε} ⊆ [0,1],

the expected number of observations x i in I1(z;ε) is
�

�I1(z;ε)∩ {x i}Ni=1

�

�≈ ε · N .

In other words, an ε∞−ball subset of [0,1]1 contains ap-
proximately ε of the observations in {x i}Ni=1 ⊆ R, on aver-
age.

Let xi ∼ U2(0,1) be i.i.d. for i = 1, . . . , N . For any z ∈
[0, 1]2 and ε > 0 such that

I2(z;ε) = {y ∈ R2 : ‖z− y‖∞ < ε} ⊆ [0, 1]2,

the expected number of observations xi in I2(z;ε) is
�

�I1(z;ε)∩ {xi}Ni=1

�

�≈ ε2 · N .

In other words, an ε∞−ball subset of [0,1]2 contains ap-
proximately ε2 of the observations in {xi}Ni=1 ⊆ R

2, on av-
erage.

4For instance, if we’re interested in predicting the number of passengers
per flight leaving YOW and the total population of passengers is sampled,
then the sampled number of passengers per flight is necessarily below
the actual number of passengers per flight. Estimation methods exist to
overcome these issues.

5Also out-of-scope for this report

In general, the same reasoning shows that an ε∞−ball
subset of [0,1]p ⊆ Rp contains approximately εp of the
observations in {xi}Ni=1 ⊆ R

p, on average. Thus, to capture
r percent of uniformly distributed observations in a unit
p−hypercube, a p−hypercube with edge

εp(r) = r1/p

is needed, on average. For instance, to capture r = 1/3 of
the observations in a unit p−hypercube in R, R2, and R10,
a hyper-subset with edge ε1(1/3)≈ 0.33, ε2(1/3)≈ 0.58,
and ε10(1/3)≈ 0.90, respectively.

The inference is simple: in general, as p increases, the
nearest observations to a given point x j ∈ Rp are in fact
quite distant from x j , in the Euclidean sense, on average
– locality is lost!6 This can wreak havoc on models and
algorithms that rely on the (Euclidean) nearness of obser-
vations (k nearest neighbours, k−means clustering, etc.).

The CoD manifests itself in various ways. In datasets with
a large number of features:

most observations are nearer the edge of the sam-
ple than they are to other observations, and
realistic training sets are necessarily sparse.

Imposing restrictions on models can help mitigate the ef-
fects of the CoD, but if the assumptions are not warranted
the end result may be even worse.

2.3 Principal Component Analysis
Principal component analysis (PCA) can be used to find
the combinations of variables along which the data points
are most spread out; it attempts to fit a p−ellipsoid to a
centered representation of the data.

The ellipsoid axes are the principal components of the
data. Small axes are components along which the vari-
ance is “small”; removing these components leads, in an
ideal setting, to a “small” loss of information7 (see Figure 6)

The procedure is simple:

1. centre and “scale” the data to obtain a matrix X;
2. compute the data’s covariance matrix K= X>X;
3. compute K’s eigenvalues Λ and its orthonormal eigen-

vectors matrix W;
4. each eigenvector w (also known as loading) repre-

sents an axis, whose variance is given by the associ-
ated eigenvalue λ.

The loading that explains the most variance along a single
axis (the first principal component) is the eigenvector of
the empirical covariance matrix corresponding to the largest
eigenvalue, and that variance is proportional to the eigen-
value; the second largest eigenvalue and its corresponding

6The situation can be different when the observations are not i.i.d.
7Although there are scenarios where it could be those “small” axes that

are more interesting – such as the “pancake stack” problem.
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Figure 5. Illustration of the curse of dimensionality; N = 100 observations are uniformly distributed on the unit hypercube [0, 1]d ,
d = 1, 2,3. The red regions represent the smaller hypercubes [0,0.5]d , d = 1,2, 3. The percentage of captured datapoints is seen to
decrease with an increase in d [12].

Figure 6. Illustration of PCA on an artificial 2D dataset. The red axes (second image from left) represent the axes of the best elliptic
fit. Removing the minor axis by projecting the points on the major axis leads to a dimension reduction and a (small) loss of information
(last image on the right).

eigenvector form the second principal component and
variance pair, and so on, yielding orthonormal principal
components PC1, . . . , PCr , where r = rank(X).8

Principal component analysis can provide an avenue
for dimension reduction, by “removing” components with
small eigenvalues (see Figure 6): the proportion of the
spread in the data which can be explained by each princi-
pal component (PC) can be placed in a scree plot (a plot of
eigenvalues against ordered component indices) and retain
the ordered PCs:

for which the eigenvalue is above some threshold
(say, 25%);
for which the cumulative proportion of the spread
falls below some threshold (say 95%), or
prior to a kink in the scree plot.

For instance, consider an 8−dimensional dataset for which
the ordered PCA eigenvalues are provided below:

PC 1 2 3 4 5 6 7 8
Var 17 8 3 2 1 0.5 0.25 0

Prop 54 25 9 6 3 2 1 0
Cumul 54 79 88 94 98 99 100 100

If only the PCs that explain up to 95% of the cumulative
variance are retained, the original data reduces to a 4-
dimensional subset; if only the PCs that individually ex-
plain more than 25% of the variance are retained, to a
2-dimensional subset; if only the PCs that lead into the
first kink in the scree plot are retained, to a 3-dimensional
subset (see Figure 7). Consult [44,45] for PCA R tutorials.

8If some of the eigenvalues are 0, r < p, and vice-versa, implying that
the data was embedded in a r−dimensional manifold to begin with.

PCA is commonly-used, but often without regard to its
inherent limitations:

it is dependent on scaling, and so is not uniquely
determined;
with little domain expertise, it may be difficult to
interpret the PCs;
it is quite sensitive to outliers;
the analysis goals are not always aligned with the
principal components, and
the data assumptions are not always met – in par-
ticular, does it always make sense that important
data structures and data spread be correlated (the
so-called counting pancakes problem), or that the
components be orthogonal?

There are other methods to find the principal manifolds
of a dataset, including UMAP, self-organizing maps, auto-
encoders, curvilinear component analysis, manifold sculpt-
ing and kernel PCA [6].

2.4 The Manifold Hypothesis
Manifold learning involves mapping high-dimensional data
to a lower dimensional manifold, such as mapping a set of
points in R3 to a torus shape, which can then be unfolded
(or embedded) into a 2D object.

Techniques for manifold learning are commonly-used
because data is often (usually?) sampled from unknown
and underlying sources which cannot be measured directly.

Learning a suitable "low-dimension" manifold from a
higher-dimensional space is approximately as complicated
as learning the sources (in a machine learning sense).
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Figure 7. Selecting the number of PCs. The proportion of the variance explained by each (ordered) component is shown in the first 3
charts; the cumulative proportion is shown in the last chart. The kink method is shown in the second image, the individual threshold
component in the third, and the cumulative proportion in the fourth.

This problem can also be re-cast as finding a set of degrees
of freedom which can reproduce most of the variability
in a dataset. For instance, a set of multiple photographs
of a 3D object taken from different positions but all at the
same distance from the object can be represented by two
degrees of freedom: the horizontal angle and the vertical
angle from which the picture was taken.

As another example, consider a set of hand-written
drawings of the digit “2” [26]. Each of these drawings can
also be represented using a small number of degrees of
freedom:

the ratio of the length of the lowest horizontal line
to the height of the hand-written drawing;
the ratio of the length of the arch in the curve at the
top to the smallest horizontal distance from the end
point of the arch to the main vertical curve;
the rotation of the digit as a whole with respect to
some baseline orientation, etc.

These two scenarios are illustrated in Figure 9 [26].

Dimensionality reduction and manifold learning are often
used for one of three purposes:

to reduce the overall dimensionality of the data while
trying to preserve the variance;
to display high-dimensional datasets, or
to reduce the processing time of supervised learn-
ing algorithms by lowering the dimensionality of the
processed data.

PCA, for instance, provides a sequence of best linear approx-
imations to high-dimensional observations (see previous
section); the process has fantastic theoretical properties
for computation and applications, but data is not always
well-approximated by a fully linear process.

In this section, the focus is on non-linear dimensionality
reduction methods, most of which are a variant of kernel
PCA: LLE, Laplacian eigenmap, isomap, semidefinite em-
bedding, and t−SNE.

By way of illustration, the different methods are applied to
an “S”-shaped coloured 2D object living in 3D space (see
Figure 10).

Kernel Principal Component Analysis
High-dimensional datasets often have a non-linear nature,
in the sense that a linear PCA may only weakly capture/-
explain the variance across the entire dataset. This is, in
part, due to PCA relying on Euclidean distance as opposed
to geodesic distance – the distance between two points
along the manifold, that is to say, the distance that would
be recorded if the high-dimensional object was first un-
rolled (see Figure 8, from [26]). Residents of the Earth
are familiar with this concept: the Euclidean distance (“as
the mole burrows”) between Ottawa and Reykjavik is the
length of the shortest tunnel joining the two cities, whereas
the geodesic distance (“as the crow flies”) is the arclength
of the great circle through the two locations.

Figure 8. Unfolding of a high-dimensional manifold [26].

High-dimensional manifolds can be unfolded with the use
of transformations Φ which map the input set of points
in Rn onto a new set of points in Rm, with m ≥ N . If Φ is
chosen so that

∑N
i=1Φ(xi) = 0 (i.e., the transformed data

is also centered in Rm), we can formulate the kernel PCA
objective in Rn as a linear PCA objective in Rm:

min

¨

N
∑

i=1

‖Φ(xi)− VqV>q Φ(xi)‖2

«

,

over the set of m×q matrices Vq with orthonormal columns,
where q is the desired dimension of the manifold.9

In practice, it can be quite difficult to determine Φ explicitly;
in many instances, it is inner-product-like quantities that
are of interest to the analyst.

9This approach to PCA is called the error reconstruction approach
and it gives the same results as the covariance approach of the previous
section [34].

O.Leduc, A.Macfie, A.Maheshwari, M.Pelletier, P.Boily, 2019 Page 9 of 50



DATA SCIENCE REPORT SERIES Feature Selection and Data Reduction

Figure 9. Plots showing degrees of freedom manifolds for
images of faces (3D object) and handwritten digits [26].

The problem can be resolved by working with positive-
definite kernel functions K : Rn ×Rn→ R+ which satisfy
K(x,y) = K(y,x) for all x,y ∈ Rn and

k
∑

i=1

k
∑

j=1

cic jK(xi ,x j)≥ 0

for any integer k, coefficients c1, . . . , ck ∈ R and vectors
x1, . . . ,xk ∈ Rn, with equality if and only if c1, · · · , ck = 0.
Popular data analysis kernels include the:

linear kernel K(x,y) = x>y;
ploynomial kernel K(x,y) = (x>y+r)k, n ∈ N, r ≥ 0,
and
Gaussian kernel K(x,y) = exp

¦

−‖x−y‖
2σ2

©

, σ > 0.

Most dimension reduction algorithms can be re-expressed
as some form of kernel PCA.

Locally Linear Embedding
Locally linear embedding (LLE) is another manifold learn-
ing approach which addresses the problem of nonlinear
dimension reduction by computing low-dimensional, neigh-
bourhood-preserving embedding of high-dimensional data.

The main assumption is that for any subset {xi} ⊆ Rn

lying on some d−dimensional, sufficiently well-behaved un-
derlying manifoldM , each data point and its neighbours
lie on a locally linear patch ofM . Using translations, ro-
tations, and rescaling, the (high-dimensional) coordinates
of each locally linear neighbourhood can be mapped to a
set of d−dimensional global coordinates ofM . This needs
to be done in such a way that the relationships between
neighbouring points are preserved. This can be done in 3
steps:

1. identify the punctured neighbourhood Ni = {i1, . . . , ik}
of each data point xi via k nearest neighbours (this
could also be done by selecting all points within some
fixed radius ε, but k is not a constant anymore, and
that complicates matters);

2. find the weights zi, j that provide the best linear re-
construction of each xi ∈ Rn from their respective
punctured neighbourhoods10, i.e., solve

min
W

¨

N
∑

i=1








xi −
∑

j∈Ni
zi, jxNi( j)










2
«

,

where Z =
�

zi, j

�

is an N×N matrix (zi, j = 0 if j 6∈ Ni),
and

3. find the low-dimensional embedding (or code) vec-
tors yi ∈ M (⊆ Rd) and neighbours yNi( j) ∈ M for
each i which are best reconstructed by the weights
determined in the previous step, i.e., solve

min
Y

¨

N
∑

i=1








yi −
∑

j∈Ni
wi, jyNi( j)










2
«

=min
Y

�

Tr
�

Y>YL
�	

,

where L = (I − Z)>(I − Z) and Y is an N × d matrix.

If the global coordinates of the sampled points are centered
at the origin and have unit variance (which can always
be done by adding an appropriate set of restrictions), it
can be shown that L has a 0 eigenvalue with associated
eigenvector. The jth column of Y is then simply the eigen-
vector associated with the jth smallest non-zero eigenvalue
of L [27].

Laplacian Eigenmaps
Laplacian eigenmaps are similar to LLE, except that the
first step consists in constructing a weighted graph G with
N nodes (number of n−dimensional observations) and a
set of edges connecting the neighbouring points.11

10Excluding xi itself.
11As with LLE, the edges of G can be obtained by finding the k nearest

neighbours of each node, or by selecting all points within some fixed
radius ε.
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Figure 10. Comparison of manifold learning methods on an artificial dataset [28].

In practice, the edges’ weights are determined either:

by using the inverse exponential with respect to the

Euclidean distance wi, j = exp
�

− ‖xi−x j‖2

s

�

, for all i, j,

for some parameter s > 0, or
by setting wi, j = 1, for all i, j.

The embedding map is then provided by the following ob-
jective

min
Y

N
∑

i=1

N
∑

j=1

�

wi, j(yi − y j)
2
	

=min
Y

�

Tr(YLY>)
	

,

subject to appropriate constraints, with the Laplacian L
given by L = D−W , where D is the (diagonal) degree ma-
trix of G (the sum of weights emanating from each node),
and W its weight matrix.

