A CURSORY GLANCE AT BAYESIAN ANALYSIS

SPECIAL TOPICS IN A.I. AND DATA SCIENCE
"Classical data analysts need a large bag of clever tricks to unleash on their data, but
Bayesians only ever really need one."
(author unknown)

OUTLINE

Part 1

1. Plausible Reasoning
2. The Rules of Probability
3. Bayes' Theorem
4. Example: the Fair (?) Coin
5. Example: the Salary Question
6. Example: Money (\$ Bill, Y'All)

Part II

7. Marginalization
8. Prior Distributions
9. Model Selection
10. Naïve Bayes Classification
11. Bayesian Inference
12. MCMC and Numerical Methods

PLAUSIBLE REASONING

A CURSORY GLANCE AT BAYESIAN ANALYSIS

"A decision was wise, even though it lead to disastrous consequences, if the evidence at hand indicated it was the best one to make; and a decision was foolish, even though it lead to the happiest possible consequences, if it was
unreasonable to expect those consequences."
Herodotus, in Antiquity

PLAUSIBLE REASONING

Consider the following scenario [Jaynes, 2003]:

- you are walking down a deserted street at night
- you hear a security alarm, look across the street, and see a store with a broken window
- someone wearing a mask crawls out of the broken window with a bag full of smart phones

You conclude that the person crawling out of the store is stealing merchandise from the store.

PLAUSIBLE REASONING

How do you come to that conclusion? It cannot come from a logical deduction based on evidence.

Indeed, the person crawling out of the store could have been its owner who, upon returning from a costume party, realized that they had misplaced their keys just as a passing truck was throwing a brick in the store window, triggering the security alarm. The owner then went into the store to retrieve items before they could be stolen, which is when you happened unto the scene.

The original reasoning process is not deductive, but it is at least plausible.

DEDUCTIVE VS. PLAUSIBLE REASONING

Deductive (ideal) reasoning:
If A is true, then B is true
A is true
???

If A is true, then B is true
B is false
???

Inductive (plausible) reasoning:
If A is true, then B is true
B is true
???

If A is true, then B is true
A is false
???

DEDUCTIVE VS. PLAUSIBLE REASONING

Deductive (ideal) reasoning:

If A is true, then B is true
A is true
B is true

If A is true, then B is true
B is false
A is false

Inductive (plausible) reasoning:
If A is true, then B is true
B is true
A is more plausible (why?)

If A is true, then B is true
A is false
B is less plausible (why?)

DEDUCTIVE VS. PLAUSIBLE REASONING

Inductive (plausible) reasoning:

If A is true, then B is more plausible
B is true
A is more plausible
If "the person is a thief" (A is true), you would not be surprised to "see them crawling out of the store with a bag of phones" (B is plausible). You do "see them crawling out of the store with a bag of phones" (B is true). Therefore, you would not be surprised if "the person were a thief" (A is plausible).

DEDUCTIVE VS. PLAUSIBLE REASONING

Deductive reasoning

Plausible reasoning

DISCUSSION

In Tom Stoppard's 1966 play Rosencrantz and Guildenstern are Dead, the main characters bet on coin flips. Rosencrantz wins by flipping heads 92 times in a row.

This result is of course not impossible, but is it plausible? If this happened to you, what would you conclude?

THE RULES OF PROBABILITY

A CURSORY GLANCE AT BAYESIAN DATA ANALYSIS

WHAT IS PROBABILITY?

Inductive reasoning requires methods to evaluate the validity of various propositions.
For Bernouilli, Bayes, and Laplace (1700's to 1800's), a proposition's probability represents the degree-of-belief in the proposition (i.e., its plausibility).

Subsequent scholars found this vague and subjective (how can you be sure that my degree-of-belief matches yours?) and they redefined probability as the long-run relative frequency of an event, given infinite repeated trials.

WHAT IS PROBABILITY?

A forecast calling for rain with 90% probability doesn't mean the same thing to Bayesians and frequentists:

- in the Bayesian framework, this means that the forecaster is 90% certain that it will rain;
- in the frequentist framework, this means that, historically, it rained in 90% of the cases when the conditions were as they currently are.

The Bayesians framework is more aligned with how humans understand probabilities (92 heads in a row probably mean that that the coin is biased, right?), but how can we be certain that the degree-of-belief is a well-defined concept?

WHAT IS PROBABILITY?

As it happens, there is a well-defined way to determine the rules of probability, based on a small list of axioms [Jaynes, 2003; Cox, 1946]:

1. if a conclusion can be reasoned out in more than one way, then every possible way must lead to the same result;
2. all (known) evidence relevant to a question must be taken into consideration;
3. equivalent states of knowledge must be assigned the same probabilities;
4. if we specify how much we believe something is true, we have implicitly specified how much we believe it's false, and
5. if we have specified our degree-of-belief in a first proposition, and then our degree-of-belief in a second proposition if we assume the first one is true, then we have implicitly specified our simultaneous degree-of-belief in both propositions being true.

RULES OF PROBABILITY

Let I denote relevant background information; X, Y, Y_{k} denote various propositions, and $-X$ denote the proposition that X is false.

The plausibility of X given I is denoted by $P(X \mid I)$, ranging from 0 (false) to 1 (true).

Sum Rule: $P(X \mid I)+P(-X \mid I)=1$
Product Rule: $P(X, Y \mid I)=P(X \mid Y, I) \times P(Y \mid I)$
Bayes' Theorem: $P(X \mid Y, I) \times P(Y \mid I)=P(Y \mid X, I) \times P(X \mid I)$
Marginalization Rule: $P(X \mid I)=\sum P\left(X, Y_{k} \mid I\right)$, where $\left\{Y_{k}\right\}$ are exhaustive, disjoint

CONDITIONAL PROBABILITIES

We then have an interest in determining the likelihood of an event occurring given that another event (or series of events) has occurred.

Examples include:

- the probability that a train arrives on time given that it left on time
- the probability that a PC crashes given the operating system installed
- the probability that a bit is transmitted over a channel is received as a 1 given that the bit transmitted was a 1
- the probability that a website is visited given its number of in-links
- the rules of probability!

CONDITIONAL PROBABILITIES

A conditional probability is the probability of an event taking place given that another event occurred.

The conditional probability of A given $B, P(A \mid B)$, is defined as

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A, B)}{P(B)}
$$

The probability that two events A and B both occur simultaneously is obtained by applying the multiplication rule:

$$
P(A, B)=P(B) P(A \mid B)=P(A) P(B \mid A)
$$

EXERCISE - CONDITIONAL PROBABILITIES

Example (a classic): a family has two children (not twins). What is the probability that the youngest child is a girl given that at least one of the children is a girl? Assume that boys and girls are equally likely to be born.

EXERCISE - CONDITIONAL PROBABILITIES

We will first try to answer this question by generating a number of trials and identifying successful events (a frequentist approach?)

EXERCISE - CONDITIONAL PROBABILITIES

Example (a classic): a family has two children (not twins). What is the probability that the youngest child is a girl given that at least one of the children is a girl? Assume that boys and girls are equally likely to be born.

Solution: Let A and B be the events that the youngest child is a girl and that at least one child is a girl, respectively:

$$
A=\{G G, B G\}, \quad B=\{G G, B G, G B\}
$$

Then $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{2}{3}$ (not $1 / 2$, as one might naively assume).

BAYES' THEOREM

A CURSORY GLANCE AT BAYESIAN DATA ANALYSIS

BAYES' THEOREM

The sum rule and the product rules are the basic rules of probability.
Bayes' Theorem and the Marginalization Rule are simple corollaries of these basic rules.

