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Abstract

By providing efficient and effective pre-board screening (PBS), the Canadian Air
Transport Security Authority (CATSA) ensures that security requirements are met
while maintaining an appropriate balance between staffing and the wait time
experienced by passengers.

We use queueing theory to develop a model which can predict, among other
things, the number of servers required to achieve particular service levels based on
forecast arrival rates.

In this presentation, we describe the underlying model and discuss some of its
possible refinements.
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Preliminaries
Objectives

For each combination of checkpoint, time period, day of the week, season (cluster),
use field data to provide estimates of:

§ passenger arrival rates λ
§ processing rates 𝜇
§ number of servers 𝑐

For each cluster, given λ, 𝜇, and 𝑐, calculate the quality of service (QoS) level curve
𝑝! 𝑥 , 𝑥 (i.e. percentage 𝑝 of passengers which wait less than 𝑥 minutes).

For each cluster, predict the average number of servers 𝑐∗ required to achieve a
prescribed QoS level 𝑝! , 𝑥 given an arrival profile 𝜆∗.



Preliminaries
Definitions

The Poisson process is a stochastic process where the time between any two
consecutive events is exponentially distributed with parameter 𝜆.

𝑴/𝑴/𝒄 queueing model
§ arrivals form a single queue governed by a Poisson process
§ arriving customers are processed by 𝑐 servers
§ service times are exponentially distributed

Various quantities
§ arrival rate: rate at which passengers arrive for PBS (i.e. passengers per minute)
§ service rate: processing rate at a screening line (i.e. maximal potential throughput)
§ number of servers: number of screening lines
§ service level: % of people waiting less than a given number of minutes



Preliminaries
Description of the PBS Process

Passengers enter the main queue, where
their boarding pass may be scanned at 𝑆#.

Once they reach the end of the main queue,
their boarding pass is scanned at 𝑆$ and
they are sent to one of the active lines for
processing.

In practice, it may often happen that only the
𝑆$ reading is available.

Beginning of the main queue

Entry Position S!

S"



Preliminaries
Available Data Sources

Raw Data: for each passenger reaching the end of the main queue, we have
§ the date
§ the scan time upon entering the main queue (𝑆!)
§ the scan time upon exiting the main queue (𝑆")
§ the wait time between 𝑆! and 𝑆" (passengers may not have been scanned upon

entering the main queue).

Checkpoint Utilization Report: for each day of the year and each 15−minute block,
this dataset records the maximum number of open lines (servers).

Waiting Time Report: consists of the subset of Raw Data for both 𝑆#, 𝑆$ are available.
Observations for which the wait time exhibits outliers have been removed by CATSA.
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𝑴/𝑴/𝟏 Queueing Model
Generalized Servers

Number of servers varies with time — problematic since service rate estimates with
𝑀/𝑀/𝑐 depend on the number of open servers:

§ there are times when all servers are busy
§ others when a number of open servers are idle
§ the number of open servers changes according to some vacation policy (difficult to

model)

Circumvent this issue (without invoking vacation models):
§ 𝑀/𝑀/𝑐 queue viewed as 𝑀/𝑀/1 queue where servers are hidden behind a

generalized server
§ service rates can be estimated independently of the number of servers
§ major theorems still hold with 𝑐 = 1, but related quantities are easier to compute



𝑴/𝑴/𝟏 Queueing Model
Generalized Servers

However, theory of 𝑀/𝑀/1 systems is not sufficient to recover the number of servers:
need to find a link between λ, 𝜇, and 𝑐.

Arrivals
Main queue

Servers

Exit Arrivals
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𝑴/𝑴/𝟏 Queueing Model
“Clusters”

Need to group the data into meaningful “clusters” exhibiting similar properties (i.e.
properties that can be characterized by the same Poisson process):

§ this allows for proper estimation of queuing model parameters (arrival rates,
processing rates, etc.)

The selection of the appropriate “cluster” size relies on finding a balancing point
between two extremes:

§ if clusters cover too long a period of time, the single Poisson process assumption may
fail;

§ if clusters cover too short a period of time, they are unlikely to exhibit the statistical
behaviour of the process.



𝑴/𝑴/𝟏 Queueing Model
“Clusters”

Preliminary analysis of the model’s accuracy based on:
§ checkpoint;
§ weekly patterns (day of week vs wkday/wkend);
§ seasonal patterns (season vs month), and
§ daily patterns (2-hr period vs 4-hr period).

The cluster combination that produced the most encouraging queueing results
when compared against actual reports was:

checkpoint, weekday/weekend, season, 4 hour-period.



𝑴/𝑴/𝟏 Queueing Model
Average Arrival Rate

Some boarding passes are not scanned at 𝑆# so data cannot be used to derive the
cluster arrival rates.

The 𝑆# − 𝑆$ line-up is a birth-death process: the state of the system can only go from
𝑛 to 𝑛 + 1 (when a passenger enters the queue at 𝑆#) or from 𝑚 to 𝑚 − 1 (when a
passenger leaves the queue at 𝑆$).