The Laplacian eigenmap construction is identical to the
LLE construction, save for their definition of L.

Isomap
Isomap follows the same steps as LLE except that it uses
geodesic distance instead of Euclidean distance when look-
ing for each point’s neighbours (as always, neighbourhoods
can be selected with kNN or with a fixed ε. These neigh-
bourhood relations are represented by a graph G in which
each observation is connected to its neighbours via edges
with weight dx (i, j) between neighbours. The geodesic dis-
tances dM (i, j) between all pairs of points on the manifold
M are then estimated in the second step.

Semidefinite Embedding
Semidefinite embeddings (SDE) involve learning the ker-
nel K(x,z) = Φ(x)>Φ(z) from the data before applying the
kernel PCA transformationΦ, which is achieved by formulat-
ing the problem of learning K as an instance of semidefinite
programming. The distances and angles between observa-
tions and their neighbours are preserved under transforma-
tions by Φ: ‖Φ(xi)−Φ(x j)‖2 = ‖xi−x j‖2, for all xi ,x j ∈ Rn.
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In terms of the kernel matrix, this constraint can be written
as

K(xi ,xi)− 2K(xi ,x j) + K(x j ,x j) = ‖xi − x j‖2,

for all xi ,x j ∈ Rn. By adding an objective function to max-
imize Tr(K), that is, the variance of the observations in
the learned feature space, SDE constructs a semidefinite
program for learning the kernel matrix

K =
�

Ki, j

�N

i, j=1 =
�

K(xi ,x j)
�N

i, j=1 ,

from which kernel PCA can proceed.

Unified Framework
All of the above algorithms (LLE, Laplacian Eigenmaps,
Isomap, SDE) can all be rewritten in the kernel PCA frame-
work:

in the case of LLE, if λmax is the largest eigenvalue of
L = (I −W)>(I −W), then KLLE = λmax I − L;
With L = D−W , D a (diagonal) degree matrix with
Di,i =

∑N
j=1 Wi, j , then then the corresponding KLE is

related to commute times of diffusion on the under-
lying graph, and
with the Isomap element-wise squared geodesic dis-
tance matrix D2,

KIsomap = −
1
2

�

I −
1
n

ee>
�

D2
�

I −
1
n

ee>
�

,

where e is an n−dimensional vector consisting solely
of 1’s (note that this kernel is not always p.s.d.).

t−SNE
There are a few relatively new manifold learning techniques
that do not fit neatly in the kernel PCA framework: Uniform
Manifold Approximation and Projection (UMAP, see Sec-
tion 4.3) and T−Distributed Stochastic Neighbour Em-
bedding (t−SNE). For a dataset {xi}Ni=1 ⊆ R

n, the latter
involves calculating probabilities

pi, j =
1

2N

¨

exp(−‖xi − x j‖2/2σ2
i )

∑

k 6=i exp(−‖xi − xk‖2/2σ2
i )

+
exp(−‖xi − x j‖2/2σ2

j )
∑

k 6= j exp(−‖x j − xk‖2/2σ2
j )

«

,

which are proportional to the similarity of points in high-
dimensional space Rn for all i, j, and pii is set to 0 for all
i.12 The bandwidths σi are selected in such a way that they
are smaller in denser data areas.

The lower-dimensional manifold {yi}Ni=1 ⊆M ⊆ Rd is
selected in such a way as to preserve the similarities pi, j

12The first component in the similarity metric measures how likely it is
that xi would choose x j as its neighbour if neighbours were sampled from
a Gaussian centered at xi , for all i, j.

as much as possible; this can be achieved by building the
(reduced) probabilities

qi, j =
(1+ ‖yi − y j‖2)−1

∑

k 6=i(1+ ‖yi − yk‖2)−1

for all i, j (note the asymmetry) and minimizing the Kullback-
Leibler divergence of Q from P:

KL(P||Q) =
∑

i 6= j

pi, j log
pi, j

qi, j

over possible coordinates {yi}Ni=1 [35].

MNIST Example
In [28], the methods above are used to learn manifolds for
the MNIST dataset [36], a database of handwritten digits
(see Figure 11). The results for 4 of those are shown in
Figure 12. The analysis of optimal manifold learning meth-
ods remains fairly subjective, as it depends not only on the
outcome, but also on how much computing power is used
and how long it takes to obtain the mapping.

Naïvely, one would expect to see the coordinates in the re-
duced manifold congregate in 10 (or more) distinct groups;
in that regard, t−SNE seems to perform admirably on
MNIST.

Figure 11. Sample of the MNIST dataset [28,36].

3. Feature Selection
As seen in the previous section, dimension reduction meth-
ods can be used to learn low-dimensional manifolds for
high-dimensional data, with the hope that the resulting loss
in information content can be kept small. Unfortunately,
this is not always feasible.

There is another non-technical, yet perhaps more prob-
lematic, issue with manifold learning techniques: the re-
duction often fails to provide an easily interpretable set of
coordinates in the context of the original dataset.13

13In a dataset with 4 features (X1 = Age, X2 = Height, X3 = Weight,
and X4 = Gender (0, 1), say) it is straightforward to justify a data-driven
decision based on the rule X1 = Age> 25, for example, but substantially
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Figure 12. Manifold Learning on subset of MNIST (digits 0-5): LLE, Hessian LLE, Isomap, t−SNE [28,29].

Datasets often contain irrelevant and/or redundant fea-
tures; identifying and removing these variables is a common
data processing task. The motivations for doing so are var-
ied, but usually fall into one of two categories:

the modeling tools do not handle redundant variables
well, due to variance inflation or similar issues, and
as an attempt by analysts to overcome the curse of
dimensionality or to avoid situations where the num-
ber of variables is larger than the number of observa-
tions.

In light of the footnote on pp. 12-13, the goal of feature
selection is to remove (not transform or project) any at-
tribute that adds noise and reduces the performance of a
model, that is to say, to retain a subset of the most relevant
features14, which can help create simpler models, decrease
a statistical learner’s training time, and reduce overfitting.

harder to do so for a reduced rule such as

Y2 = 3(Age−Age)−(Height−Height)+4(Weight−Weight)+Gender> 7,

even if there is nothing wrong with the rule from a technical perspective.
14This usually requires there to be a value to predict, against which the

features can be evaluated for relevance.

There are various feature selection methods, typically falling
in one of three families – filter methods, wrapper methods,
and embedded methods (most of the next two sections is
inspired by [20]):

filter methods focus on the relevance of the features,
applying a specific ranking metric to each feature,
individually. The variables that do not meet a preset
benchmark15 are then removed from consideration,
yielding a subset of the most relevant features accord-
ing to the selected ranking metric; different metrics,
and different thresholds, might retain different rele-
vant features;
wrapper methods focus on the usefulness of each
feature to the task of interest (usually classification or
regression), but do not consider features individually;
rather, they evaluate and compare the performance
of different combinations of features in order to select
the best-performing subset of features, and
embedded methods are a combination of both, us-
ing implicit metrics to evaluate the performance of
various subsets.

15Either a threshold on the ranking or on the ranking metric value itself.
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Feature selection methods can also be categorized as unsu-
pervised or supervised:

unsupervised methods determine the importance
of features using only their values (with potential
feature interactions), while
supervised methods evaluate each feature’s impor-
tance in relationship with the target feature.

Wrapper methods are typically supervised. Unsupervised
filter methods search for noisy features and include the
removal of constant variables, of ID-like variables (i.e. dif-
ferent on all observations), or features with low variability.

3.1 Filter Methods
Filter methods evaluate features without resorting to the
use of a classification/regression algorithm. These methods
can either be

univariate, where each feature is ranked indepen-
dently, or
multivariate, where features are considered jointly.

A filter criterion is chosen based on which metric suits the
data or problem best.16 The selected criterion is used to
assign a score to, and rank, the features which are then
retained or removed in order to yield a relevant subset of
features.

Features whose score lies above (or below, as the case
may be) some pre-selected threshold τ are retained (or
removed); alternatively, features whose rank lies below (or
above as the case may be) some pre-selected threshold ν
are retained (or removed).

Such methods are advantageous in that they are computa-
tionally efficient. They also tend to be robust against over-
fitting as they do not incorporate the effects of the feature
subset selection on classification/regression performance.

There are a number of commonly-used filter criteria, in-
cluding the Pearson correlation coefficient, information
gain (or mutual information), and relief [20]. Throughout,
let Y be the target variable, and X1, . . . , X p be the predictors.

Pearson Correlation Coefficient
The Pearson correlation coefficient quantifies the linear
relationship between two continuous variables [16]. For a
predictor X i , the Pearson correlation coefficient between
X i and Y is

ρi =
Cov(X i , Y )
σX i
σY

.

Features for which |ρi | is large (near 1) are linearly corre-
lated with Y , those for which |ρi | ≈ 0 are not linearly (or
anti-linearly) correlated with Y (which could mean that
they are uncorrelated with Y , or that the correlation is not
linear or anti-linear). Only those features with (relatively)
strong linear (or anti-linear) correlation are retained.

16This can be difficult to determine.

This correlation ρi is only defined if both the predictor X i
and the outcome Y are numerical; there are alternatives
for categorical X i and Y , or mixed categorical-numerical X i
and Y [17–19].

Mutual Information
Information gain is a popular entropy-based method of
feature selection that measures the amount of dependence
between features by quantifying the amount of mutual
information between them. In general, this quantifies the
amount of information obtained about a predictor X i by
observing the target feature Y . Mutual information can be
expressed as

IG(X i; Y ) = H(X i)−H(X i |Y ),

where H(X i) is the marginal entropy of X i and H(X i |Y ) is
the conditional entropy of X i given Y [15], and

H(X i) = EX i
[− log p(X i)], H(X i |Y ) = E(X i ,Y )[− log p(X i |Y )]

where p(X i) and p(X i |Y ) are the probability density func-
tions of the random variables X i and X i |Y , respectively.

How is IG interpreted? Consider the following example:
let Y represent the salary of an individual (continuous), X1
their hair colour (categorical), X2 their age (continuous),
X3 their height (continuous), and X4 their self-reported
gender (categorical). Some summary statistics for a sample
of 2144 individuals are shown in Table 2. In a general pop-
ulation, one would expect that the distribution of salaries,
say, is likely to be fairly haphazard, and it might be hard to
explain why, specifically, it has the shape that it does (see
Figure 13), but it could be perhaps be explained by knowing
the relationship between the salary and the other variables.
It is this idea that forms the basis of mutual information
feature selection. By definition, one sees that

H(X1) = −
∑

colour

p(colour) log p(colour)

H(X2) = −
∫

p(age) log p(age) dage

H(X3) = −
∫

p(height) log p(height) dheight

H(X4) = −
∑

gender

p(gender) log p(gender)

H(X1|Y ) = −
∫

p(Y )

¨

∑

colour

p(colour|Y ) log p(colour|Y )

«

dY

H(X2|Y ) = −
∫∫

p(Y )p(age|Y ) log p(age|Y ) dage dY

H(X3|Y ) = −
∫∫

p(Y )

∫

p(ht|Y ) log p(ht|Y ) dht dY

H(X4|Y ) = −
∫

p(Y )

(

∑

gender

p(gender|Y) log p(gender|Y)

)

dY
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Table 2. Summary statistics for the salary dataset; two-way tables use decile data.

Figure 13. Univariate distributions (hair colour, age, height, salary). The gender distribution is omitted.

If the theoretical distributions are known, the entropy in-
tegrals can be computed directly (or approximated using
standard numerical integration methods). Gender and hair
colour can be modeled using multinomial distributions, but
there is more uncertainty related to the numerical variables.

A potential approach is to recode the continuous vari-
ables age, height, and salary as decile variables ad , hd ,
and Yd taking values {1, . . . , 10} according to which decile
of the original variable the observation falls (see Table 2 for
the decile breakdown). The integrals can then be replaced
by sums:

H(X1) = −
∑

colour

p(colour) log p(colour)

H(X2)≈ −
10
∑

k=1

p(ad = k) log p(ad = k)

H(X3)≈ −
10
∑

k=1

p(htd = k) log p(htd = k)

H(X4) = −
∑

gender

p(gender) log p(gender)

H(X1|Y )≈ −
10
∑

j=1

p(Yd = j)
∑

c∈colour

p(c|Yd = j) log p(c|Yd = j)

H(X2|Y )≈ −
10
∑

j=1

p(Yd = j)
10
∑

k=1

p(ad = k|Yd = j) log p(ad = k|Yd = j)

H(X3|Y )≈ −
10
∑

j=1

p(Yd = j)
10
∑

k=1

p(hd = k|Yd = j) log p(hd = k|Yd = j)

H(X4|Y )≈ −
10
∑

j=1

p(Yd = k)
∑

g∈gender

p(g|Yd = j) log p(g|Yd = j)

The results are shown in Table 3.
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Table 3. Mutual information obtained about each
predictor after observing the target response Y (salary).
The percentage decrease in entropy after having observed
Y is shown in the column “Ratio.” Raw IG numbers would
seem to suggest that Gender has a small link to Salary; the
Ratio numbers suggest that this could be due to the way
the Age and Height levels have been categorized (deciles).

Relief
Relief scores (numerical) features based on the identifica-
tion of feature value differences between nearest-neighbour
instance pairs. If there is a feature value difference in a
neighbouring instance pair of the same class, the score
of the feature decreases; on the other hand, if there exists
a feature value difference in a neighbouring instance pair
with different class values, the feature score increases.