Bayes' Theorem is sometimes written is a slightly different form

$$
P(X \mid Y, I)=\frac{P(Y \mid X, I) \times P(X \mid I)}{P(Y \mid I)}
$$

BAYES' THEOREM

Set-up: assume that an experiment has been conducted to determine the degree of validity of a particular hypothesis, and that experimental data has been collected.

The central data analysis question: given everything that was known prior to the experiment, does the collected data support (or invalidate) the hypothesis?

Throughout, let X denote the proposition that the hypothesis in question is true, let Y denote the proposition that the experiment yielded the actual observed data, let I denote (as always) the relevant background information.

BAYES' THEOREM

Central data analysis question (reprise):

What is the value of P (hypothesis is true | observed data, I)?
Problem: this is nearly always impossible to compute directly.
Solution: using Bayes' Theorem,

$$
P(\text { hypothesis } \mid \text { data, } I)=\frac{P(\text { data } \mid \text { hypothesis }, I) \times P(\text { hypothesis } \mid I)}{P(\text { data } \mid I)},
$$

it may be that the terms on the right are easier to compute.

EXERCISE - WORLD TRADE CENTER

"Consider a somber example: the September 11 attacks. Most of us would have assigned almost no probability to terrorists crashing planes into buildings in Manhattan when we woke up that morning. But we recognized that a terror attack was an obvious possibility once the first hit the World Trade Center. And we had no doubt we were being attacked once the second tower was hit. Bayes' Theorem can replicate this result."

EXERCISE - WORLD TRADE CENTER (1ST PLANE)

PRIOR PROBABILITY

Initial estimate of how likely it is that terrorists would crash planes into
Manhattan skyscrapers

$$
P(B \mid I)=x \quad 0.005 \%
$$

A NEW EVENT OCCURS: FIRST PLANE HITS WTC

Probability of plane hitting if terrorists are attacking Manhattan skyscrapers	$P(A \mid B, I)=y$	$95 \%+$
Probability of plane hitting if terrorists are not attacking Manhattan skyscrapers (i.e. accident)	$P(A \mid \bar{B}, I)=w$	$0.008 \%{ }^{*}$
POSTERIOR PROBABILITY	$P(B \mid A, I)=\frac{y x}{y x+w(1-x)}$	$37 \%+$
Revised estimate of probability of terror attack, given first plane hitting WTC		

*2 incidents in the previous 25,000 days

EXERCISE - WORLD TRADE CENTER (2ND PLANE)

PRIOR PROBABILITY

Revised estimate of probability of terror attack (now that we know about the first plane hitting WTC)

$$
P(B \mid I)=x^{\#} \quad 37 \%+
$$

A NEW EVENT OCCURS: SECOND PLANE HITS WTC

Probability of plane hitting if terrorists are attacking Manhattan skyscrapers

$$
P(A \mid B, I)=y \quad 95 \%+
$$

Probability of plane hitting if terrorists are not attacking Manhattan skyscrapers (i.e. accident)
$P(A \mid \bar{B}, I)=w \quad 0.008 \%^{*}$

POSTERIOR PROBABILITY

Revised estimate of probability of terror attack,
given second plane hitting WTC

$$
P(B \mid A, I)=\frac{y x^{\#}}{y x^{\#}+w\left(1-x^{\#}\right)}
$$

*2 incidents in the previous 25,000 days

BAYES' THEOREM

In the vernacular, the probabilities

- P (hypothesis $\mid I$) of the hypothesis being true prior to the experiment is the prior;
- P (hypothesis | data, I) of the hypothesis being true once the experimental data is taken into account is the posterior;
- P (data | hypothesis, I) of the experimental data being observed assuming that the hypothesis is true is the likelihood, and
- $P($ data $\mid I)$ of the experimental data being observed independently of any hypothesis is the evidence.

A given hypothesis includes a (potentially implicit) model which can be used to compute or approximate the likelihood.

BAYES' THEOREM

Determining the prior is a source of considerable controversy

- conservative estimates (uninformative priors) often lead to reasonable results
- in the absence of information, go with maximum entropy prior

The evidence is harder to compute on theoretical grounds - evaluating the probability of observing data requires access to some model as part of I. Either

- that model was good, so there's no need for a new hypothesis
- that model was bad, so we dare not trust our computation

BAYES' THEOREM

Thankfully, the evidence is rarely required on problems of parameter estimation (although it is crucial for model selection):

- prior to the experiment, there are numerous competing hypotheses
- the priors and likelihoods will differ, but not the evidence
- the evidence is not needed to differentiate the various hypotheses

Bayes' Theorem is often presented as

$$
P(\text { hypothesis } \mid \text { data }, I) \propto P(\text { data } \mid \text { hypothesis }, I) \times P(\text { hypothesis } \mid I)
$$

or simply as posterior \propto likelihood \times prior, that is to say, beliefs should be updated in the presence of new information.

DISCUSSION

What would it take for you to update ...

- ... your belief in the existence/non-existence of a deity?
- ... your belief in the shape of the Earth?
- ... your political affiliation?
- ... your allegiance to a sport team? (Go Sens!)
- ... your belief in the effectiveness of homeopathic remedies?
- ... your belief in the effectiveness of Bayesian analysis?

EXERCISE - FALSE POSITIVE TESTING

Suppose that a test for a particular disease has a very high success rate. If a patient

- has the disease, the test accurately reports a 'positive' with probability 0.99;
- does not have the disease, the test accurately reports a 'negative' with probability 0.95.

Assume further that only 0.1% of the population has the disease. What is the probability that a patient who tests positive does not in fact have the disease?

EXERCISE - FALSE POSITIVE TESTING

Solution: let D be the event that the patient has the disease, and A be the event that the test is positive. According to Bayes' Theorem, the probability of a true positive is

$$
\begin{gathered}
P(D \mid A, I)=\frac{P(A \mid D, I) \times P(D \mid I)}{P(A \mid I)}=\frac{P(A \mid D, I) \times P(D \mid I)}{P(A \mid D, I) \times P(D \mid I)+P(A \mid-D, I) \times P(-D \mid I)} \\
=\frac{0.99 \times 0.001}{0.99 \times 0.001+0.05 \times 0.999} \approx 0.019 ;
\end{gathered}
$$

the probability of a false positive is thus $1-0.019 \approx 0.981$.
Despite the apparent high accuracy of the test, the incidence of the disease is so low (1 in a 1000) that the vast majority of patients who test positive (98 in 100) do not have the disease (20 times the proportion before the outcome of the test is known).

EXERCISE - DRIVING CONDITIONS

A road safety analyst has access to a dataset of fatal vehicle collisions (such as the NCDB) on roads in a specific region.

The dataset is built using police reports, and it contains relevant collision information such as:

- the severity of the collision, the age of the drivers, the number of passengers in each vehicle, the date and time of the collision, weather and road conditions, blood alcohol content (BAC), etc.

Let us further assume that the analyst has access to aggregated weather data and R.I.D.E. (sobriety checkpoint) reports for that region.

EXERCISE - DRIVING CONDITIONS

Some information may be missing from the police reports at a given moment (perhaps the coroner has not yet had the chance to determine the BAC level, or some of the data may have been mistakenly erased and/or corrupted).

For some collisions, we may need to answer either or both of the following questions:

- did alcohol play a role in the collision?
- did "bad" weather play a role in the collision?

As usual, let I denote all relevant information relating to the situation, such as the snowy months of the year, the incidence of impaired driving in that region, etc.