BURKE’S THEOREM for 𝑀/𝑀/𝑐 queues allows us to compute the arrival rate even in the
absence of many records at 𝑆#:

Consider an 𝑀/𝑀/𝑐 queue in the steady state with arrivals modeled by a homogeneous
Poisson process with rate parameter 𝜆 . Then the departure process is also a
homogeneous Poisson process with rate parameter 𝜆.



𝑴/𝑴/𝟏 Queueing Model
Average Arrival Rate

All 𝑆# arrivals will eventually leave at 𝑆$ and so the fluctuations at 𝑆$ follow the same
statistical property governing arrivals to the queue: arrival rates can be estimated
by using data readings at 𝑆$ within a given cluster.



𝑴/𝑴/𝟏 Queueing Model
Average Arrival Rate

Let the number of arrivals in the cluster by time 𝑡 is denoted by 𝑁 𝑡 . Then
§ 𝑁 𝑡 is a counting process … (obviously satisfied ü)
§ with independent and stationary increments, (satisfied with introduction of clusters ü)
§ the number of arrivals in any time interval of length 𝑡 is Poisson-distributed with mean
𝜆𝑡, i.e. for all 𝑠, 𝑡 ≥ 0,

𝑃 𝑁 𝑡 + 𝑠 − 𝑁 𝑠 = 𝑛 = 𝑒#$%
𝜆𝑡 &

𝑛! , 𝑛 = 0,1, …

§ (holds if the inter-arrival times are i.i.d. exponential random variables with the same
rate 𝜆 … analysis of 𝑆" in the raw data suggests that this is a decent assumption to
make ü)

Conclusion: in each cluster, arrivals follow a homogeneous (roughly) Poisson
process.



Illustration
Arrival Rates 



𝑴/𝑴/𝟏 Queueing Model
Average Number of Servers

Number of active servers at each checkpoint can be adjusted at any moment during
each time period, in order to accommodate fluctuations in arrivals.

The CU reports record the maximum number of simultaneously active servers
during 15-minute block.

Discrepancy between the actual numbers and the reported number is fairly small,
due to the short time duration of the blocks.

Data is not available for smaller time scales.

Average is computed over all 15-minute blocks within each cluster.



Illustration
Average Number of Servers



𝑴/𝑴/𝟏 Queueing Model
Average Wait Time

Not all wait time data is available – if 𝑆# data is representative of the overall raw
data, the “real” wait time distribution can be estimated from the subset:

§ since the full wait time data is inaccessible, representativeness is hard to prove

Possible reasons why a raw data observation may not be included in the wait time
report include:

1. scanned at 𝑆!, but the calculated wait time 𝑤 = 𝑆" − 𝑆! is an outlier compared to
neighbours

2. not scanned at 𝑆! because the scanner was overwhelmed by incoming traffic
3. main queue was empty and passenger was processed immediately, leading to 𝑤 = 0

Reason 3 may introduce bias if many such observations were removed, which could
affect the predicted QoS levels in the small wait time regime.



𝑴/𝑴/𝟏 Queueing Model
Average Wait Time

Reason 3 may introduce bias if many such observations were removed, which could
affect the predicted QoS levels in the small wait time regime.

There is another challenge: it is possible to enter the queue during a period
corresponding to a cluster, and to leave it during a period corresponding to another
cluster.

For instance, if a cluster ends at noon and the next cluster starts at noon, it can
happen that a passenger enters the queue at 𝑆! at 11:50 and leaves at 𝑆" at 12:05.

Convention: the cluster in which 𝑤 is recorded is the cluster in which 𝑆$ falls.



Illustration
Average Wait Time and Performance Levels



𝑴/𝑴/𝟏 Queueing Model
Service Rate

Let 𝑊% be the wait time in the queue. The probability of waiting up to 𝑥 units of time is

𝑝 𝑥 = 𝑃 𝑊% ≤ 𝑥 = 1 − &
'
𝑒( '(& ! and 𝑊% =

)
'(&

= &
'('(&)

. 

If the arrival rate 𝜆 is known and the average wait time 𝑊% can be computed by
another mean, then it is possible to recover the service rate 𝜇 with:

:𝜇, =
𝑊%𝜆 + 𝑊%𝜆

$ + 4𝑊%𝜆

2𝑊%

The QoS levels are thus �̂�, 𝑥 = 1 − &
-'!
𝑒( -'!(& ! ∈ (0,1), if 𝜆 < :𝜇,.

specific to 
𝑀/𝑀/1



Illustration
QoS Estimates — ⁄𝑀 𝑀/1



𝑴/𝑴/𝟏 Queueing Model
Validation

Relations do not hold if the generalized 𝑀/𝑀/1 hypothesis fails.

At this stage, the simplest way to validate is to compare the wait times generated by
the model to those of the empirical data: are the estimated QoS levels (�̂�,,! , 𝑥)
“close to” the empirical QoS levels (𝑝! , 𝑥)?