More specifically, let D = {(xn, yn)}
N
n=1 ⊂ R

p × {±1} be
a dataset where xn is the n-th data sample and yn is its cor-
responding class label. For each feature i and observation n,
two values are selected: the near hit H(xn,i) is the value of
X i which is nearest to xn,i among all instances in the same
class as xn, while the near miss M(xn,i) is the value of X i
which is nearest to xn,i among all instances in the opposite
class as xn. The relief score of the ith feature is

Sd
i =

1
N

N
∑

n=1

�

d(xn,i , M(xn,i))− d(xn,i , H(xn,i))
	

,

for some pre-selected distance d : R×R→ R+0 . A feature
for which near-hits tend to be nearer to their instances than
near-misses are (i.e., for which

d(xn,i , M(xn,i))> d(xn,i , H(xn,i)),

on average) will yield larger relief scores than those for
which the opposite is true. Features are deemed relevant
when their relief score is greater than some threshold τ.

There are a variety of Relief-type measurements to accom-
modate potential feature interactions or multi-class prob-
lems17 (ReliefF), but in general Relief is noise-tolerant and
robust to interactions of attributes; its effectiveness de-
creases for small training sets, however. [23]

17For instance, for a p−distance δ, set

Hδ(xn,i) = argminπi (z) = {δ(xn,z) : class(xn) = class(z)}

and

Mδ(xn,i) = argminπi (z) = {δ(xn,z) : class(xn) 6= class(z)} .

Other metrics include:

other correlation metrics (Kendall, Spearman, point-
biserial correlation, etc.)
other entropy-based metrics (gain ratio, symmetric
uncertainty, etc.)
other relief-type algorithms (ReliefF, Relieved-F, etc.)
χ2−test
ANOVA
Fisher Score
Gini Index
etc.

The list is by no means exhaustive, but it provides a fair
idea of the various types of filter-based feature selection
metrics. The following example illustrates how some of
these metrics are used to extract relevant attributes.

Examples
In order to get a better handle on what filter feature selec-
tion looks like in practice, consider the Global Cities Index
dataset [37], which ranks prominent cities around the globe
on a general scale of “Alpha”, “Beta”, “Gamma”, and “Suf-
ficiency” (Rating = 1, 2, 3, 4, respectively). This dataset
contains geographical, population, and economics data for
68 ranked cities (see Listing 1).18

The R package FSelector contains feature selection
tools, including various filter methods (such as chi-squared
score, consistency, various entropy-based filters, etc.). Us-
ing its filtering functions, the most relevant features to the
ranking of a global city can be extracted. For instance, lin-
ear correlation (Pearson’s correlation coefficient) as the
filtering method for feature selection in this case.

library(FSelector)

# Get the corr. coeff. of each feature
lincor <- linear.correlation(formula =

‘Rating‘ ~ ., data = globalcities)

# Retain the top 5 correlations
subset_lincor <- cutoff.k(lincor, k = 5)

# Formula for the selected features
print(as.simple.formula(subset_lincor,

’Rating’))
Rating ~ Major.Airports +

Unemployment.Rate +
GDP.Per.Capita..thousands. +
Metro.Population..millions. +
Annual.Population.Growth

According to the top-5 linear correlation feature selection
method, the "best" features that relate to a city’s global
ranking are the number of major airports it has, its unem-
ployment rate, its GDP per capita, its metropolitan popu-

18Strictly speaking, the Rating variable should not be treated as a nu-
merical variable (dbl) but as an ordered categorical variable.
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lation, and its annual population growth. As filtering is a
pre-processing step, proper analysis would also require
building a model using this subset of features.

FSelector also has a built-in function for information
gain (see above). When applied to the dataset of hockey
players (excluding goalies) drafted into the NHL in 2015
[38], it finds 5 relevant features (see Listing 2) linking the
players’ professional statistics between 2015 and 2019 to
the Round in which they were drafted.

# Calculate information gain for each
feature

infogain <- information.gain(‘Round‘ ~
., draft2015, unit = ’log2’)

# Subset features for the top 5
information gain scores

subset_infogain <- cutoff.k(infogain, 5)

# formula for the selected features
print(as.simple.formula(subset_infogain,

’Round’))
Round ~ Amateur.Team + Amateur.League

+ Team + Points + Assists

According to the top-5 information gain filter, the most
relevant features that back-classify a player into their 2015
draft class round are their amateur team, amateur league,
professional points scored, number of assists, and penalty
minutes, between 2015-2019.

3.2 Wrapper Methods
Wrapper methods offer a powerful way to address problem
of variable selection. Wrapper methods evaluate the quality
of subsets of features for predicting the target output under
the selected predictive algorithm and select the optimal
combination (for the given training set and algorithm).

In contrast to filter methods, wrapping methods are in-
tegrated directly into the classification or clustering process
(see Figure 14 for an illustration of this process).

Wrapper methods treats feature selection as a search prob-
lem in which different subsets of features are explored. This
process can be computationally expensive as the size of the
search space increases exponentially with the number of
predictors; even for modest problems an exhaustive search
can quickly become impractical.

In general, wrapper methods iterate over the following
steps, until an “optimal” set of features is identified:

select a feature subset, and
evaluate the performance of the selected feature sub-
set.

The search ends once some desired quality is reached (such
as adjusted R2, accuracy, etc.). Various search methods
are used to traverse the feature phase space and provide

Figure 14. Feature selection process for wrapper methods
in classification problems [20].

an approximate solution to the optimal feature subset
problem, including: hill-climbing, best-first, and genetic
algorithms.

Wrapper methods are not as efficient as filter methods and
are not as robust against over-fitting. However, they are
very effective at improving the model’s performance due
to their attempt to minimize the error rate (which unfortu-
nately can also lead to the introduction of implicit bias in
the problem [20]).

3.3 Subset Selection Methods
Stepwise selection is a form of Occam’s Razor: at each step,
a new feature is considered for inclusion or removal from
the current features set based on some criterion (F−test,
t−test, etc.).

Greedy search methods such as backward elimination and
forward selection have proven to be both quite robust
against over-fitting and among the least computationally
expensive wrapper methods.

Backward elimination begins with the full set of fea-
tures and sequentially eliminates the least relevant ones un-
til further removals increase the error rate of the predictive
model above some utility threshold. Forward selection
works in reverse, beginning the search with an empty set of
features and progressively adding relevant features to the
ever growing set of predictors. In an ideal setting, model
performance should be tested using cross-validation.

Stepwise selection methods are extremely common, but
they have severe limitations (which are not usually ad-
dressed) [39,40]:

the tests are biased, since they are all based on the
same data;
the adjusted R2 only takes into account the number
of features in the final fit, and not the degrees of
freedom that have been used in the entire model;
if cross-validation is used, stepwise selection has to
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Listing 1. Summary of Global Cities Dataset

Observations: 68
Variables: 18
$ Rating
<dbl> 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 1,

2, 1, 3, 2, 1, 2, 1...
$ City.Area..km2.
<dbl> 165.00, 30.72, 38.91, 1569.00,

102.60, 92.54, 892.00...
$ Metro.Area..km2.
<dbl> 807.00, 25437.00, 380.69, 7762.00,

3236.00, 16410.54...
$ City.Population..millions.
<dbl> 0.76, 3.54, 0.66, 5.72, 1.62,

14.39, 3.44, 7.44, 0.6...
$ Metro.Population..millions.
<dbl> 1.40, 4.77, 4.01, 6.50, 3.23,

19.62, 4.97, 9.10, 3.5...
$ Annual.Population.Growth
<dbl> 0.01, 0.26, 0.00, 0.03, 0.01,

0.04, 0.00, 0.01, 0.01...
$ GDP.Per.Capita..thousands.
<dbl> 46.0, 21.2, 30.5, 23.4, 36.3,

20.3, 33.3, 15.9, 69.3...
$ Unemployment.Rate
<dbl> 0.05, 0.12, 0.16, 0.02, 0.15,

0.01, 0.16, 0.10, 0.07...
$ Poverty.Rate
<dbl> 0.18, 0.20, 0.20, 0.00, 0.20,

0.01, 0.22, 0.22, 0.17...
$ Major.Airports
<dbl> 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1,

1, 2, 1, 1, 1, 1, 1...
$ Major.Ports
<dbl> 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1,

0, 1, 4, 1, 0, 1, 2...
$ Higher.Education.Institutions
<dbl> 23, 10, 21, 37, 8, 89, 30, 19, 35,

25, 36, 13, 60, 8...
$ Life.Expectancy.in.Years..Male.
<dbl> 76.30, 75.30, 78.00, 69.00, 79.00,

79.00, 82.00, 74....
$ Life.Expectancy.in.Years..Female.
<dbl> 80.80, 80.80, 83.70, 74.00, 85.20,

83.00, 88.00, 79....
$ Number.of.Hospitals
<dbl> 7, 7, 23, 173, 45, 551, 79, 22,

12, 43, 33, 18, 50, ...
$ Number.of.Museums
<dbl> 68, 36, 47, 27, 69, 156, 170, 76,

30, 25, 131, 15, 3...
$ Air.Quality.
<dbl> 24, 46, 41, 54, 35, 121, 26, 77,

17, 28, 38, 138, 22...
$ Life.Expectancy
<dbl> 78.550, 78.050, 80.850, 71.500,

82.100, 81.000, 85.0...

Listing 2. Summary of NHL draft dataset

Observations: 187
Variables: 15
$ Team
<chr> "Edmonton Oilers", "Buffalo

Sabres", "Arizona Coyotes", ...
$ Age
<dbl> 18, 18, 18, 18, 18, 18, 18, 18,

18, 18, 18, 18, 18, 18, 18, 18, 18,
...

$ To
<dbl> 2019, 2019, 2019, 2019, 2019,

2019, 2019, 2019, 2019, 2019, 2019,
20...

$ ‘Amateur Team‘
<chr> "Erie", "Boston University",

"Erie", "London", "Boston College",
"Sa..."

$ ‘Amateur League‘
<chr> "OHL", "H-East", "OHL", "OHL",

"H-East", "OHL", "WHL", "Big Ten",
"Q..."

$ ‘Games Played‘
<dbl> 287, 286, 106, 241, 319, 201, 246,

237, 193, 239, 164, 22, 2, 138, 2...
$ Goals
<dbl> 128, 101, 24, 67, 23, 29, 30, 38,

54, 80, 17, 1, 0, 43, 1, 40, 67, 2...
$ Assists
<dbl> 244, 158, 43, 157, 93, 47, 67, 90,

54, 129, 21, 3, 0, 42, 0, 107, 61...
$ Points
<dbl> 372, 259, 67, 224, 116, 76, 97,

128, 108, 209, 38, 4, 0, 85, 1,
147,...

$ ‘+/-‘
<dbl> 49, -65, -9, 21, -35, -22, -6, 13,

12, -19, -21, -4, 0, 15, 0, -6, -...
$ ‘Penalty Minutes‘
<dbl> 90, 102, 28, 86, 81, 64, 86, 48,

116, 112, 122, 0, 0, 37, 0, 82,
38,...

$ Round
<dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1,...

$ ‘Draft Year‘
<dbl> 2015, 2015, 2015, 2015, 2015,

2015, 2015, 2015, 2015, 2015, 2015,
20...

$ Nationality
<chr> "Canadian", "American",

"Canadian", "Canadian", "American",
"Czech",...

$ Position
<chr> "Centre", "Centre", "Centre",

"Centre", "Defense", "Centre", ...
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be repeated for each sub-model but that is not usually
done, and
it represents a classic example of p-hacking.

Consquently, the use of stepwise methods is contraindicated
in the machine learning context.

3.4 Regularization (Embedded) Methods
An interesting hybrid is provided by the least absolute
shrinkage and selection operator (LASSO) and its vari-
ants. In what follows, assume that the training set consists
of N centered and scaled observations xi = (x i,1, · · · , x i,p),
together with target observations yi . Let

β̂LS, j = [(X
>X)−1X>y] j

be the jth ordinary least square (OLS) coefficient, and set
a threshold λ > 0, whose value depends on the training
dataset (there is a lot more here than meets the eye [5,41]).

Recall that β̂LS is the exact solution to the OLS problem

β̂LS = argβmin{‖y−Xβ‖2
2}.

In general, there are no restrictions on the values taken
by the coefficients β̂LS, j – large magnitudes imply that cor-
responding features play an important role in predicting
the target. This observation forms the basis of a series of
useful OLS variants.

Ridge regression is a method to regularize the OLS re-
gression coefficients. Effectively, it shrinks the OLS coeffi-
cients by penalizing solutions with large magnitudes – if,
in spite of this, the magnitude of a specific coefficient is
large, then it must have great relevance in predicting the
target variable. The problem consists in solving a modified
version of the OLS scenario:

β̂RR = argβmin{‖y−Xβ‖2
2 + Nλ‖β‖2

2}.

Solving the RR problem typically requires the use of nu-
merical methods (and of cross-validation to determine the
optimal λ); for orthonormal covariates (X>X= Ip), how-
ever, the ridge coefficients can be expressed in terms of
the OLS coefficients:

β̂RR, j =
β̂LS, j

1+ Nλ
.

Regression with best subset selection runs on the same
principle but uses a different penalty term, which effectively
sets some of the coefficients to 0 (this could be used to select
the features with non-zero coefficients, potentially). The
problem consists in solving another modified version of the
OLS scenario, namely

β̂BS = argβmin{‖y−Xβ‖2
2+Nλ‖β‖0}, ‖β‖0 =

∑

j

sgn(|β j |).

Solving the BS problem typically (also) requires numerical
methods and cross-validation; for orthonormal covariates,
the best subset coefficients can (also) be expressed in terms
of the OLS coefficients:

β̂BS, j =

¨

0 if |β̂LS,j|<
p

Nλ
β̂LS,j if |β̂LS,j| ≥

p
Nλ

For the LASSO problem

β̂BS = argβmin{‖y−Xβ‖2
2 + Nλ‖β‖1},

the penalty effectively yields coefficients which combine the
properties of RR and BS, selecting at most max{p, N} fea-
tures, and usually no more than one per group of highly cor-
related variables. For orthonormal covariates, the LASSO
coefficients can (yet again) be expressed in term of the OLS
coefficients:

β̂L, j = β̂LS, j ·max

�

0,1−
Nλ

|β̂LS, j |

�

.