EXERCISE - DRIVING CONDITIONS

Our analyst will consider 3 propositions:

- A: a fatal collision has occurred
- B : weather and road conditions were bad
- C : the BAC level of one of the drivers was above 0.08% per volume
and may have an interest in $P(B \mid A, I), P(C \mid A, I), P(B, C \mid A, I), P(B,-C \mid A, I)$, or $P(-B, C \mid A, I)$, for instance.

EXERCISE - DRIVING CONDITIONS

1. Derive an expression to compute the probability that "bad" weather and road conditions were present at the time of the collision.
2. A Mild Winter scenario: during a mild winter, "bad" weather affected regional road conditions 5% of the time. The analyst knows from other sources that the probabilities of fatal collisions given "bad" and "good" weather conditions in the region over the winter are 0.01% and 0.002%, respectively. If a fatal collision occurred on a regional road that winter, what is the probability that the weather conditions were "bad" on that road at that time? Is the result surprising?

EXERCISE - DRIVING CONDITIONS

3. Not quite as Mild a Winter scenario: let's assume that the winter was not quite as mild (perhaps "bad" weather affected regional road conditions 10\% of the time, say). If a fatal collision occurred on a regional road that winter, what is the probability that the weather conditions were "bad" on that road at that time? How much of a jump are you expecting compared to question 2 ?
4. Just how rough of a winter would be necessary before we conclude that a given fatal collision was more likely to have occurred in "bad" weather?

EXERCISE - DRIVING CONDITIONS

5. In what follows, we assume that the analyst does not have access to other sources from which to derive the individual probabilities of fatal collisions given "bad" and "good" weather conditions in the region. Instead, the analyst has access to data that suggests that the probability of a fatal collision in "bad" weather is k times as high as the probability of a fatal collision in "good" weather. Let the probability of "bad" weather be $w \in(0,1)$. Derive an expression for the probability that the weather conditions were "bad" on that road at that time, given that a fatal collision occurred, in terms of k and w.

EXERCISE - DRIVING CONDITIONS

6. Really Rough Winter scenario: during a really rough winter, "bad" weather affected road conditions with probability $w=0.2$. Determine the probabilities that there were "bad" weather conditions given a fatal collision under 4 different values: $k=0.1, k=1, k=10, k=100$. Which of these scenarios is most likely?
7. In the next scenario, we assume that the traffic flow changes depending on the weather; while some individuals need to be on the roads no matter the conditions, others might tend to avoid the roads when the conditions are "bad". Make whatever assumptions are necessary and analyze the situation as you have done in the previous questions.
8. Repeat the process for the other conditional probabilities of interest.

EXERCISE - MONTY HALL PROBLEM

(Another classic) A lifetime's supply of poutine is placed randomly behind one of three identical doors. You are asked to pick a door. One of the doors you have not selected is opened, revealing an empty room. You are given the option of changing your pick. What is your optimal strategy?

1. Determine the ideal strategy using a simulation.
2. Analyze a similar situation (for 100 doors instead of 3) using Bayes' Theorem.
3. Analyze the situation using Bayes' Theorem.

EXAMPLE: THE FAIR (?) COIN

A CURSORY GLANCE AT BAYESIAN DATA ANALYSIS

THE FAIR (?) COIN - SET-UP

I brought back a souvenir coin from a trip to a strange and distant land.

I have been flipping it pretty much nonstop since l've returned. You can see the proportion of heads I obtained for 4, 8, and 16 tosses.

At first, I thought the coin might be biased, but the proportion of heads seems to inch its way towards 50\%...

Proportion of Heads - 4 Tosses

Proportion of Heads - 16 Tosses

THE FAIR (?) COIN - PRIORS

Perhaps the coin isn't fair, coming as it does from a strange and distant land...

Let's denote the coin's bias by H, i.e. the probability of flipping a head on a toss ($H \approx 0.5$: regular unbiased coins, $H \approx 0$ or $H \approx 1$: highly biased coins).

A prior for this scenario is a pdf function $P($ bias $=H)=P(H \mid I)$, for $0 \leq H \leq 1$.

THE FAIR (?) COIN - PRIORS

THE FAIR (?) COIN - PRIORS

Why are we working with functions for the prior? In the previous example (Sept. 11 attacks), we only provided a number $P(B \mid I)=0.005 \%$.

In fact, we had provided a (discrete) function:

$$
P(B=x \mid I)= \begin{cases}00.005 \% & \text { if } x=\text { TRUE } \\ 99.995 \% & \text { if } x=\mathrm{FALSE}\end{cases}
$$

THE FAIR (?) COIN - LIKELIHOOD

Let's assume that the coin has been tossed N times in total, and that K heads have been recorded. In this scenario, Bayes' Theorem takes the form:
$P($ bias $=H \mid K$ heads, N tosses; $I) \propto P(K$ heads, N tosses \mid bias $=H, I) \times P($ bias $=H \mid I)$.
The likelihood is the probability of observing K heads in N tosses if the bias is H. If, as part of I, the tosses are independent (i.e. the result of one toss does not affect the others), then the likelihood is given by the binomial distribution

$$
P(K \text { heads, } N \text { tosses bias }=H, I)=\binom{N}{K} H^{K}(1-H)^{N-K} .
$$

THE FAIR (?) COIN - POSTERIOR(S)

Combining both of these together, we get

$$
P(H \mid K \text { heads in } N \text { tosses } ; I) \propto H^{K}(1-H)^{N-K} \times P_{i}(H \mid I),
$$

where $i=1,2,3$, or 4 .
We should be able to estimate the bias H^{*} by studying the posterior distribution for each of the 4 priors, for various number of throws N.

THE FAIR (?) COIN - POSTERIORS - NON-INFORMATIVE PRIOR

With a non-informative prior, the sought posterior is simply proportional to the likelihood.

The central limit theorem seems to kick in after ~ 30 tosses.

After 128 tosses (with this specific series of tosses), we are fairly certain that the coin must be biased ($0.25 \leq H^{*} \leq 0.40$?)

THE FAIR (?) COIN - POSTERIORS - FOUL PLAY PRIOR

1 Toss (Prior 2)

256 Tosses (Prior 2)

2 Tosses (Prior 2)

32 Tosses (Prior 2)

512 Tosses (Prior 2)

4 Tosses (Prior 2)

64 Tosses (Prior 2)

1024 Tosses (Prior 2)

8 Tosses (Prior 2)

128 Tosses (Prior 2)

With a foul play prior, we suspect early on that the bias is smaller than 0.5 ; the subsequent series of tosses moves the bias to a value $0.25 \leq H^{*} \leq 0.40$ fairly quickly, as was the case with the noninformative prior.

Note the shrinking of the posterior with an increasing number of tosses.

THE FAIR (?) COIN - POSTERIORS - REGULAR COIN PRIOR

16 Tosses (Prior 3)

256 Tosses (Prior 3)

2 Tosses (Prior 3)

32 Tosses (Prior 3)

512 Tosses (Prior 3)

4 Tosses (Prior 3)

64 Tosses (Prior 3)

1024 Tosses (Prior 3)

8 Tosses (Prior 3)

128 Tosses (Prior 3)

With a regular coin prior, early results do not strongly suggest that the coin is biased (the prior gives little credence to the notion that the bias could lie in $0.25 \leq H^{*} \leq 0.40$).

Note the smoother convergence of the posterior.