The use of other penalty functions (or combinations thereof)
provides various extensions: elastic nets; group, fused and
adaptive lassos; bridge regression, etc. [5]

The modifications described above were defined assuming
an underlying linear regression model, but they generalize
to arbitrary classification/regression models as well. For
a loss (cost) function L (y, ŷ(W)) between the actual tar-
get and the values predicted by the model parameterized
by W, and a penalty vector R(W) = (R1(W), · · · , Rk(W))

>,
the regularized parametrization W∗ solves the general
regularization problem

W∗ = arg min
W
{L (y, ŷ(W)) +λ>R(W)},

which can be solved numerically, assuming some nice prop-
erties onL and R [41]; as before, cross-validation can used
to determine the optimal vector λ [34].

Examples
In R, regularization is implemented in the packageglmnet
(among others) [42]. An elastic net can be used to select
features that are related with the global city rating in the
Global Cities Index dataset [37], for instance.

library(glmnet)
globalcities <-

read.csv("globalcities.csv")

# centering and scaling the predictors
# assigning predictors and outcome
library(dplyr)
y <- globalcities %>% select(Rating) %>%

as.matrix()
x <- globalcities %>% select(-Rating)

%>% scale(center = TRUE, scale =
TRUE) %>% as.matrix()
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# running a 5-fold cv LASSO regression
# alpha controls the elastic net mixture
# alpha = 1: LASSO || alpha = 0: ridge
glmnet1<-cv.glmnet(x=x,y=y,

type.measure=’mse’,nfolds=5,alpha=.5)

c<-coef(glmnet1,s=’lambda.min’,exact=TRUE)
inds<-which(c!=0)
variables<-row.names(c)[inds]
‘%ni%‘<-Negate(‘%in%‘)
(variables<-variables[variables %ni%

’(Intercept)’])
[1] "Metro.Population..millions."
[2] "Annual.Population.Growth"
[3] "GDP.Per.Capita..thousands."
[4] "Unemployment.Rate"
[5] "Major.Airports"

The fact that the features that are selected by the elastic net
(α= 0.5) are the same as those selected by the linear cor-
relation method is a coincidence; selecting α= 1 (LASSO)
leads to none of the non-intercept parameters being rele-
vant, while α = 0 (ridge regression) leads to all of them
being relevant. That being said, when multiple feature
selection methods agree on a core set of features, that pro-
vides some model-independent support for the relevance
of that set of features to the prediction task at hand.

3.5 Supervised and Unsupervised Feature Selection
While feature selection methods are usually categorised as
filter, wrapper, or embedded, they can also be categorised as
supervised orunsupervised methods. Whether a feature
selection method is supervised or not boils down to whether
the labels of objects/instances are incorporated into the
feature reduction process (or not). The methods that have
been described in this section were all supervised.

In unsupervised methods, feature selection is carried
out based on the characteristics of the attributes, without
any reference to labels or a target variable. In particular, for
clustering problems, only unsupervised feature selection
methods can be used [22].

4. Advanced Topics

When used appropriately, the approaches to feature selec-
tion and dimension reduction methods presented in the
last two sections provide a solid toolkit to help mitigate the
effects of the curse of dimensionality. They are, however,
for the most part rather straightforward.

The methods discussed in this section are decidedly more
sophisticated, from a mathematical perspective; an increase
in conceptual complexity can lead to insights that are out
of reach by more direct approaches.

4.1 Singular Value Decomposition
From a database management perspective, it pays not to
view datasets simply as flat file arrays; from an analytical
perspective, however, viewing datasets as matrices allows
analysts to use the full machinery of linear algebra and
matrix factorization techniques, of which singular value
decomposition (SVD) is a well-known component.19

As before, let {xi}ni=1 ⊆ R
p and denote the matrix of obser-

vations by

X=









x1
x2
...

xn









∈Mn,p(R) = Rn×p.

Let d ≥ min p, N . From a dimension reduction perspec-
tive, the goal of matrix factorization is to find two narrow
matrices Wd ∈ Rn×d (the casaes) and Cd ∈ Rp×d (the con-
cepts) such that the product WdC>d = eXd is the best rank d
approximation of X, i.e.

eXd = argX′ min{‖X−X′‖F with rank(X′) = d},

where the Frobenius norm F of a matrix is

‖A‖2
F =

∑

i, j

|ai, j |2.

In a sense, eXd is a “smooth” representation of X; the di-
mension reduction takes place when Wd is used as a dense
d−representation of X.

The link with the singular value decomposition of X can be
made explicit: there exist orthonormal matrices U ∈ Rn×n,
V ∈ Rp×p, and a diagonal matrix Σ ∈ Rn×p with σi, j = 0 if
i 6= j and σi,i ≥ σi+1,i+1 ≥ 0 for all i,20 such that

X= UΣV>;

the decomposition is unique if and only if n= p.
Let Σd ∈ Rd×d be the matrix obtained by retaining the

first d rows and the the first d columns of Σ; Ud ∈ Rn×d be
the matrix obtained by retaining the first d columns of U,
and V>d ∈ R

d×p be the matrix obtained by retaining the first
d rows of V>. Then

eXd = UdΣd
︸ ︷︷ ︸

Wd

V>d .

The d-dimensional rows of Wd are approximations of the
p−dimensional rows of X in the sense that

〈Wd[i],Wd[ j]〉=



eXd[i], eXd[ j]
�

≈ 〈Xd[i],Xd[ j]〉 for all i, j.

19Matrix factorization techniques have applications to other data an-
alytic tasks; notably, they can be used to impute missing values and to
build recommender systems.

20Each singular value is the principal square root of the corresponding
eigenvalue of the covariance matrix X>X (see Section 2.3).
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Figure 15. Image reconstruction: d = 1400 (left), d = 10 (middle), d = 50 (right); Llewellyn and Gwynneth Rayfield.

Applications
1. One of the advantages of SVD is that it allows for

substantial savings in data storage (modified from
[46]):

Storing X requires np saved entries, but an approxi-
mate version of the original requires only d(n+p+d)
saved entries; if X represents a 2000× 2000 image
(with 4 million entries) to be transmitted, say, a de-
cent approximation can be sent via d = 10 using only
40100 entries, roughly 1% of the original number of
entries (see Figure 15 for an illustration).

2. SVD can also be used to learn word embedding vec-
tors. In the traditional approach to text mining and
natural language processing (NLP), words and asso-
ciated concepts are represented using one-hot en-
coding.21 For instance, if the task is to predict the
part-of-speech (POS) tag of a word given its context
in a sentence (current and previous word identities
w and pw, as well as the latter’s part-of-speech (POS)
tag pt), the input vector could be obtained by con-
catenation of the one-hot encoding of w, the one-hot
encoding of pw, and the one-hot encoding of pt.

The input vector that would be fed into a classifier to
predict the POS of the word "house" in the sentence
fragment "my house", say, given that "my" has been
tagged as a ‘determiner’ could be.

21Sparse vectors whose entries are 0 or 1, based on the identity of the
words and POS tags under consideration.

The sparsity of this vector is a major CoD liability: a
reasonably restrictive vocabulary subset of English
might contain |VW | ≈ 20, 000 words, while the Penn
Treebank project recognizes ≈ 40 POS tags, which
means that x ∈ R40,040 (at least).

Another issue is that the one-hot encoding of words
does not allow for meaningful similarity comparisons
between words: in NLP, words are considered to be
similar if they appear in similar sentence contexts.22

The terms "black" and "white" are similar in this frame-
work as they both often occur immediately preceding
the same noun (such as "car", "dress", etc.); human
beings recognize that the similarity goes further than
both of the terms being adjectives – they are both
colours, and are often used as opposite poles on a va-
riety of spectra. This similarity is impossible to detect
from the one-hot encoding vectors, however, as all
its word representations are exactly as far from one
another.

SVD proposes a single resolution to both of these is-
sues. Let M f ∈ R|VW |×|VC | be the word-context matrix
of the association measure f , derived from some ap-
propriate corpus, that is, if VW = {w1, . . . , w|VW |} and
VC = {c1, . . . , c|VC |} are the vocabulary and contexts

of the corpus, respectively, then M f
i, j = f (wi , c j) for

22"Ye shall know a word by the company it keeps", as the distributional
semantics saying goes. The term "kumipwam" is not found in any English
dictionary, but its probable meaning as "a small beach/sand lizard" could
be inferred from its presence in sentences such as "Elowyn saw a tiny
scaly kumipwam digging a hole on the beach". It is easy to come up with
examples where the context is ambiguous, but on the whole the contextual
approach has proven itself to be mostly reliable.
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all i, j. For instance, one could have

VW = {aardvark, . . . , zygote} ,
VC = {. . . ,word appearing before "cat", . . .},

and f given by positive pointwise mutual infor-
mation for words and contexts in the corpus (the
specifics of which are not germane to the discussion
at hand; see [47] for details). The SVD

M f ≈M f
d = UdΣdV>d

yields d−dimensional word embedding vectors UdΣd
which preserve the context-similarity property (see
the last line of p. 20). The decomposition of the POS-
context matrix, where words are replaced by POS
tags, produces POS embedding vectors.

For instance, a pre-calculated 4-dimensional word
embedding of VW could be

while a 3-dimensional POS embeddings could be

leading to a 11-dimensional representation x′ of x

which provides a substantial reduction in the dimen-
sion of the input space.

4.2 Spectral Feature Selection
Text mining tasks often give rise to datasets which are likely
to be affected by the CoD; the problem also occurs when
dealing with-high resolution images, with each of the mil-
lions of pixels it contains as a feature viewed as a feature;
as images have each image containing millions of pixels.

Spectral feature selection attempts to identify "good"
or "useful" training features in such datasets by measuring
their relevance to a given task via spectral analysis of the
data.

General Formulation for Feature Selection
Let X ∈ Rn×m be a data set with m features and n observa-
tions. The problem of `−feature selection, with 1≤ `≤ m,
can be formulated as an optimisation problem [31]:

max
W

r(X̂)

s.t. X̂= XW,W ∈ {0,1}m×`

W>1m×1 = 1`×1,‖W1`×1‖0 = `

The score function r(·) is the objective which evaluates the
relevance of the features in X̂, the data set with only certain
feature selected by the selection matrix W with entries
either 0 or 1. To ensure that only the original feature are
selected (and not a linear combination of features), the
problem stipulates that each column of W contains only
one 1 (W>1m×1 = 1`×1); to ensure that exactly ` rows
contain one 1, the constraint ‖W1`×1‖0 = l is added. The
selected features are often represented by

X̂= XW= ( fi1 , . . . , fi`) with{i1, . . . , i`} ⊂ {1, . . . , m}.

If r(·) does not evaluate features independently, this opti-
misation problem is NP-hard. To make to problem easier to
solve, the feature are assumed to be independent of one
another.23 In that case, the objective function reduces to

max
W

r(X̂) =max
W

�

r( fi1) + · · ·+ r( fil )
�

;

the optimisation problem can then be solved by selecting
the ` features with the largest individual scores.

The link with spectral analysis will be explored in the
following pages.

Similarity Matrix
Let si, j denote the pair-wise similarity between observa-
tions xi and x j . If class labels y(x) ∈ {1, . . . , K} are known
for all instances x, the following function can be used

si, j =

¨

1
nk

, y(xi) = y(x j) = k

0, otherwise

where nk is the number of observations with class label k.

If class labels are not available, a popular similarity function
is the Gaussian radial basis function (RBF) kernel, given
by

si, j = exp

�

−
‖x i − x j‖2

2σ2

�

,

whereσ is a parameter that is used to control the Gaussian’s
width.24 For a given si, j and n observations, the similarity
matrix S is an n×n matrix containing the observations’ pair-
wise similarities, S(i, j) = si, j , i, j = 1, . . . , n. By convention,
diag(S) = 0.

23Or that their interactions are negligible.
24One can think of this as the "reach" of each point.
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Figure 16. Scatter plot of the example data X.

Other similarity functions include the following kernels
[32]:

1. linear – si, j = x>i x j + c, c ∈ R;
2. polynomial – si, j = (αx>i x j + c)d , α, c ∈ R,25 d ∈ N,

and
3. cosine – si, j =

x>j xi

‖xi‖‖x j‖
, which measures the similar-

ity of 2 vectors by determining the angle between
them.26

Similarity Graph
For each similarity matrix S, one can construct a weighted
graph G(V, E) in which each observation corresponds to a
node and the associated pairwise similarities correspond
to the respective edge weights; V is the set of all vertices
(nodes) and E the set of all graph edges.

As an example, consider the simple dataset:

X=















1 1
0 2
3 2
6 4
7 4
6 8















,

whose scatter plot is shown in Figure 16. Using an RBF
kernel with σ = 0.5, the corresponding similarity matrix is

S =















0 0.972 0.428 0.012 0.003 0.001
0.972 0 0.199 0.007 0.002 0.001
0.428 0.199 0 0.109 0.027 0.005
0.012 0.007 0.109 0 0.972 0.073
0.003 0.002 0.027 0.972 0 0.169
0.001 0.001 0.005 0.073 0.169 0















,

and the resulting graph G is ahown in Figure 17.

25For image processing, this kernel is often used with α= c = 1.
26It is often used in high-dimensional applications such as text mining.

Figure 17. Graph representation of X, using a RBF
similarity matrix with σ = 0.5. The graph has 6 nodes, one
for each observation. The edges with weights below a
certain threshold (τ= 0.01) are not displayed.

Laplacian Matrix of a Graph
The similarity matrix S is also known as the adjacency
matrix A of the graph G, from which the degree matrix D
can be constructed:

D(i, j) =

¨

di,ii =
∑n

k=1 aik, i = j
0, otherwise

By definition, D is diagonal; the element di,i can be viewed
as an estimate of the density around xi; as ai,k(= si,k) is a
measure of similarity between xi and xk, the larger ai,k is,
the more similar the two observations are. A large value
of di,i indicates the presence of one or more observations
"near" xi; conversely, a small value of di,i suggests that xi is
isolated.

The Laplacian and normalized Laplacian matrices can
now be defined as

L = D− A and L = D−1/2 LD−1/2,

respectively. Since D is diagonal, D−1/2 = diag
�

d−1/2
i,i

�

.

It can be shown that L andL are both positive semi-definite
matrices. By construction, the smallest eigenvalue of L is 0,
with associated eigenvector 1. For L , the corresponding
eigenpair is 0 and diag(D1/2).

Feature Ranking
The eigenvectors of the Laplacian matrices have some very
useful properties relating to features selection. If ξ ∈ Rn

is an eigenvector of L or L , then ξ can be viewed as a
function that assigns a value to each observation in X. This
point-of-view can prove quite useful, as the following simple
example from [31] shows.
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Figure 18. Scatter plot of the generated data; each colour
corresponds to a different generative mechanism.

Figure 19. Contour plot of the eigenvectors corresponding
to the eigenvalues λ1,λ2,λ3,λ4,λ5 and λ20.

Let X be constructed of three two-dimensional Gaussians,
each with unit variance but with different means. A scatter
plot of the generated data can be found at Figure 18.

The Laplacian matrix ofL of X is built using an RBF ker-
nel withσ = 1. The contour plot of the ranked eigenvectors
ξ1,ξ2,ξ3,ξ4,ξ5 and ξ20 (corresponding to the eigenvalues
λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5 ≤ λ20) are shown in Figure 19.27

From those plots, it seems as though the first eigenvec-
tor does a better job at capturing the cluster structure in the
data, while larger values tends to capture more of the sub-
cluster structure. One thing to note is that it might appear
that λ1 is as good (or better) as λ2 and λ3, but a closer look
at the scale of the contour plot of λ1 shows that its values
range from 0.1054+88.4×10−13 to 0.1054+91.2×10−13,
an interval which is quite small. The fact that there is any

27For a given eigenvector λ j , the contour value at each point xi is the
value of the associated eigenvector ξ j in the ith position, namely ξ j,i . For
any point x not in the dataset, the contour value is given by averaging
the ξ j,k of the observations xk near x, inversely weighted by the distances
‖xk − x‖.

Figure 20. Value of each eigenvector component (one for
each observation) associated to λ1, λ2, λ3, and λ20.

variation at all is due to floating point errors in the practical
computation of the eigenvalue λ1 and the eigenvector ξ1;
as seen previously, these should be exactly 0 and 1, respec-
tively.

This process shows how the eigenpairs of the Laplacian
matrix contains information about the structure of X. In
spectral graph theory, the eigenvalues of the Laplacian mea-
sure the "smoothness" of the eigenvectors.

An eigenvector is said to be smooth if it assigns similar
values to points that are near one another. In the previous
example, assume that the data is unshuffled, that is, the
first k1 points are in the same cluster, the next k2 are also
in the same, albeit different, cluster, and so on. Figure 20
shows a plot of the value of each eigenvector component
(one per observation) associated to different eigenvalues.

Both λ2 and λ3 are fairly smooth, as they seem to be
piece-wise constant on each cluster, whereas λ20 is all over
the place on cluster 1 and constant on the rest of the data.
As discussed previously λ1 is constant over the entirety of
the dataset, marking it as maximally smooth but not very
useful from the perspective of differentiating data struc-
ture.28 Indeed, let x ∈ Rn. then

x>Lx= x>Dx− x>Ax=
n
∑

i=1

di x
2
i −

n
∑

i, j=1

ai, j x i x j

=
1
2

 

n
∑

i=1

di x
2
i − 2

n
∑

i, j=1

ai j x i x j +
n
∑

j=1

d j x
2
j

!

=
1
2

n
∑

i, j=1

ai j(x i − x j)
2

28As a reminder, the eigenvalues themselves are ordered in increasing
sequence: for the current example,

λ1 = 0≤ λ2 = 1.30× 10−2 ≤ λ3 = 3.94× 10−2 ≤ · · ·λ20 = 2.95≤ · · ·
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Figure 21. Value of fi component (one for each
observation), for i = 1, 2,3.

If x = ξ is a normalized eigenvector of L, then ξ>Lξ =
λξ>ξ= λ, thus

λ= ξ>Lξ=
1
2

n
∑

i, j=1

ai j(ξi − ξ j)
2.

Instinctively, if the eigenvector component does not vary a
lot for observations that are near one another, one would
expect the corresponding eigenvalue to be small; this result
illustrates why the small magnitude of the eigenvalue is a
good measure of the "smoothness" of its associated eigen-
vector.

If x is not en eigenvector of L, the value x>Lx can also
be seen as a measure of how much x varies locally. This can
be used to measure how meaningful a feature f ∈ Rn is.

In the current example, the only two features are the
Euclidean coordinates of the observations f1 and f2. Add a
useless feature to the dataset f3, say a uniformly distributed
random variable across the clusters. Figure 21 shows that
the third feature is not able to distinguish between the
clusters. However, it can be shown that

f>1 Lf1 = 112.8, f>2 Lf2 = 113.3, f>3 Lf3 = 49.6;

by the previous assumption relating the magnitude of ξ>Lξ
to the smoothness of ξ, this would seem to indicate that f3
is a "better" feature than the other two. The issue is that
the value of f>i Lfi is affected by the respective norms of fi
and L. This need to be addressed. The relation between L
and L yields

f>i Lfi = fi>D1/2L D1/2fi = (D
1/2fi)

TL (D1/2fi).

Set f̃i = (D1/2fi) and f̂i = f̃i/‖f̃i‖. The feature score metric
ϕ1 is a normalized version of the smoothness measure:

ϕ1(fi) = f̂i
>
L f̂i , i = 1, . . . , p.

In the current example, the feature scores are

ϕ1(f1) = 0.01, ϕ1(f2) = 0.01, ϕ1(f3) = 0.28.

This make more sense, as the pattern is similar to the pattern
obtained for the eigenvalues: f1, f2, being able to differenti-
ate the clusters, have smaller ϕ1 scores than f3.

The scoring function can also be defined using the spectral
decomposition of L . Suppose that (λk,ξk), 1≤ k ≤ n are

eigenpairs of L and let αk = f̂i
>
ξk, for a given i. Then

ϕ1(fi) =
n
∑

k=1

α2
kλk, where

n
∑

k=1

α2
k = 1.

Indeed, let L = UΣU> be the eigendecomposition of L .
By construction, U= [ξ1|ξ2| · · · |ξn] and Σ= diag(λk), so
that

ϕ1(fi) = f̂i
>
L f̂i = f̂i

>
UΣU> f̂i

= (α1, . . . ,αn)Σ(α1, . . . ,αn)
> =

n
∑

k=1

α2
kλk.

This representation allows for a better comprehension of the
ϕ1 score; αk is the cosine of the angle between the normal-
ized feature f̂i and eigenvector ξk. If a feature aligns with
"good" eigenvectors (i.e., those with small eigenvalues), its
ϕ1 score will also be small.

Returning to the current example, while the score of the
useless feature 3, ϕ1(f3) is larger than the other scores, it is
still small when compared to the eigenvalues of L. This is
due to the fact the f3 and ξ1 are nearly co-linear. The larger
α2

1 is, the smaller
∑n

k=2α
2
k is; this is problematic because, in

such cases, a small value of ϕ1 indicates smoothness but not
separability. To overcome this issue, ϕ1 can be normalized
by
∑n

k=2α
2
k, which yields a new scoring function:

ϕ2(fi) =

∑n
k=1α

2
kλk

∑n
k=2α

2
k

=
f̂i
>
L f̂i

1−
�

f̂i
>
ξ1

�

A small value for ϕ2 indicates that a feature closely aligns
with "good" eigenvectors.

Computing ϕ2 for our three features yields:

ϕ2(f1) = 0.04, ϕ2(f2) = 0.03, ϕ2(f3) = 0.94.

The distinction between the real features and the random,
useless one is far greater with ϕ2.

Another ranking feature is closely related to the other two.
According to spectral clustering, the first k non-trivial eigen-
vectors form an optimal set of soft cluster indicators that
separate the graph G into k connected parts. Therefore,
define ϕ3 as :

ϕ3(fi , k) =
k
∑

j=2

(2−λ j)α
2
j .
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Contrary to the other scoring functions, ϕ3 assigns larger
value to feature that are more relevant. It also prioritizes the
leading eigenvectors, which helps to reduce noise. Using
this ranking function requires a number of categories or
clusters k to be selected (depending on the nature of the
ultimate task at hand); if this value is unknown, k becomes
a hyper-parameter to be tuned. In the current example,
there are 3 clusters by design; setting k = 3 yields

ϕ3(f1) = 0.58, ϕ3(f2) = 0.58, ϕ3(f3) = 0.00.

Regularization
There is one glaring problem with the ranking functions
that have been defined in the previous subsection: they all
assume the existence of a gap between subsets of "large" and
"small" eigenvalues. For clearly separated data, that is to be
expected; but in noisy data, this gap may be reduced, which
leads to an increase in the score value of poor features [33].
This issue can be tackled by applying a spectral matrix
function γ(·) to the Laplacian L , replacing the original
eigenvalues by regularized eigenvalues as follows:

γ(L ) =
n
∑

j=1

γ(λ j)ξ jξ
>
j .

In order For this to work properly, γ needs to be (strictly)
increasing. Examples of such regularization functions in-
clude:

γ(λ) (name)
1+σ2λ (regularized Laplacian)

exp(σ2/2λ) (diffusion Process)
λν, ν≥ 2 (high-order polynomial)

(a−λ)−p, a ≥ 2 (p-step random walk)
(cosλπ/4)−1 (inverse cosine)

The ranking function ϕ1,ϕ2,ϕ3 can be regularized via

ϕ̂1(fi) =
n
∑

k=1

α2
kγ(λk)

ϕ̂2(fi) =
f̂i
>
γ(L )f̂i

1−
�

f̂i
>
ξ1

�

ϕ̂3(fi) =
k
∑

j=2

(γ(2)− γ(λ j))α
2
j

To illustrate how this regularization process can help re-
duce noise (still using the framework from the previous
example), X was contaminated with random values from
a normal distribution with a variance of 1.1. The normal-
ized Laplacians of the original and of the contaminated
data were then computed. Figure 22 shows the effect of
noise on L ’s: it tends to linearize the eigenvalues, and this
provides much support to the poorer eigenvectors. In the
same figure, the eigenvalues of the noisy Laplacian have

Figure 22. Effect of noise on the eigenvalues of the
normalized Laplacian.

Figure 23. Effect of different regularization functions on
the eigenvalues of the Laplacian of a noisy dataset.

been regularized using the standard cubic γ(λ) = λ3; the
distinction between the first eigenvalues and the rest is
clear.

To effect of other regularisation functions is shown in
Figure 23. The choice of a specific regularization function
depends on the context and the goals of the data analysis
task; for large datasets, considerations of ease of computa-
tion may also form part of the selection strategy.

Spectral Feature Selection with SPEC
The remarks from the previous subsections can be combined
to create a feature selection framework called SPEC [30]:

1. using a specified similarity function s, construct a
similarity matrix S of the data X (optionally with
labels Y);

2. construct the graph G of the data;
3. extract the normalized Laplacian L from this graph;
4. compute the eigenpairs (eigenvalues and eigenvec-

tors) of L ;
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5. select a regularization function γ(·);
6. for each feature fi , i = 1, . . . , p, compute the rele-

vance ϕ̂(fi), where ϕ̂ ∈ {ϕ̂1, ϕ̂2, ϕ̂3}, and
7. return the features in descending order of relevance.

In order for SPEC to provide "good" results, proper choices
for the similarity, ranking, and regularization functions
are needed. Among other considerations, the similarity
matrix should reflect the true relationships between the
observations. Furthermore, if the data is noisy, it might be
helpful to opt for ϕ̂ = ϕ̂3 and/or γ(λ) = λν, ν≥ 2. Finally,
when the gap between the small and the large eigenvalues
is wide, ϕ̂ = ϕ̂2 or ϕ̂ = ϕ̂3 provide good choices, although
ϕ̂2 has been shown to be more robust.29

4.3 Uniform Manifold Approximation and Projection
Quite a lot of attention has been paid in recent years to fea-
ture selection and dimension reduction methods, and there
is no doubt that the landscape will change a fair amount
in the short-to-medium term future. Case in point, con-
sider Uniform Manifold Approximation and Projection
(UMAP) methods, a recent development which is generating
a lot of interest at the moment.

Dimensionality Reduction and UMAP
A mountain is certainly a 3-dimensional object. And the
surface of a mountain range is 2-dimensional – it can be
represented with a flat map – even though the surface, and
the map for that matter, still actually exist in 3-dimensional
space.

What does it mean to say that a shape is q-dimensional
for some q? An answer to that question first requires an
understanding of what a shape is.

Shapes could be lines, cubes, spheres, polyhedrons, or
more complicated things. In geometry, the customary way
to represent a shape is via a set of points S ⊆ Rp. For in-
stance, a circle is the set of points whose distance to a fixed
point (the centre) is exactly equal to the radius r, whereas
a disk is the set of points whose distance to the centre is at
most the radius.

In the mountain example, p = 3 for both the mountains Sm
and the mountain surface Ss. So the question is, when is
the (effective) dimension of a set S less than p, and how is
that dimension calculated?

It turns out that there are many definitions of the dimen-
sion q of a set S ⊆ Rp, such as [13, §III.17]:

the smallest q such that S is q-dimensional manifold;
how many nontrivial nth homology groups of S there
are;
how the “size” of the set scales as the coordinates
scale.

29The Python code for the examples in this section is available in the
appendix, pp.39-48 and in the accompanying Python notebook.

A q-dimensional manifold is a set where each small area
is approximately the same as a small area of Rq. For in-
stance, if a small piece of a (stretchable) sphere is cut out
with a cookie cutter, it could theoretically be bent so that it
looks like it came from a flat plane, without changing its
“essential” shape.