THE FAIR (?) COIN - POSTERIORS - DOUBTFUL PRIOR

1 Toss (Prior 4)

256 Tosses (Prior 4)

2 Tosses (Prior 4)

32 Tosses (Prior 4)

512 Tosses (Prior 4)

4 Tosses (Prior 4)

64 Tosses (Prior 4)

1024 Tosses (Prior 4)

8 Tosses (Prior 4)

128 Tosses (Prior 4)

With a doubtful prior, the competing hypotheses compete before converging to a bias in $0.25 \leq H^{*} \leq 0.40$.

Note the slower convergence to a gaussian posterior.

EXAMPLE: THE SALARY QUESTION

A CURSORY GLANCE AT BAYESIAN DATA ANALYSIS

THE SALARY QUESTION - SET-UP

Income information has been collected for 4782 individuals, with demographics.

The table to the right shows some of the summary statistics for the dataset.

Question: is there a link between the demographic information and income?

Gender Age	Edu	N	\min		\max	
M	$15-24$	0	254	$\$$	13,970	$\$ 54,567$
M	$15-24$	1	179	$\$$	25,871	$\$ 75,389$
M	$25-54$	0	729	$\$$	15,560	$\$ 71,783$
M	$25-54$	1	735	$\$ 28,329$	$\$ 138,185$	
M	$55-64$	0	279	$\$$	21,966	$\$ 83,503$
M	$55-64$	1	227	$\$ 58,384$	$\$ 99,530$	
F	$15-24$	0	240	$\$$	917	$\$ 56,639$
F	$15-24$	1	184	$\$$	20,361	$\$ 88,115$
F	$25-54$	0	671	$\$$	14,161	$\$ 71,394$
F	$25-54$	1	758	$\$$	22,691	$\$ 111,277$
F	$55-64$	0	302	$\$$	20,719	$\$ 66,912$
F	$55-64$	1	224	$\$ 53,840$	$\$ 102,436$	

THE SALARY QUESTION - SET-UP

How could you answer this question?

THE SALARY QUESTION - SET-UP

What if you had reason to suspect that reported incomes follow a (potentially) different distribution for each group?

In the Bayesian framework, you would be interested in the posterior distribution

$$
P \text { (parameters|data, } i, I), i=1, \ldots, 12 .
$$

If we assume (for no particular good reason) that the reported incomes are normally distributed for each group, then we seek

$$
P\left(\mu_{i}, \sigma_{i} \mid \text { reported incomes in group } i, I\right), i=1, \ldots, 12
$$

THE SALARY QUESTION - PRIORS

What the priors $P\left(\mu_{i}, \sigma_{i} \mid I\right), i=1, \ldots, 12$ could be is not easy to answer. One could naively pick a joint distribution which peaks at the sample mean \bar{x}_{i} with standard deviation s_{i} for each group i, but there are sampling design issues associated with this approach.

Why not select, instead, a prior "which expresses complete ignorance except for the fact that μ_{i} is a location parameter and σ_{i} is a scale parameter" [Janyes, 2003; Oliphant; 2006]. This translates into using a prior $P_{1}\left(\mu_{i}, \sigma_{i} \mid I\right) \propto \sigma_{i}{ }^{-1}$.

For comparison's sake, we will also consider the prior $P_{2}\left(\mu_{i}, \sigma_{i} \mid I\right) \propto \mu_{i}^{500} \sigma_{i}{ }^{-4}$.

THE SALARY QUESTION - PRIORS

What could those priors represent, in the real world? What happens to the probabilities when σ_{i} increases? When μ_{i} increases?

Note, as well, that these "priors" are not normalizable over the positive quadrant in (μ, σ)-space. Instead, we only consider them over a suitable finite sub-region.

THE SALARY QUESTION - PRIORS

data-action-lab.com

THE SALARY QUESTION - LIKELIHOOD

Let's denote the number of observations in group i by N_{i}. The likelihood is the probability

$$
P\left(\text { reported incomes }\left\{x_{k, i}\right\} \text { in group } i \mid \mu_{i}, \sigma_{i}, I\right), i=1, \ldots, 12 .
$$

We've assumed normality for any given observation. If we assume further that all observations are independent, then

$$
P\left(\left\{x_{k, i}\right\} \mid \mu_{i}, \sigma_{i}, I\right) \propto \prod_{k=1}^{N_{i}} \sigma_{i}^{-1} \exp \left(\frac{-\left(\mu_{i}-x_{k, i}\right)^{2}}{2 \sigma_{i}^{2}}\right), i=1, \ldots, 12 .
$$

THE SALARY QUESTION - POSTERIOR(S)

Combining both of these together, we get

$$
P_{1}\left(\mu_{i}, \sigma_{i} \mid\left\{x_{k, i}\right\}, I\right) \propto \sigma_{i}^{-\left(N_{i}+1\right)} \prod_{k=1}^{N_{i}} \exp \left(\frac{-\left(\mu_{i}-x_{k, i}\right)^{2}}{2 \sigma_{i}^{2}}\right),
$$

and

$$
P_{2}\left(\mu_{i}, \sigma_{i} \mid\left\{x_{k, i}\right\}, I\right) \propto \mu_{i}^{500} \sigma_{i}^{-\left(N_{i}+4\right)} \prod_{k=1}^{N_{i}} \exp \left(\frac{-\left(\mu_{i}-x_{k, i}\right)^{2}}{2 \sigma_{i}^{2}}\right),
$$

for $i=1, \ldots, 12$ over some suitable sub-region in parameter space.

THE SALARY QUESTION - POSTERIORS - $i=1$

THE SALARY QUESTION - POSTERIORS - $i=1$

Marginal posterior distribution - $P_{1}\left(\sigma_{1} \mid\left\{x_{k, 1}\right\}, I\right)$

Marginal posterior distribution - $P_{2}\left(\sigma_{1} \mid\left\{x_{k, 1}\right\}, I\right)$

THE SALARY QUESTION - EXERCISE

Using the Excel spreadsheet, estimate the parameters $\left(\mu_{i}, \sigma_{i}\right), i=1, \ldots, 12$.

EXAMPLE: MONEY (\$ BILL, Y'ALL)

A CURSORY GLANCE AT BAYESIAN DATA ANALYSIS

MONEY (\$ BILL Y'ALL) - THE SET-UP

The question: how many $5 \$$ dollar bills are there in circulation?
The problem: we cannot count them all.

MONEY (\$ BILL Y'ALL) - THE SET-UP

The solution: "catch and release"

1. Capture a few $5 \$$ bills.
2. Mark them and put them back in circulation.
3. At some later point, capture a few $5 \$$ bills.
4. Count how many are marked.

For instance, $x=500$ bills might have been marked initially; $y=300$ bills might have been re-captured at stage 3 , and $w=127$ of which were marked.

What is the most probable number of bills N in circulation?

MONEY (\$ BILL Y'ALL) - FITTING THE MODEL

Unlike in the previous examples when we were trying to estimate the parameters from the data using a generative model, in this example we are trying to estimate data from parameters.

Generate a \# of bills N
through some distribution $\mathfrak{D}(a, b, c, \ldots)$

1. Mark x bills
2. Sample y bills
3. Count the \# of marked bills z in the sample
4. Compare with the actual w

Repeat to get a distribution of z 's
x, y, w are given; z, N to be found

MONEY (\$ BILL Y'ALL) - FITTING THE MODEL (SIMPLE)

1. Draw a large random sample of $\#$ of bills N from an acceptable "prior" distribution on the parameters.
2. Using the N 's and the generative model (with x and y given), produce a (synthetic) \# of marked bills z in each sample.
3. Retain only those values of N for which $z=w$.

MONEY (\$ BILL Y'ALL) - FITTING THE MODEL (SIMPLE)

MONEY (\$ BILL Y'ALL) - FITTING THE MODEL (SIMPLE)

\approx IDLEWYLD Sysabee 88 § ${ }^{\text {davhill }}$ 黄 uotawa

MONEY (\$ BILL Y'ALL) - MARKED BILLS ARE BRITTLE (?)

It may be the case that the process of marking the bills might damage them somehow, so that they may be retired sooner than one would expect (with prob. 90\%, say).

Generate a \# of bills N through some distribution

$$
\mathfrak{D}(a, b, c, \ldots)
$$

1. \quad Mark x bills
2. Sample y bills, where there is a $u \%$ chance of sampling a marked bill compared to an unmarked bill
3. Count the \# of marked bills z in the sample
4. Compare with the actual \#w

Repeat to get a distribution of z 's
x, y, u, w are given; z, N to be found

MONEY (\$ BILL Y'ALL) - MARKED BILLS ARE BRITTLE (?)

1. Draw a large random sample of $\#$ of bills N from an acceptable "prior" distribution on the parameters.
2. Using the N 's and the generative model (with x, y and u given), produce a (synthetic) \# of marked bills z in each sample.
3. Retain only those values of N values for which $z=w$.

MONEY (\$ BILL Y'ALL) - MARKED BILLS ARE BRITTLE (?)

MONEY (\$ BILL Y'ALL) - MARKED BILLS ARE BRITTLE (?)

Prior

$$
P(N=1000 \mid z=127, I) \propto P(z=127 \mid N=1000, I) \times P(N=1000 \mid I)
$$

MONEY (\$ BILL Y'ALL) - LISTEN TO THE BANKER

An old banker thinks that there should be about 1000 bills in circulation. How can we incorporate this piece of information?

Repeat to get a distribution of z 's
x, y, u, w are given; z, N to be found

MONEY (\$ BILL Y'ALL) - LISTEN TO THE BANKER

1. Draw a large random sample of $\#$ of bills N from a negative binomial distribution.
2. Using the N 's and the generative model (with x, y and u given), produce a (synthetic) \# of marked bills z in each sample.
3. Retain only those values of N values for which $z=w$.

MONEY (\$ BILL Y'ALL) - LISTEN TO THE BANKER

MONEY (\$ BILL Y'ALL) - LISTEN TO THE BANKER

MONEY (\$ BILL Y'ALL) - EXERCISE

Play with the parameters and new scenarios in the notebook billets.Rmd.

PRIOR DISTRIBUTIONS

A CURSORY GLANCE AT BAYESIAN ANALYSIS

PRIOR DISTRIBUTIONS

Specifying a model necessarily means providing a prior distribution for the unknown parameters.

Priors play a crucial role in Bayesian inference through the updating statement

$$
p(\theta \mid D) \propto p(\theta) \times p(D \mid \theta)
$$

The choice of priors is subjective (the decision to use a specific prior is left entirely up to the analyst).

PRIOR DISTRIBUTIONS

But the choice of prior is no more subjective than the choice of likelihood, the selection of a sample, the estimation framework, or the statistic used for data reduction.

Choice of prior can affect posterior conclusions, in particular when the sample size is small.

CONJUGATE PRIORS

In general: posterior distribution for vector θ has no simple analytical representation.

Posterior distributions must be estimated numerically (not exact).

Exceptions: conjugate priors

- joint property of a prior and a likelihood \Rightarrow posterior has same form as prior (but with different parameters)

CONJUGATE PRIORS

Likelihood	Prior	Hyperparameters
Bernouilli	Beta	$\alpha>0, \beta>0$
Binomial	Beta	$\alpha>0, \beta>0$
Poisson	Gamma	$\alpha>0, \beta>0$
Normal for μ	Normal	$\mu \in \mathbb{R}, \sigma^{2}>0$
Normal for σ^{2}	Inverse Gamma	$\alpha>0, \beta>0$
Exponential	Gamma	$\alpha>0, \beta>0$

Example:

- likelihood $=$ Binomial $P(s, n \mid q)=\binom{n}{s} q^{s}(1-q)^{n-s}$, prior $=\operatorname{Beta}(\alpha, \beta)$
- posterior $=\operatorname{Beta}(\alpha+s, \beta+n-s)$

CONJUGATE PRIORS

Conjugate priors are mathematically convenient, and they can be quite flexible, depending on the specific hyperparameters we use; but they reflect very specific prior knowledge and should be eschewed unless we truly possess that prior knowledge.

Alternatives:

- uninformative priors
- informative priors
- maximum entropy (MaxEnt) priors

UNINFORMATIVE PRIORS

Uninformative priors intentionally provide very little specific information about the unknown parameter(s).

Rationale: 'to let the data speak for itself,' so that inferences are unaffected by information external to the current data.

Classic Example: uniform prior

- for data following a Bernoulli (θ) distribution, a uniform prior on θ is $P(\theta)=1$ on $0 \leq \theta \leq 1$.
- for data following a normal $N(\mu, 1)$ distribution, the uniform prior on the support of μ is improper however, such a choice could still be acceptable as long as the resulting posterior is normalizable.

INFORMATIVE PRIORS

Informative priors are those that deliberately insert information that researchers have at hand into the analysis.

Reasonable since prior scientific knowledge should play a role in statistical inference.

2 important requirements:

- overt declaration of prior specification
- detailed sensitivity analysis to show the effect of these priors relative to uninformed types.

Transparency is required to avoid the common pitfall of data fishing; sensitivity analysis can provide a sense of exactly how informative the prior is.

INFORMATIVE PRIORS

Where do informative priors come from, in the first place?

- past studies, published work, researcher intuition
- interviewing domain experts
- convenience with conjugacy
- non-parametric and other data-derived sources.

Prior information from past studies need not be in agreement.
Useful strategy: construct prior specifications from competing school-of-thoughts to contrast resulting posteriors and produce informed statements about the relative strength of each of them.

INFORMATIVE PRIORS

Example: Bernouilli likelihoods and Beta priors form conjugate priors.

1. Start with a prior distribution that expresses some uncertainty that a coin is fair: $\operatorname{Beta}(\theta \mid 4,4)$ - a coin was recorded with 4 H in 8 tosses, perhaps. Flip the coin once; assume that H is obtained. What is the posterior distribution of the uncertainty in the coin's fairness θ ?

Solution: use post=BernBeta $(\mathrm{c}(4,4), \mathrm{c}(1))$ from Example 4.R

INFORMATIVE PRIORS

Llkellhood

2. Use the posterior parameters from the previous flip as the prior for the next flip. Suppose we flip again and get a H . What is the new posterior on the uncertainty in the coin's fairness θ ?

Solution: use post=BernBeta(post, c(1)) from Example 4.R

INFORMATIVE PRIORS

Llkellhood

3. Using the most recent posterior as the prior for the next flip, flip a third time and obtain yet again a H . What is the new posterior?

Solution: in this case, we know that the posterior for the coin's fairness θ follows a $\operatorname{Beta}(\theta \mid 7,4)$ distribution. Does 3 H in a row give you pause? Is there enough evidence to suggest that the coin is not fair? What if you flipped 18 H in a row from this point on?

INFORMATIVE PRIORS

Llkellhood

4. Suppose that a friend has a coin that we know comes from a magic store; as a result, we believe that the coin is strongly biased in either of the two directions (it could be a trick coin with both sides being H, for instance), but we don't know which one it favours. We will express the belief of this prior as a Beta distribution.