Dimensionality reduction is more than just a matter of se-
lecting a definition and computing q, however.

Any dataset X is necessarily finite and is thus, by def-
inition, actually 0−dimensional; the object of interest is
the shape that the data would form if there were infinitely
many available data points, or, in other words, the support
of the distribution generating the data.

Furthermore, any dataset is probably noisy and may
only approximately lie in a lower-dimensional shape.

Lastly, it is not clear how to build an algorithm that
would, for example, determine what all the homology
groups of some set S are. The problem is quite thorny.

Let X ⊆ Rp be a finite set of points. A dimensionality
reducer for X is a function fX : X → Rq, where q < p,
which satisfies certain properties that imply that fX(X) has
similar structure to X.30 Various dimensionality reducers
were discussed in Section 2; they each differ based on the
relationship between X and fX(X).

For instance, in PCA, the dataset X is first translated, so
that its points (or at least its “principal components”) lie in
a linear subspace. Then q unit-length linear basis elements
are chosen to span a subspace, projection onto which yields
an affine map f from X to Rq that preserves Euclidean
distances between points (a rigid transformation), assuming
that the non-principal dimensions are ignored.

PCA seems reasonable but what if a rigid transformation
down to Rq is not possible? As an example, consider the
swiss roll of Figure 8, which is a loosely rolled up rectangle
in 3-dimensional space. If all structure cannot be preserved,
what can be preserved? Only local structure? Global struc-
ture?

UMAP is a dimension reduction method that attempts to ap-
proximately preserve both local and global structure. It can
be especially useful for visualization purposes, i.e. reducing
to q = 3 or fewer dimensions. While the semantics of UMAP
can be stated in terms of graph layouts, the method was
derived from abstract topological assumptions. For its full
mathematical properties, see [14].

Note that UMAP works best when the data X is evenly
distributed on its support S. In this way, the points of X
“cover” S and UMAP can determine where the true gaps or
holes in S are.

30In the remainder of this section, the subscript is dropped. Note that q
is assumed, not found by the process.
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UMAP Semantics
Let the (scaled) data be denoted by X = {x1, . . . ,xn} where
xi ∈ Rp for all i, let d : X×X→ R≥0 be a distance function,
and let k ≥ 1 be an integer.

Consider a directed graph graph D = (V, E, A), with

vertices V (D) = X;
edges E(D) consisting of the ordered pairs (xi ,x j)
such that x j is one of the k nearest neighbours of xi
according to d;
weight function W : E(D)→ R such that

w(xi ,xi, j) = exp

�

−max(0, d(xi ,xi, j)−ρi)

σi

�

,

where xi,1, . . . ,xi,k are the k nearest neighbours of xi
according to d, ρi is the minimum nonzero distance
from xi to any of its neighbours, and σi is the unique
real solution of

k
∑

j=1

exp

�

−max(0, d(x i , x i, j)−ρi)

σi

�

= log2(k),

and
A is the weighted adjacency matrix of D with vertex
ordering x1, . . . ,xn.

Define a symmetric matrix

B = A+ A> − A◦ A>,

where ◦ is Hadamard’s component-wise product. The graph
G = (V, W, B) has the same vertex set, the same vertex or-
dering, and the same edge set as D, but its edge weights
are given by B. Since B is symmetric, G can be considered
to be undirected.

UMAP returns the (reduced) points f (x1), . . . , f (xn) ∈ Rq

by finding the position of each vertex in a force directed
graph layout, which is defined via a graph, an attractive
force function defined on edges, and a repulsive force func-
tion defined on all pairs of vertices. Both force functions
produce force values with a direction and magnitude based
on the pair of vertices and their respective positions in Rq.

To compute the layout, initial positions in Rq are cho-
sen for each vertex, and an iterative process of translating
points based on their attractive and repulsive forces is car-
ried out until a convergence criterion is met.

In UMAP, the attractive force between vertices xi ,x j at posi-
tions yi , y j ∈ Rq, respectively, is

−2ab‖yi − y j‖
2(b−1)
2

1+ ‖yi − y j‖2
2

w(x i , x j)(yi − y j),

where a and b are parameters, and the repulsive force is

b(1−w(x i , x j))(yi − y j)

(0.001+ ‖yi − y j‖2
2)(1+ ‖yi − y j‖2

2)
.

There are a number of important free parameters to select,
namely

k: nearest neighbor neighborhood count;
q: target dimension;
d: distance function, e.g. Euclidean metric.

The UMAP documentation states,

low values of k will force UMAP to concentrate
on very local structure (potentially to the detri-
ment of the big picture), while large values will
push UMAP to look at larger neighborhoods
of each point . . . losing fine detail structure for
the sake of getting the broader structure of the
data. [14]

The user may set these parameters to appropriate values
for the dataset. The choice of a distance metric plays the
same role as in clustering, where closer pairs of points are
considered to be more similar than farther pairs. There
is also a minimum distance value used within the force
directed layout algorithm which says how close together
the positions may be.

Example
A comparison of various dimensionality reducers for a num-
ber of datasets is displayed in Figure 24. The Python code
for the example is available in the Appendix, on pp. 48-50.
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Play-by-play and Boxscores, Senators @
Maple Leafs, February 18, 2017 [7]

1st Period Summary

Time | Team | Detail

0:00 | Start of 1st period

0:00 | TOR | Nazem Kadri won faceoff in neutral zone

0:08 | OTT | Shot on goal by Dion Phaneuf saved by Frederik Andersen

0:17 | Stoppage - Icing

0:17 | OTT | Jean-Gabriel Pageau won faceoff in offensive zone

0:21 | OTT | Shot on goal by Chris Wideman saved by Frederik Andersen

0:21 | Stoppage - Goalie Stopped

0:21 | TOR | Tyler Bozak won faceoff in defensive zone

0:28 | OTT | Chris Wideman shot blocked by James van Riemsdyk

0:35 | TOR | Shot on goal by James van Riemsdyk saved by Craig Anderson

1:11 | OTT | Giveaway by Craig Anderson in defensive zone

1:28 | TOR | Nikita Zaitsev credited with hit on Erik Karlsson in offensive zone

1:45 | OTT | Zack Smith shot blocked by Josh Leivo

2:38 | OTT | Erik Karlsson shot blocked by Nikita Zaitsev

2:40 | TOR | Nikita Zaitsev credited with hit on Erik Karlsson in defensive zone

3:12 | Stoppage - Puck in Benches

3:12 | TOR | Penalty to Roman Polak 2 minutes for Roughing Mark Borowiecki

3:12 | OTT | Penalty to Mark Borowiecki 2 minutes for Roughing Roman Polak

3:12 | TOR | Nazem Kadri won faceoff in neutral zone

3:37 | Stoppage - Offside

3:37 | TOR | Auston Matthews won faceoff in neutral zone

3:47 | TOR | James van Riemsdyk shot blocked by Dion Phaneuf

3:54 | TOR | Shot on goal by James van Riemsdyk saved by Craig Anderson

3:59 | TOR | James van Riemsdyk credited with hit on Cody Ceci in offensive zone

4:03 | OTT | Shot missed by Tom Pyatt

4:06 | Stoppage - Goalie Stopped

4:06 | OTT | Kyle Turris won faceoff in offensive zone

4:11 | OTT | Erik Karlsson shot blocked by Connor Brown

4:25 | OTT | Shot missed by Zack Smith

4:36 | TOR | Shot on goal by Nikita Zaitsev saved by Craig Anderson

4:48 | OTT | Shot on goal by Kyle Turris saved by Frederik Andersen

5:04 | TOR | William Nylander shot blocked by Cody Ceci

5:16 | OTT | Jean-Gabriel Pageau shot blocked by Matt Hunwick

5:23 | OTT | Shot on goal by Bobby Ryan saved by Frederik Andersen

5:31 | OTT | Jean-Gabriel Pageau shot blocked by Matt Hunwick

5:34 | OTT | Shot on goal by Mike Hoffman saved by Frederik Andersen

5:41 | TOR | Shot missed by William Nylander

5:44 | TOR | Shot on goal by Roman Polak saved by Craig Anderson

5:44 | Stoppage - Goalie Stopped

5:44 | OTT | Derick Brassard won faceoff in defensive zone

5:52 | TOR | Shot on goal by Nikita Zaitsev saved by Craig Anderson

5:52 | Stoppage - Goalie Stopped

5:52 | TOR | Shot missed by Nikita Zaitsev

5:52 | TOR | Nazem Kadri won faceoff in offensive zone

6:14 | OTT | Shot on goal by Cody Ceci saved by Frederik Andersen

6:14 | Stoppage - Goalie Stopped - TV timeout

6:14 | OTT | Zack Smith won faceoff in offensive zone

6:24 | TOR | Takeaway by Tyler Bozak in defensive zone

6:32 | TOR | Connor Brown credited with hit on Marc Methot in offensive zone

6:45 | TOR | Takeaway by Tyler Bozak in defensive zone
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6:52 | OTT | Chris Neil credited with hit on James van Riemsdyk in offensive zone

7:02 | TOR | Shot on goal by Nikita Soshnikov saved by Craig Anderson

7:03 | Stoppage - Goalie Stopped

7:03 | OTT | Tommy Wingels won faceoff in defensive zone

7:20 | OTT | Takeaway by Tom Pyatt in offensive zone

7:38 | TOR | Takeaway by Matt Martin in offensive zone

8:03 | TOR | Penalty to Jake Gardiner 2 minutes for Slashing Mike Hoffman

8:03 | OTT | Power play - Zack Smith won faceoff in offensive zone

8:06 | OTT | Power play - Shot on goal by Dion Phaneuf saved by Frederik Andersen

8:07 | Stoppage - Goalie Stopped

8:07 | TOR | Shorthanded - Ben Smith won faceoff in defensive zone

9:08 | TOR | Shorthanded - Takeaway by Nikita Soshnikov in neutral zone

9:12 | TOR | Shorthanded - Shot missed by Connor Brown

9:26 | TOR | Shorthanded - Shot on goal by Connor Brown saved by Craig Anderson

9:49 | TOR | Shorthanded - Shot on goal by Frederik Andersen saved by Craig An-

derson

10:08 | Stoppage - Icing

10:08 | OTT | Jean-Gabriel Pageau won faceoff in offensive zone

10:13 | OTT | Shot on goal by Cody Ceci saved by Frederik Andersen

10:26 | OTT | Mark Borowiecki credited with hit on Auston Matthews in defensive

zone

10:39 | TOR | Shot missed by Morgan Rielly

10:44 | OTT | Giveaway by Tom Pyatt in defensive zone

10:46 | TOR | Shot on goal by Auston Matthews saved by Craig Anderson

12:04 | OTT | Shot on goal by Jean-Gabriel Pageau saved by Frederik Andersen

12:06 | Stoppage - Goalie Stopped - TV timeout

12:06 | TOR | Nazem Kadri won faceoff in defensive zone

12:21 | OTT | Erik Karlsson credited with hit on Nazem Kadri in defensive zone

12:21 | OTT | Penalty to Tom Pyatt 2 minutes for Hooking Leo Komarov

12:21 | OTT | Shorthanded - Jean-Gabriel Pageau won faceoff in defensive zone

12:36 | OTT | Shorthanded - Shot missed by Zack Smith

12:45 | OTT | Shorthanded - Jean-Gabriel Pageau credited with hit on William Ny-

lander in offensive zone

13:49 | OTT | Shorthanded - Takeaway by Marc Methot in neutral zone

13:59 | OTT | Penalty to Kyle Turris 2 minutes for Holding Nikita Zaitsev

13:59 | TOR | Power play - Tyler Bozak won faceoff in offensive zone

14:25 | TOR | Power play - Shot on goal by Morgan Rielly saved by Craig Anderson

14:35 | TOR | Power play - Shot on goal by Morgan Rielly saved by Craig Anderson

14:40 | TOR | Power play - Shot on goal by Auston Matthews saved by Craig Ander-

son

15:03 | TOR | Power play - Giveaway by Nazem Kadri in offensive zone

15:18 | TOR | Power play - Shot on goal by Nazem Kadri saved by Craig Anderson

15:27 | TOR | Power play - Shot on goal by Nazem Kadri saved by Craig Anderson

15:36 | TOR | Power play - Shot missed by Nikita Zaitsev

15:54 | OTT | Shorthanded - Mark Borowiecki credited with hit on William Nylander