Let's say that our friend flips the coin five times; resulting in 4 H and 1 T . What is the posterior distribution of the coin's fairness θ ?

MAXIMUM ENTROPY PRIORS

Whether the priors are uninformative or informative, we search for the distribution that best encodes the prior state of knowledge from a set of trial distributions.

Let X be discrete, of cardinality M, with probability density $p(X)=\left(p_{1}, \ldots, p_{M}\right)$. The entropy $H(p)$ of p is

$$
H(p)=-\sum_{i=1}^{M} p_{i} \log p_{i}, \text { with } 0 \times \log 0=0
$$

MAXIMUM ENTROPY PRIORS

The maximum entropy principle (MaxEnt) states:
given a class of trial distributions with constraints, the optimal prior is the trial distribution with the largest entropy.

As an example, the most basic constraint is for p to lie in the probability simplex, that is, $p_{1}+\cdots+p_{M}=1$ and $p_{i} \geq 0$ for all i.

With those basic constraints, the maximum entropy prior is the uniform distribution.

NAIVE BAYES CLASSIFICATION

A CURSORY GLANCE AT BAYESIAN ANALYSIS

ILLUSTRATING NBC WITH AN EXAMPLE - PRELIMINARIES

2 types of tumors: Benign and Malignant.
9 variables are measured: clump thickness, uniformity of cell size, mitoses, etc.
All measurements are given in scale of 1 to 10 (missing $=0$).
699 samples are collected, of which 458 are benign, and 241 are malignant.
559 cases are used to build the classifier and 140 cases are used to test.

ILLUSTRATING NBC WITH AN EXAMPLE - DATA VISUALIZATION

ILLUSTRATING NBC WITH AN EXAMPLE - OBJECTIVE

Question: we have 140 undiagnosed subjects with measurements. Can we determine whether their tumor is benign or malignant based on the score?

Advantages:

- easy to implement
- naïve (simple assumptions)
- robust
- ... and in some sense, optimal

Observation	Clump Thickness	Uniformity of Cell Size	Bland Chromatin	Normal Nucleoli	Mitoses
1	3	1	3	1	1
2	6	8	3	7	1
3	4	1	3	1	1
4	2	1	3	1	1
5	1	1	3	1	1
86	1	2	1	1	1
87	3	1	1	1	1
88	4	2	2	1	1
89	1	1	2	1	1
90	4	3	3	3	1
136	1	1	2	1	1
137	1	1	1	1	1
138	3	1	2	1	2
139	2	1	1	1	1
140	4	8	10	6	1

ILLUSTRATING NBC WITH AN EXAMPLE - THEORY

For each subject, the Naïve Bayes Classifier (NBC) compares the conditional probabilities

$$
P\left(C_{B} \mid x_{i 1}, x_{i 2}, x_{i 3}, \ldots, x_{i 9}\right) \text { vs. } P\left(C_{M} \mid x_{i 1}, x_{i 2}, x_{i 3}, \ldots, x_{i 9}\right)
$$

where $x_{i 1}, \ldots, x_{i 9}$ represent the following measurements:

and classifies the tumor as benign or malignant		
based on the largest probability.	Clump thickness	Bare nuclei
	Uniformity of cell size	Bland chromatin
	Uniformity of cell shape	Normal nucleoli
	Marginal adhesion	Mitoses
Single epithelial cell size		

ILLUSTRATING NBC WITH AN EXAMPLE - BAYES’ THEOREM

In the context of the Breast Cancer dataset

- posterior: based on the collected data, how likely is it that a tumor is benign or malignant?
- prior: what are the proportions of benign and malignant tumors in general?
- likelihood: knowing that a tumor is benign (or malignant), how likely is it that its measurements would have been observed?

With our notation:

$$
P\left(C_{k} \mid x_{i 1}, \ldots, x_{i 9}\right) \propto P\left(C_{k}\right) \times P\left(x_{i 1}, \ldots, x_{i 9} \mid C_{k}\right)
$$

ILLUSTRATING NBC WITH AN EXAMPLE - NBC ASSUMPTIONS

NBC requires only one assumption (which is why it is naïve):
For the individuals of a given class, the measurements are independent.
In our case, this means that for benign (or malignant) tumors, clump thickness is independent of uniformity of cell size, mitoses, and so on.

This strong assumption very often fails in real life, but NBC still performs quite well.

ILLUSTRATING NBC WITH AN EXAMPLE - NBC ASSUMPTIONS

With this assumption, the computation of the likelihood is very simple:
Likelihood $=P\left(x_{i 1}, x_{i 2}, x_{i 3}, \ldots, x_{i 9} \mid C_{k}\right)=P\left(x_{i 1} \mid C_{k}\right) \times P\left(x_{i 2} \mid C_{k}\right) \times \cdots \times P\left(x_{i 9} \mid C_{k}\right)$
The individual conditional probabilities are easier to compute.

ILLUSTRATING NBC WITH AN EXAMPLE - STEPS

Step 0: Preliminary analyses (visualization etc.)
Step 1: Calculate the prior probabilities
Step 2: Choose conditional distributions (for likelihoods)
Step 3: Estimate parameters (for likelihoods)
Step 4: Compute likelihoods
Step 5: Compute posterior probabilities
Step 6: Make classification decisions

ILLUSTRATING NBC WITH AN EXAMPLE - STEP 1

What is the proportion of benign tumors?

- Case 1. We don't know much about them, so assume their proportions are equal

$$
P\left(C_{B}\right)=P\left(C_{M}\right)=50 \%
$$

- Case 2*. We can also ask the subject matter experts (SMEs), or base it on our training data:

$$
\begin{aligned}
& P\left(C_{B}\right)=376 / 559=67 \% \\
& P\left(C_{M}\right)=183 / 559=33 \%
\end{aligned}
$$

ILLUSTRATING NBC WITH AN EXAMPLE - STEP 2

Case 1: Variables follow normal distributions

$$
X_{i j} \mid C_{k} \sim N\left(\mu_{k}, \sigma_{k}^{2}\right)
$$

Case 2*: Variables follow multinomial distribution

$$
X_{i j} \mid C_{k} \sim \operatorname{Multinomial}\left(p_{1, k}, p_{2, k}, \ldots, p_{d, k}\right)
$$

Given that the variables take values between 1 to 10 , we chose to use the multinomial distribution.

NOTE: These are not the only possibilities.

ILLUSTRATING NBC WITH AN EXAMPLE - STEP 2

Clump Thickness Score (Benign)

Clump Thickness Score (Malignant)

data-action-lab.com

ILLUSTRATING NBC WITH AN EXAMPLE - STEP 3

In order to compute the likelihood, we need to estimate the parameters for the conditional distribution.

For each variable (e.g., clump thickness), we need 10 parameters: p_{1}, \ldots, p_{10} (?)
We estimate these parameters via observed proportions in the training data.

ILLUSTRATING NBC WITH AN EXAMPLE - STEP 4

The first test subject has following observation

Obs.	Clump Thickness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chromatin	Normal Nucleoli	Mitoses
1	3	1	1	1	2	2	3	1	1

For each of the Benign and Malignant cases, the probabilities for each test score are highlighted. Naïve assumption says the likelihood is the product of the probabilities.

ILLUSTRATING NBC WITH AN EXAMPLE - STEP 5

Recall that Posterior \propto Prior \times Likelihood

Class	Prior	Likelihood	Posterior
Benign	$6.73 \mathrm{E}-01$	$9.06 \mathrm{E}-04$	$6.09 \mathrm{E}-04$
Malignant	$3.27 \mathrm{E}-01$	$5.85 \mathrm{E}-11$	$1.92 \mathrm{E}-11$

Based on NBC, we believe that the tumor on the first test subject is benign (and classify it as such).

ILLUSTRATING NBC WITH AN EXAMPLE - STEP 6

Similarly, we can calculate the posterior probabilities for each case

Based on NBC, we classify

- $78 / 140=55.7 \%$ as benign
- $62 / 140=44.3 \%$ as malignant

How well did NBC perform for the classification?

Observation	Posterior (numerator)	
	Benign	Malignant
1	$6.09 \mathrm{E}-04$	$1.92 \mathrm{E}-11$
2	$0.00 \mathrm{E}+00$	$1.50 \mathrm{E}-09$
3	$6.35 \mathrm{E}-04$	$2.14 \mathrm{E}-11$
4	$7.97 \mathrm{E}-04$	$2.87 \mathrm{E}-11$
5	$6.00 \mathrm{E}-04$	$5.85 \mathrm{E}-12$
86	$1.53 \mathrm{E}-04$	$5.68 \mathrm{E}-12$
87	$1.48 \mathrm{E}-02$	$1.92 \mathrm{E}-12$
88	$1.35 \mathrm{E}-04$	$2.24 \mathrm{E}-11$
89	2.26E-02	$1.28 \mathrm{E}-12$
90	$1.38 \mathrm{E}-06$	$8.81 \mathrm{E}-10$
136	$3.14 \mathrm{E}-03$	$3.83 \mathrm{E}-12$
137	$1.66 \mathrm{E}-03$	$4.07 \mathrm{E}-13$
138	$2.15 \mathrm{E}-04$	$1.48 \mathrm{E}-12$
139	$6.96 \mathrm{E}-03$	$6.39 \mathrm{E}-13$
140	$0.00 \mathrm{E}+00$	$2.81 \mathrm{E}-10$

ILLUSTRATING NBC WITH AN EXAMPLE - DEBRIEFING

Overall misclassification rate:

$$
6 / 140=4.3 \%
$$

(False positive) Benign misclassification rate:

$$
5 / 82=6.1 \%
$$

		Prediction		82
		Benign	Malignant	
$\begin{aligned} & \text { 돌 } \\ & \text { ㄹㄴㄴ } \end{aligned}$	Benign	77	5	
	Malignant	1	57	58
		78	62	140

(False negative) Malignant misclassification rate:

$$
1 / 58=1.7 \%
$$

Malignant detection is more accurate than benign detection.

ILLUSTRATING NBC WITH AN EXAMPLE - DEBRIEFING

First, notice that some of the posterior probabilities are 0

- This is because we did not observe all their scores in the training set

Also, take a look at ID 23. Is anything out of the ordinary there?

ID	Clump Thickness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chromatin	Normal Nucleoli	Mitoses	True class	Posterior	
											Benign	Malignant
2	6	8	8	1	3	4	3	7	1	Benign	0	1.50E-09
23	1	1	1	1	10		1	1	1	Benign	0	5.44E-13
33	8	4	4	5	4		7	8	2	Benign	0	$1.43 \mathrm{E}-09$
61	4	6	5	6	7		4	9	1	Benign	0	$2.22 \mathrm{E}-09$
74	3	4	5	3	7	3	4	6	1	Benign	$3.80 \mathrm{E}-15$	$4.41 \mathrm{E}-10$
102	6	3	2	1	3	4	4	1	1	Malignant	1.74E-09	8.57E-10

ILLUSTRATING NBC WITH AN EXAMPLE - DEBRIEFING

ID	Clump Thickness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chromatin	Normal Nucleoli	Mitoses	True class	Posterior	
											Benign	Malignant
2	6	8	8	1	3	4	3	7	1	Benign	0	$1.50 \mathrm{E}-09$
23	1	1	1	1	10	1	1	1	1	Benign	0	$5.44 \mathrm{E}-13$
33	8	4	4	5	4	7	7	8	2	Benign	0	$1.43 \mathrm{E}-09$
61	4	6	5	6	7	0	4	9	1	Benign	0	$2.22 \mathrm{E}-09$
74	3	4	5	3	7	3	4	6	1	Benign	3.80E-15	$4.41 \mathrm{E}-10$
102	6	3	2	1	3	4	4	1	1	Malignant	$1.74 \mathrm{E}-09$	$8.57 \mathrm{E}-10$

		Benign								
	Score	Clump Thickness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chromatin	Normal Nucleoli	Mitoses
	1	30.9\%	83.2\%	78.5\%	81.9\%		85.4\%	33.2%	88.0\%	97.6\%
	2					78.5\%		35.4\%		
	3	40						27.4		
	4				1.					0.0\%
	5		0.0\%							
	6						0.0\%			0.0\%
	7				0.0\%		0.0\%			
	8		0.0\%	0.0\%	0.0\%			0.0\%		
	9	0.0\%		0.0\%		0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
WIDLEWYLD Sys	10	0.0\%	0.0\%	0.0\%		0.0\%		0.0\%	0.0\%	0.0\%

ILLUSTRATING NBC WITH AN EXAMPLE - DEBRIEFING

In general, we have

- Benign tumors = lower scores
- Malignant tumors = higher scores

And if we do not observe a pattern in the training set, the resulting posterior probability will always be 0 .

In case of ID 23, only the score from the single epithelial cell size is abnormal, and all other scores are indicating it to be benign.

How can we avoid this issue of posterior probability $=0$?

ILLUSTRATING NBC WITH AN EXAMPLE - ALTERNATIVE

Set a base probability, say 10^{-8}
Multiply it by the smallest non-zero probability 0.3%, which gives $3 \times 10^{-11} \%$.

Replace the zero probability by that result: $3 \times 10^{-11} \%$.

Now, the probabilities add up to $1+3 \times 10^{-13}$, so we normalize them before proceeding to steps 4-6.

Original	Step 1	Step 2
Single Epithelial Cell Size	Single Epithelial Cell Size	Single Epithelial Cell Size
10.9\%	10.9\%	10.9\%
78.5\%	78.5\%	78.5\%
6.9\%	6.9\%	6.9\%
1.6\%	1.6\%	1.6\%
0.8\%	0.8\%	0.8\%
0.5\%	0.5\%	0.5\%
0.3\%	0.3\%	0.3\%
0.5\%	0.5\%	0.5\%
0.0\%	3E-11\%	3E-11\%
0.0\%	3E-11\%	3E-11\%

ILLUSTRATING NBC WITH AN EXAMPLE - ALTERNATIVE

By assigning non-zero prob. for all scores, the total error rate decreased from $6 / 140$ to $5 / 140$.

Posterior probabilities are all non-zero; however, most of them are very small.

ID 23 is now correctly classified as Benign even with strong penalty for unusual observation (possible recording error?).

ID	True class	Posterior (original)		Posterior (alternative)	
		Benign	Malignant	Benign	Malignant
2	Benign	0	$1.50 \mathrm{E}-09$	9.03E-30	$1.50 \mathrm{E}-09$
23	Benign	0	$5.44 \mathrm{E}-13$	$7.38 \mathrm{E}-13$	$5.47 \mathrm{E}-13$
33	Benign	0	$1.43 \mathrm{E}-09$	$1.64 \mathrm{E}-26$	$1.43 \mathrm{E}-09$
61	Benign	0	$2.22 \mathrm{E}-09$	$6.01 \mathrm{E}-24$	$2.22 \mathrm{E}-09$
74	Benign	$3.80 \mathrm{E}-15$	$4.41 \mathrm{E}-10$	3.89E-15	$4.43 \mathrm{E}-10$
102	Malignant	$1.74 \mathrm{E}-09$	$8.57 \mathrm{E}-10$	$1.78 \mathrm{E}-09$	$8.62 \mathrm{E}-10$

NOTES AND COMMENTS

The variables are NOT independent; but NBC still works well with test data \Rightarrow Method may be robust against departure from the independence assumption.