in defensive zone

16:01 | TOR | Auston Matthews shot blocked by Jean-Gabriel Pageau

16:09 | TOR | Takeaway by Auston Matthews in offensive zone

16:30 | OTT | Dion Phaneuf credited with hit on Ben Smith in defensive zone

16:36 | TOR | Shot on goal by Zach Hyman saved by Craig Anderson

16:51 | OTT | Takeaway by Mike Hoffman in offensive zone

16:53 | OTT | Shot missed by Derick Brassard

17:13 | OTT | Shot on goal by Mark Stone saved by Frederik Andersen

17:14 | OTT | Shot on goal by Ryan Dzingel saved by Frederik Andersen

17:19 | OTT | Giveaway by Ryan Dzingel in offensive zone

17:20 | TOR | Nikita Zaitsev credited with hit on Ryan Dzingel in defensive zone

17:22 | OTT | Takeaway by Mark Stone in offensive zone

17:26 | OTT | Goal scoRed by Chris Wideman assisted by Mark Stone and Derick

Brassard

17:26 | OTT | Kyle Turris won faceoff in neutral zone

17:36 | OTT | Bobby Ryan credited with hit on Matt Hunwick in offensive zone

17:39 | OTT | Shot on goal by Mike Hoffman saved by Frederik Andersen

17:41 | Stoppage - Goalie Stopped - TV timeout

17:41 | TOR | Ben Smith won faceoff in defensive zone

17:46 | OTT | Goal scoRed by Ryan Dzingel assisted by Marc Methot and Mark

Stone

17:46 | OTT | Kyle Turris won faceoff in neutral zone

18:14 | Stoppage - Puck in Netting

18:14 | OTT | Penalty to Bobby Ryan 2 minutes for Delaying the game

18:14 | OTT | Shorthanded - Zack Smith won faceoff in neutral zone

18:42 | TOR | Power play - James van Riemsdyk shot blocked by Cody Ceci

18:42 | Stoppage - Puck in Netting

18:42 | TOR | Power play - Auston Matthews won faceoff in offensive zone

18:48 | TOR | Power play - Giveaway by Jake Gardiner in offensive zone

19:15 | TOR | Power play - Connor Brown credited with hit on Jean-Gabriel Pageau

in offensive zone

19:24 | TOR | Power play - Shot missed by William Nylander

20:00 | End of 1st period

2nd Period Summary
Time | Team | Detail

0:00 | Start of 2nd period

0:00 | TOR | Power play - Auston Matthews won faceoff in neutral zone

0:35 | OTT | Takeaway by Marc Methot in defensive zone

1:10 | TOR | Josh Leivo credited with hit on Cody Ceci in offensive zone

1:16 | OTT | Giveaway by Dion Phaneuf in defensive zone

1:18 | OTT | Derick Brassard shot blocked by Nikita Zaitsev

1:25 | OTT | Cody Ceci shot blocked by Morgan Rielly

2:13 | TOR | Shot on goal by James van Riemsdyk saved by Craig Anderson

2:28 | OTT | Shot on goal by Zack Smith saved by Frederik Andersen

3:00 | OTT | Shot on goal by Chris Kelly saved by Frederik Andersen

3:15 | TOR | Ben Smith credited with hit on Tommy Wingels in offensive zone

3:29 | OTT | Cody Ceci credited with hit on Nikita Soshnikov in neutral zone

3:38 | OTT | Dion Phaneuf credited with hit on Matt Martin in defensive zone

4:05 | TOR | Shot on goal by Auston Matthews saved by Craig Anderson

4:05 | Stoppage - Goalie Stopped

4:05 | TOR | Nazem Kadri won faceoff in offensive zone

4:12 | TOR | Shot missed by Leo Komarov

4:20 | OTT | Cody Ceci credited with hit on Josh Leivo in defensive zone

4:22 | TOR | Shot on goal by Leo Komarov saved by Craig Anderson

4:39 | OTT | Takeaway by Ryan Dzingel in offensive zone

4:58 | OTT | Zack Smith credited with hit on Connor Carrick in offensive zone

5:01 | OTT | Shot on goal by Marc Methot saved by Frederik Andersen

5:19 | Stoppage - Icing

5:19 | OTT | Jean-Gabriel Pageau won faceoff in offensive zone

5:24 | OTT | Bobby Ryan shot blocked by Connor Brown

5:35 | OTT | Tom Pyatt credited with hit on Connor Carrick in offensive zone

5:43 | Stoppage - Offside

5:43 | OTT | Kyle Turris won faceoff in neutral zone

5:47 | OTT | Shot on goal by Dion Phaneuf saved by Frederik Andersen
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5:49 | Stoppage - Goalie Stopped

5:49 | OTT | Kyle Turris won faceoff in offensive zone

5:53 | OTT | Shot missed by Mark Borowiecki

6:16 | TOR | Shot on goal by Roman Polak saved by Craig Anderson

6:37 | OTT | Shot on goal by Kyle Turris saved by Frederik Andersen

6:57 | TOR | Nikita Zaitsev credited with hit on Derick Brassard in neutral zone

7:05 | TOR | Morgan Rielly credited with hit on Ryan Dzingel in defensive zone

7:10 | Stoppage - Puck in Benches - TV timeout

7:10 | OTT | Kyle Turris won faceoff in defensive zone

7:19 | TOR | Giveaway by Auston Matthews in offensive zone

7:26 | OTT | Shot on goal by Kyle Turris saved by Frederik Andersen

7:36 | OTT | Marc Methot credited with hit on Zach Hyman in defensive zone

7:52 | TOR | Shot on goal by William Nylander saved by Craig Anderson

8:04 | OTT | Shot on goal by Mark Borowiecki saved by Frederik Andersen

8:21 | TOR | Connor Brown credited with hit on Cody Ceci in offensive zone

8:41 | Stoppage - Offside - Player Equipment

8:41 | TOR | Ben Smith won faceoff in neutral zone

9:00 | TOR | Roman Polak credited with hit on Tommy Wingels in defensive zone

9:10 | TOR | Giveaway by Roman Polak in defensive zone

9:19 | TOR | Roman Polak credited with hit on Tommy Wingels in defensive zone

9:21 | OTT | Shot on goal by Chris Wideman saved by Frederik Andersen

9:29 | TOR | Penalty to Matt Martin 2 minutes for Interference Bobby Ryan

9:29 | OTT | Power play - Kyle Turris won faceoff in offensive zone

9:40 | TOR | Penalty to Zach Hyman 2 minutes for Holding Erik Karlsson

9:40 | OTT | Power play - Kyle Turris won faceoff in offensive zone

10:00 | OTT | Power play - Shot missed by Erik Karlsson

10:24 | OTT | Power play - Shot on goal by Mark Stone saved by Frederik Andersen

10:25 | Stoppage - Goalie Stopped

10:25 | OTT | Power play - Kyle Turris won faceoff in offensive zone

10:43 | OTT | Power play - Shot missed by Mike Hoffman

10:49 | OTT | Power play - Shot on goal by Mike Hoffman saved by Frederik Ander-

sen

10:51 | Stoppage - Puck in Netting

10:51 | TOR | Shorthanded - Leo Komarov won faceoff in defensive zone

11:20 | OTT | Power play - Shot on goal by Mike Hoffman saved by Frederik Ander-

sen

11:20 | Stoppage - Goalie Stopped

11:20 | OTT | Power play - Derick Brassard won faceoff in offensive zone

11:32 | OTT | Power play - Shot missed by Chris Wideman

11:43 | OTT | Shot missed by Ryan Dzingel

11:50 | OTT | Shot missed by Derick Brassard

11:50 | Stoppage - Puck in Netting - TV timeout

11:50 | OTT | Jean-Gabriel Pageau won faceoff in neutral zone

11:59 | OTT | Mark Borowiecki credited with hit on Connor Carrick in neutral zone

12:03 | OTT | Jean-Gabriel Pageau won faceoff in neutral zone

12:03 | Stoppage - Offside

12:13 | OTT | Shot on goal by Cody Ceci saved by Frederik Andersen

12:13 | Stoppage - Goalie Stopped

12:13 | TOR | Auston Matthews won faceoff in defensive zone

12:40 | Stoppage - Offside

12:40 | OTT | Derick Brassard won faceoff in neutral zone

13:41 | OTT | Shot on goal by Dion Phaneuf saved by Frederik Andersen

13:42 | Stoppage - Goalie Stopped

13:42 | TOR | Tyler Bozak won faceoff in defensive zone

13:54 | OTT | Marc Methot credited with hit on Tyler Bozak in defensive zone

14:17 | TOR | Takeaway by Connor Brown in offensive zone

14:20 | Stoppage - Icing

14:20 | OTT | Kyle Turris won faceoff in defensive zone

14:26 | TOR | Shot on goal by Morgan Rielly saved by Craig Anderson

14:27 | OTT | Giveaway by Erik Karlsson in defensive zone

14:33 | TOR | Shot missed by Auston Matthews

14:38 | TOR | Goal scoRed by Morgan Rielly assisted by William Nylander and

Auston Matthews

14:38 | OTT | Jean-Gabriel Pageau won faceoff in neutral zone

14:46 | TOR | Matt Martin credited with hit on Chris Kelly in neutral zone

15:01 | TOR | Nikita Soshnikov credited with hit on Dion Phaneuf in offensive zone

15:06 | TOR | Matt Hunwick shot blocked by Jean-Gabriel Pageau

15:45 | OTT |Mark Borowiecki credited with hit on Morgan Rielly in defensive zone

15:51 | TOR | Takeaway by Josh Leivo in offensive zone

15:52 | TOR | Morgan Rielly shot blocked by Mark Borowiecki

16:00 | TOR | Takeaway by Nikita Zaitsev in defensive zone

16:06 | TOR | Shot missed by Leo Komarov

16:12 | TOR | Shot on goal by Nazem Kadri saved by Craig Anderson

16:39 | TOR | James van Riemsdyk credited with hit on Zack Smith in neutral zone

16:43 | OTT | Shot missed by Mike Hoffman

17:06 | OTT | Zack Smith credited with hit on Connor Carrick in offensive zone

17:34 | OTT | Shot on goal by Cody Ceci saved by Frederik Andersen

17:35 | Stoppage - Goalie Stopped - TV timeout

17:35 | TOR | Nazem Kadri won faceoff in defensive zone

17:43 | TOR | Shot missed by Josh Leivo

17:47 | TOR | Shot on goal by Josh Leivo saved by Craig Anderson

17:52 | TOR | Goal scoRed by Nazem Kadri assisted by Josh Leivo

17:52 | TOR | Auston Matthews won faceoff in neutral zone

17:59 | OTT | Marc Methot credited with hit on Connor Carrick in neutral zone

18:11 | OTT | Marc Methot credited with hit on Zach Hyman in defensive zone

18:22 | OTT | Shot on goal by Erik Karlsson saved by Frederik Andersen

18:48 | OTT | Shot on goal by Mike Hoffman saved by Frederik Andersen

18:48 | Stoppage - Goalie Stopped

18:48 | TOR | Tyler Bozak won faceoff in defensive zone

19:06 | TOR | Nikita Zaitsev shot blocked by Bobby Ryan

19:07 | OTT |Mark Borowiecki credited with hit on Connor Brown in defensive zone

19:15 | TOR | Shot missed by Morgan Rielly

19:42 | TOR | Leo Komarov credited with hit on Erik Karlsson in offensive zone

19:49 | TOR | Nikita Zaitsev shot blocked by Erik Karlsson

19:52 | TOR | Leo Komarov credited with hit on Mark Stone in offensive zone

19:58 | TOR | Nikita Zaitsev credited with hit on Zack Smith in neutral zone

20:00 | End of 2nd period

3rd Period Summary
Time | Team | Detail

0:00 | Start of 3rd period

0:00 | OTT | Derick Brassard won faceoff in neutral zone

0:24 | OTT | Shot on goal by Erik Karlsson saved by Frederik Andersen

0:31 | OTT | Shot on goal by Ryan Dzingel saved by Frederik Andersen

0:31 | Stoppage - Goalie Stopped

0:31 | TOR | Auston Matthews won faceoff in defensive zone

0:45 | OTT | Penalty to Zack Smith 2 minutes for Hooking Zach Hyman

0:45 | OTT | Shorthanded - Jean-Gabriel Pageau won faceoff in defensive zone

1:13 | TOR | Power play - Nikita Zaitsev shot blocked by Jean-Gabriel Pageau

1:20 | TOR | Power play - Shot on goal by Tyler Bozak saved by Craig Anderson
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1:21 | Stoppage - Goalie Stopped

1:21 | OTT | Shorthanded - Kyle Turris won faceoff in defensive zone

1:45 | TOR | Power play - Giveaway by Jake Gardiner in offensive zone

2:04 | TOR | Power Play Goal ScoRed by William Nylander assisted by Leo Ko-

marov and Auston Matthews

2:04 | OTT | Kyle Turris won faceoff in neutral zone

2:26 | TOR | Shot on goal by Tyler Bozak saved by Craig Anderson

2:37 | TOR | James van Riemsdyk shot blocked by Kyle Turris

3:21 | TOR | Takeaway by Nazem Kadri in offensive zone

3:32 | TOR | Roman Polak credited with hit on Ryan Dzingel in defensive zone

3:52 | OTT | Mark Borowiecki credited with hit on Ben Smith in defensive zone

3:52 | TOR | Ben Smith shot blocked by Mark Borowiecki

3:58 | OTT | Mark Borowiecki credited with hit on Ben Smith in defensive zone

4:01 | TOR | Connor Carrick shot blocked by Kyle Turris

4:12 | TOR | Shot on goal by Jake Gardiner saved by Craig Anderson

4:13 | Stoppage - Goalie Stopped - Ice problem

4:13 | TOR | Auston Matthews won faceoff in offensive zone

4:17 | TOR | Shot missed by Jake Gardiner

4:17 | Stoppage - Goalie Stopped

4:17 | OTT | Jean-Gabriel Pageau won faceoff in defensive zone

4:24 | Stoppage - Icing

4:24 | OTT | Jean-Gabriel Pageau won faceoff in defensive zone

4:38 | OTT | Jean-Gabriel Pageau credited with hit on Connor Carrick in offensive

zone

4:41 | OTT | Shot on goal by Cody Ceci saved by Frederik Andersen

5:28 | TOR | Morgan Rielly credited with hit on Kyle Turris in defensive zone

5:32 | OTT | Goal scoRed by Mike Hoffman assisted by Erik Karlsson and Kyle

Turris

5:32 | TOR | Nazem Kadri won faceoff in neutral zone

5:59 | OTT | Shot on goal by Mark Stone saved by Frederik Andersen

6:12 | Stoppage - Referee or Linesman - TV timeout

6:12 | TOR | Penalty to Nazem Kadri 2 minutes for Holding Chris Wideman

6:12 | OTT | Power play - Kyle Turris won faceoff in offensive zone

6:23 | OTT | Power play - Shot on goal by Erik Karlsson saved by Frederik Andersen

6:25 | OTT | Power play - Shot on goal by Mark Stone saved by Frederik Andersen

6:26 | OTT | Power Play Goal ScoRed by Derick Brassard assisted by Mark Stone

and Erik Karlsson

6:26 | OTT | Jean-Gabriel Pageau won faceoff in neutral zone

6:49 | OTT | Shot on goal by Chris Kelly saved by Frederik Andersen

7:35 | OTT | Kyle Turris shot blocked by Jake Gardiner

7:45 | TOR | Shot on goal by Tyler Bozak saved by Craig Anderson

7:46 | Stoppage - Goalie Stopped

7:46 | TOR | Nazem Kadri won faceoff in offensive zone

7:51 | TOR | Shot on goal by Leo Komarov saved by Craig Anderson

8:08 | TOR | Takeaway by Josh Leivo in offensive zone

8:13 | TOR | Nikita Zaitsev shot blocked by Mark Stone

8:14 | Stoppage - Puck in Netting

8:14 | OTT | Kyle Turris won faceoff in defensive zone

8:24 | TOR | Shot on goal by Auston Matthews saved by Craig Anderson

8:25 | Stoppage - Goalie Stopped

8:25 | TOR | Auston Matthews won faceoff in offensive zone

8:48 | TOR | William Nylander shot blocked by Cody Ceci

9:08 | OTT | Takeaway by Zack Smith in defensive zone

9:21 | Stoppage - Offside

9:21 | TOR | Nazem Kadri won faceoff in neutral zone

9:47 | OTT | Takeaway by Mark Stone in neutral zone

9:48 | OTT | Mark Stone shot blocked by Morgan Rielly

9:59 | OTT | Mark Stone credited with hit on Morgan Rielly in neutral zone

10:40 | TOR | James van Riemsdyk shot blocked by Bobby Ryan

10:59 | OTT | Chris Kelly credited with hit on Connor Carrick in offensive zone

11:05 | TOR | Shot on goal by Nikita Soshnikov saved by Craig Anderson

11:18 | OTT | Chris Kelly credited with hit on Connor Carrick in defensive zone

11:32 | TOR | Jake Gardiner shot blocked by Tom Pyatt

11:41 | TOR | Matt Martin credited with hit on Cody Ceci in offensive zone

11:50 | OTT | Jean-Gabriel Pageau credited with hit on Jake Gardiner in defensive

zone

12:13 | OTT | Giveaway by Erik Karlsson in defensive zone

12:18 | TOR | Giveaway by Auston Matthews in offensive zone

12:47 | OTT | Mark Borowiecki credited with hit on Leo Komarov in defensive zone

13:05 | OTT | Mark Stone credited with hit on Nazem Kadri in neutral zone

13:33 | Stoppage - Icing

13:33 | TOR | Tyler Bozak won faceoff in defensive zone

14:03 | OTT | Chris Kelly credited with hit on Connor Carrick in offensive zone

14:04 | OTT | Takeaway by Chris Kelly in offensive zone

14:05 | OTT | Shot on goal by Chris Kelly saved by Frederik Andersen

14:06 | Stoppage - Goalie Stopped - TV timeout

14:06 | TOR | Auston Matthews won faceoff in defensive zone

14:23 | TOR | Shot missed by Zach Hyman

14:40 | TOR | Zach Hyman shot blocked by Marc Methot

14:44 | TOR | Shot missed by William Nylander

14:55 | TOR | Shot missed by Zach Hyman

14:58 | TOR | Takeaway by Zach Hyman in offensive zone

15:03 | TOR | Jake Gardiner shot blocked by Bobby Ryan

15:27 | TOR | Shot on goal by Leo Komarov saved by Craig Anderson

15:27 | Stoppage - Goalie Stopped - TV timeout

15:27 | TOR | Auston Matthews won faceoff in offensive zone

15:31 | TOR | Shot on goal by Morgan Rielly saved by Craig Anderson

15:32 | Stoppage - Goalie Stopped

15:32 | OTT | Jean-Gabriel Pageau won faceoff in defensive zone

16:49 | OTT | Shot missed by Mike Hoffman

16:53 | OTT | Zack Smith credited with hit on Tyler Bozak in offensive zone

17:08 | OTT | Derick Brassard credited with hit on Nazem Kadri in neutral zone

17:14 | TOR | Leo Komarov credited with hit on Mark Borowiecki in offensive zone

17:29 | TOR | Takeaway by Josh Leivo in offensive zone

17:34 | TOR | Shot on goal by Nazem Kadri saved by Craig Anderson

17:35 | Stoppage - Goalie Stopped

17:35 | TOR | Auston Matthews won faceoff in offensive zone

17:52 | TOR | Shot on goal by Zach Hyman saved by Craig Anderson

17:57 | OTT | Giveaway by Zack Smith in defensive zone

18:03 | TOR | Shot missed by Auston Matthews

18:03 | Stoppage - Puck in Netting

18:03 | OTT | Kyle Turris won faceoff in defensive zone

18:06 | Stoppage - Puck in Netting

18:06 | TOR | Tyler Bozak won faceoff in offensive zone

18:10 | OTT | Goal scoRed by Mark Stone assisted by Kyle Turris

18:10 | OTT | Jean-Gabriel Pageau won faceoff in neutral zone

19:15 | OTT | Goal scoRed by Derick Brassard assisted by Kyle Turris and Mark

Stone

19:15 | TOR | Ben Smith won faceoff in neutral zone

20:00 | End of 3rd period; End of Game
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...

...

Table 4. Play-by-play extract, Ottawa Senators @ Toronto Maple Leafs, February 18, 2017 [7].
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Table 5. Advanced Boxscore (part 1), Ottawa Senators @ Toronto Maple Leafs, February 18, 2017 [7].
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Table 6. Advanced Boxscore (part 2), Ottawa Senators @ Toronto Maple Leafs, February 18, 2017 [7].
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Table 7. Advanced Boxscore (part 3), Ottawa Senators @ Toronto Maple Leafs, February 18, 2017 [7].
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Macbeth’s Plot [9]

Act I
The play opens amid thunder and lightning, and the Three Witches decide
that their next meeting will be with Macbeth. In the following scene, a
wounded sergeant reports to King Duncan of Scotland that his generals
Macbeth, who is the Thane of Glamis, and Banquo have just defeated
the allied forces of Norway and Ireland, who were led by the traitorous
Macdonwald, and the Thane of Cawdor. Macbeth, the King’s kinsman, is
praised for his bravery and fighting prowess.

In the following scene, Macbeth and Banquo discuss the weather and
their victory. As they wander onto a heath, the Three Witches enter and
greet them with prophecies. Though Banquo challenges them first, they
address Macbeth, hailing him as "Thane of Glamis," "Thane of Cawdor,"
and that he will "be King hereafter." Macbeth appears to be stunned to
silence. When Banquo asks of his own fortunes, the witches respond
paradoxically, saying that he will be less than Macbeth, yet happier, less
successful, yet more. He will father a line of kings, though he himself will
not be one. While the two men wonder at these pronouncements, the
witches vanish, and another thane, Ross, arrives and informs Macbeth of
his newly bestowed title: Thane of Cawdor. The first prophecy is thus
fulfilled, and Macbeth, previously sceptical, immediately begins to harbour
ambitions of becoming king.

King Duncan welcomes and praises Macbeth and Banquo, and de-
clares that he will spend the night at Macbeth’s castle at Inverness; he
also names his son Malcolm as his heir. Macbeth sends a message ahead
to his wife, Lady Macbeth, telling her about the witches’ prophecies. Lady
Macbeth suffers none of her husband’s uncertainty and wishes him to
murder Duncan in order to obtain kingship. When Macbeth arrives at
Inverness, she overrides all of her husband’s objections by challenging his
manhood and successfully persuades him to kill the king that very night.
He and Lady Macbeth plan to get Duncan’s two chamberlains drunk so that
they will black out; the next morning they will blame the chamberlains
for the murder. They will be defenceless as they will remember nothing.

Act II
While Duncan is asleep, Macbeth stabs him, despite his doubts and a num-
ber of supernatural portents, including a hallucination of a bloody dagger.
He is so shaken that Lady Macbeth has to take charge. In accordance with
her plan, she frames Duncan’s sleeping servants for the murder by placing
bloody daggers on them. Early the next morning, Lennox, a Scottish
nobleman, and Macduff, the loyal Thane of Fife, arrive. A porter opens
the gate and Macbeth leads them to the king’s chamber, where Macduff
discovers Duncan’s body. Macbeth murders the guards to prevent them
from professing their innocence, but claims he did so in a fit of anger over
their misdeeds. Duncan’s sons Malcolm and Donalbain flee to England
and Ireland, respectively, fearing that whoever killed Duncan desires their
demise as well. The rightful heirs’ flight makes them suspects and Macbeth
assumes the throne as the new King of Scotland as a kinsman of the dead
king. Banquo reveals this to the audience, and while sceptical of the new
King Macbeth, he remembers the witches’ prophecy about how his own de-
scendants would inherit the throne; this makes him suspicious of Macbeth.

Act III
Despite his success, Macbeth, also aware of this part of the prophecy,
remains uneasy. Macbeth invites Banquo to a royal banquet, where he
discovers that Banquo and his young son, Fleance, will be riding out that
night. Fearing Banquo’s suspicions, Macbeth arranges to have him mur-
dered, by hiring two men to kill them, later sending a Third Murderer.
The assassins succeed in killing Banquo, but Fleance escapes. Macbeth
becomes furious: he fears that his power remains insecure as long as an
heir of Banquo remains alive.

At a banquet, Macbeth invites his lords and Lady Macbeth to a night of
drinking and merriment. Banquo’s ghost enters and sits in Macbeth’s place.
Macbeth raves fearfully, startling his guests, as the ghost is only visible to
him. The others panic at the sight of Macbeth raging at an empty chair,
until a desperate Lady Macbeth tells them that her husband is merely
afflicted with a familiar and harmless malady. The ghost departs and
returns once more, causing the same riotous anger and fear in Macbeth.
This time, Lady Macbeth tells the lords to leave, and they do so.

Act IV
Macbeth, disturbed, visits the three witches once more and asks them to
reveal the truth of their prophecies to him. To answer his questions, they
summon horrible apparitions, each of which offers predictions and further
prophecies to put Macbeth’s fears at rest. First, they conjure an armoured
head, which tells him to beware of Macduff (IV.i.72). Second, a bloody
child tells him that no one born of a woman will be able to harm him.
Thirdly, a crowned child holding a tree states that Macbeth will be safe
until Great Birnam Wood comes to Dunsinane Hill. Macbeth is relieved
and feels secure because he knows that all men are born of women and
forests cannot move. Macbeth also asks whether Banquo’s sons will ever
reign in Scotland: the witches conjure a procession of eight crowned kings,
all similar in appearance to Banquo, and the last carrying a mirror that
reflects even more kings. Macbeth realises that these are all Banquo’s
descendants having acquired kingship in numerous countries. After the
witches perform a mad dance and leave, Lennox enters and tells Macbeth
that Macduff has fled to England. Macbeth orders Macduff’s castle be
seized, and, most cruelly, sends murderers to slaughter Macduff, as well as
Macduff’s wife and children. Although Macduff is no longer in the castle,
everyone in Macduff’s castle is put to death, including Lady Macduff and
their young son.

Act V
Meanwhile, Lady Macbeth becomes racked with guilt from the crimes
she and her husband have committed. At night, in the king’s palace at
Dunsinane, a doctor and a gentlewoman discuss Lady Macbeth’s strange
habit of sleepwalking. Suddenly, Lady Macbeth enters in a trance with a
candle in her hand. Bemoaning the murders of Duncan, Lady Macduff,
and Banquo, she tries to wash off imaginary bloodstains from her hands,
all the while speaking of the terrible things she knows she pressed her
husband to do. She leaves, and the doctor and gentlewoman marvel at
her descent into madness. Her belief that nothing can wash away the
blood on her hands is an ironic reversal of her earlier claim to Macbeth
that "[a] little water clears us of this deed" (II.ii.66).

In England, Macduff is informed by Ross that his "castle is surprised;
wife and babes / Savagely slaughter’d" (IV.iii.204–05). When this news of
his family’s execution reaches him, Macduff is stricken with grief and vows
revenge. Prince Malcolm, Duncan’s son, has succeeded in raising an army
in England, and Macduff joins him as he rides to Scotland to challenge
Macbeth’s forces. The invasion has the support of the Scottish nobles,
who are appalled and frightened by Macbeth’s tyrannical and murderous
behaviour. Malcolm leads an army, along with Macduff and Englishmen
Siward (the Elder), the Earl of Northumberland, against Dunsinane Castle.
While encamped in Birnam Wood, the soldiers are ordered to cut down
and carry tree limbs to camouflage their numbers.

Before Macbeth’s opponents arrive, he receives news that Lady Mac-
beth has killed herself, causing him to sink into a deep and pessimistic
despair and deliver his "Tomorrow, and tomorrow, and tomorrow" solilo-
quy (V.v.17–28). Though he reflects on the brevity and meaninglessness
of life, he nevertheless awaits the English and fortifies Dunsinane. He is
certain that the witches’ prophecies guarantee his invincibility, but is struck
with fear when he learns that the English army is advancing on Dunsinane
shielded with boughs cut from Birnam Wood, in apparent fulfillment of
one of the prophecies.

A battle culminates in Macduff’s confrontation with Macbeth, who
kills Young Siward in combat. The English forces overwhelm his army
and castle. Macbeth boasts that he has no reason to fear Macduff, for
he cannot be killed by any man born of woman. Macduff declares that
he was "from his mother’s womb / Untimely ripp’d" (V.8.15–16), (i.e.,
born by Caesarean section) and is not "of woman born" (an example of a
literary quibble), fulfilling the second prophecy. Macbeth realises too late
that he has misinterpreted the witches’ words. Though he realises that
he is doomed, he continues to fight. Macduff kills and beheads him, thus
fulfilling the remaining prophecy.

Macduff carries Macbeth’s head onstage and Malcolm discusses how
order has been restored. His last reference to Lady Macbeth, however, re-
veals "’tis thought, by self and violent hands / Took off her life" (V.ix.71–72),
but the method of her suicide is undisclosed. Malcolm, now the King of
Scotland, declares his benevolent intentions for the country and invites
all to see him crowned at Scone. a
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Spectral Analysis and Feature Selection
(Python)
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Uniform Manifold Approximation and
Projection (Python)
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