Dependency among variable may change the posterior probabilities, but the class with maximum posterior probability is often unchanged (Domingos and Pazzani, 1997).

In the classification context, we typically get more insight from independent (or uncorrelated) data than from correlated data.

NOTES AND COMMENTS

Naïve Bayes Classifier works the best when the independence assumption is met, but it performs well in dependence situations.
H. Zhang (2004) argues that optimality is attained when the dependencies inconsistently support one class over another

NOTES AND COMMENTS

NBC does not produce good probability estimates in general.
Suppose that one of the explanatory variables is categorical (e.g., smoker vs. nonsmoker.) If there is no smoker in class A, then the posterior probability is 0, even if all other explanatory variables suggest that a subject belongs to class A.

Is NBC even a Bayesian method?

MCMC AND NUMERICAL METHODS

A CURSORY GLANCE AT BAYESIAN ANALYSIS

POSTERIOR DISTRIBUTIONS

Posteriors are used to estimate a variety of model parameters of interest:

- mean, median, mode, etc.

It is possible to construct credible intervals/regions directly from the posterior.
Because the posterior is a full distribution on the parameters, it is possible to make all sorts of probabilistic statements about their values, such as:

- "I am 95\% sure that the true parameter value is bigger than 0.5"
- "There is a 50% chance that θ_{1} is larger than θ_{2} "
- etc.

POSTERIOR DISTRIBUTIONS - HDI

The best approach is to build a $1-\alpha$ credible interval of θ-values using the highest density interval (HDI):

- a region C_{k} in the parameter space
- $C_{k}=\{\theta: p(\theta \mid D) \geq k\}$
- k is the largest number such that $\int_{C_{k}} p(\theta \mid D) d \theta=1-\alpha$

The value k is the height of a horizontal line (or hyperplane, in the case of multivariate posteriors) overlaid on the posterior and for which the area under the curve bounded by the intersections with the hyperplane is $1-\alpha$. In most cases, k can be found numerically.

POSTERIOR DISTRIBUTIONS - HDI

Example: It is an election year and you are interested in knowing whether the general population prefers candidate A or candidate B. A recently published poll states that of 400 randomly sampled people, 232 preferred candidate A, while the remainder preferred candidate B.

1. Suppose that before the poll was published, your prior belief was that the overall preference follows a uniform distribution. What is the $95 \% \mathrm{HDI}$ on your belief after learning of the poll result?
(Hint: what parameters would you use in BernBeta () ?)

POSTERIOR DISTRIBUTIONS - HDI

2. Based on the poll, is it credible to believe that the population is equally divided in its preferences among candidates?
3. Assume that a subsequent poll of 100 individuals is published. How many people would have to say that they prefer candidate B for you to change the answer you gave in 2.?

POSTERIOR DISTRIBUTIONS - HDI

MCMC METHODS

When posteriors that cannot be manipulated analytically, it is usually possible to recreate a synthetic (or simulated) set of values that share the properties of the posterior (Monte Carlo simulations).

A Markov chain is an ordered, indexed set of random variables (a stochastic process) in which the values of the quantities at a given state depends probabilistically only on the values of the quantities at the preceding state.

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a probability distribution based on the construction of a Markov chain with the desired distribution as its equilibrium distribution.

MCMC METHODS

MCMC techniques are often applied to solve integration and optimization problems in large-dimensional spaces. For instance, given variables $\theta \in \Theta$ and data D, the following (typically intractable) integration problems are central to Bayesian inference:

- normalisation: $p(\theta \mid D)=\frac{p(\theta) p(D \mid \theta)}{\int p(\theta) p(D \mid \theta) d \theta}$
- marginalisation: $p(\theta \mid D)=\int p(\theta, x \mid D) d x$
- expectation: $E[f(\theta)]=\int_{\theta} f(\theta) p(\theta \mid D) d \theta$ for functions of interest (i.e. $f(\theta)=\theta$ (mean), or $f(\theta)=(\theta-E[\theta])^{2}$ (variance)).

METROPOLIS-HASTINGS (MH) ALGORITHM

MH is a specific type of MCMC; it generates a random walk (a succession of posterior samples) so that each step in the walk is completely independent of the preceding steps; the decision to reject or accept the proposed step is also independent of the walk's history.

MH uses a candidate or proposal distribution for the posterior and constructs a Markov Chain by proposing values from this candidate distribution, and then either accepting or rejecting this value (with a certain probability).

The proposal distributions can be nearly anything, but in practice it is recommended that (really) simple ones be selected: a normal if the parameter of interest can be any real number (e.g. μ) or a log-normal if it has positive support (e.g., σ^{2}).

METROPOLIS-HASTINGS (MH) ALGORITHM

```
Algorithm 1: Metropolis-Hastings Algorithm
    1 Initialize \(x^{(0)} \sim q(x)\)
    2 for \(i=1,2, \cdots\) do
    Propose: \(x^{*} \sim q\left(x^{(i)} \mid x^{(i-1)}\right)\)
    Acceptance Probability:
            \(\alpha\left(x^{*} \mid x^{(i-1)}\right)=\min \left\{1, \frac{q\left(x^{(i-1)} \mid x^{*}\right) \pi\left(x^{*}\right)}{q\left(x^{*} \mid x^{(i-1)}\right) \pi\left(x^{(i-1)}\right)}\right\}\)
        \(u \sim U(0,1)\)
        if \(u<\alpha\) then
            Accept the proposal: \(x^{(i)} \leftarrow x^{*}\)
        else
            Reject the proposal: \(x^{(i)} \leftarrow x^{(i-1)}\)
        end
```


METROPOLIS-HASTINGS (MH) ALGORITHM

Example: go through Example 9, pp. 10-12 in A Soft Introduction to Bayesian Data Analysis. The R file is provided in Example 9.R

BAYESIAN A/B TESTING

Example: go through Example 12, pp. 14-15 in A Soft Introduction to Bayesian Data Analysis. The R file is provided in Example 12.R

REFERENCES

A CURSORY GLANCE AT BAYESIAN DATA ANALYSIS

REFERENCES

Sivia, D.S., Skilling, J. [2006], Data Analysis: A Bayesian Tutorial (2 ${ }^{\text {nd }}$ ed.), Oxford Science.
Silver, N. [2012], The Signal and the Noise, Penguin.
Jaynes, E.T. [2003], Probability Theory: the Logic of Science, Cambridge Press.
Kruschke, J.K. [2011], Doing Bayesian Data Analysis: a Tutorial with R, JAGS, and Stan (2 $2^{\text {nd }}$ ed.), Academic Press

Barber, D. [2012], Bayesian Reasoning and Machine Learning, Cambridge Press.
Gelman, A., Carloin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B. [2013], Bayesian Data Analysis (3rd ed.), CRC Press.

Bååth, R. [2015], Introduction to Bayesian Data Analysis with R, UseR!
Oliphant, T.E. [2006], A Bayesian perspective on estimating mean variance, and standard-deviation from data, All Faculty Publications 278, BYU.