We found that the generalized 𝑀/𝑀/1 assumption, while not exact, remains
reasonable to make at the checkpoint level.

Still can’t extract 𝑐 without additional assumptions.
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Regression Model
Linking 𝜆, 𝜇, and 𝑐

Regression assumption: on a quarterly level, the cluster mean processing rate 𝜇 is
a function of

§ the number of active servers 𝑐 (hidden behind the generalized server), and 
§ the mean arrival rate 𝜆.

Simplest form: 𝜇 = 𝜇 𝜆, 𝑐 = 𝑎𝑐 + 𝑏𝜆 (other forms possible as well).

Do quarterly clusters observations &
/
, -'!
/

lie on a line? What would that mean, from 
a checkpoint perspective? 

Quarterly clusters observations are weighted by number of arrivals.



Illustration
Regression



Illustration
Regression



Regression Model
Service Rate and Performance Levels

Service rate estimates: :𝜇0 = :𝑎𝑐 + G𝑏𝜆 , with optimal regression parameters :𝑎, G𝑏
(quarterly and seasonal estimates).

QoS level curves �̂�0(𝑥), 𝑥 estimates, as long as 𝜆 < :𝜇0:

�̂�0(𝑥) = 1 −
𝜆

:𝑎𝑐 + G𝑏𝜆
𝑒( 12/345&(& !

Additional assumptions:
§ quarterly regressions produce good fits
§ there is a quarterly characteristic to the service rate



Illustration
Estimates — ⁄𝑴 𝑴/𝟏 + Regression



Regression Model
Predicted Mean Number of Servers

1. Start with 𝑝 = 1 − &
2/35&

𝑒( 2/35&(& !, where 𝑝, &
2/35&

∈ 0,1 ;

2. Re-arrange terms ⟹ 𝑎𝑐 + 𝑏𝜆 𝑒 2/35& ! = &
#(6

𝑒&!;

3. Multiply by 𝑥 on both sides ⟹ 𝑎𝑐 + 𝑏𝜆 𝑥𝑒 2/35& ! = &!
#(6

𝑒&!;

4. Set 𝑦 = 𝑎𝑐 + 𝑏𝜆 𝑥 and 𝑧 = &!
#(6

𝑒&! ⟹ 𝑦𝑒7 = 𝑧;

5. Solve for 𝑦 ⟹ 𝑎𝑐 + 𝑏𝜆 𝑥 = 𝑦 = 𝑊8 𝑧 = 𝑊8
&!
#(6

𝑒&! , where 𝑊% is the Lambert
function, and
6. Solve for 𝑐 ⟹ 𝑐0 =

#
2!

𝑊8
&!
#(6

𝑒&! − 𝑏𝜆𝑥 .

The “physics” of the problem also require that 𝑐 ∈ [0,maximum # of servers]



Illustration
Predicted Mean Number of Servers



Regression Model
Validation

Relations do not hold if the combined 𝑴/𝑴/𝟏 + Regression hypotheses fails.

As before, we can compare the estimated QoS levels (�̂�0,! , 𝑥) to the empirical QoS
levels (𝑝! , 𝑥).

We can also compare the predicted # of servers 𝑐0 to the empirical # of servers 𝑐.

The combined hypotheses, while proving slightly less valid than the 𝑀/𝑀/1
hypothesis on its own, still provided reasonably close QoS estimates at the quarter
and checkpoint levels (regression function 𝜇 = 𝜇 𝜆, 𝑐 adds some uncertainty)

Big advantage: can extract/predict the number of active servers 𝑐
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Departure Model
Predicted Number of Servers vs. Actual Number of Servers

For any given checkpoint, quarter, and cluster, we can compare the actual number
of open servers 𝑐 (given by the CU Report), and the predicted value 𝑐0, given the
actual arrival rate 𝜆 and the actual QoS level 𝑝, 𝑥 .

Plotting 𝑐0 against 𝑐 for all clusters strongly suggests that these were linked at the
checkpoint level according to 𝑐 = Z𝑑𝑐0 , where Z𝑑 is the regression estimate of the
checkpoint departure parameter 𝑑.

Computed values of 𝑑 near 1 for nearly all checkpoints further validate the combined
model.



Illustration
Departure
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Combined Model
Final Predictions and Validation

Given an arrival rate 𝜆, a desired QoS level (𝑝, 𝑥), and checkpoint parameters
𝑎, 𝑏, 𝑑 , the predicted required number of servers is

𝑐9 = 𝑑 \ 𝑐0 =
𝑑
𝑎𝑥 𝑊8

𝜆𝑥
1 − 𝑝 𝑒

&! − 𝑏𝜆𝑥

It makes little sense to compare the predicted value 𝑐9 with the actual number of
servers 𝑐 found in the historical data as the prediction depends not only

§ on the forecasted arrival rate (which is likely to be different from the historical rate),
§ but also on the attained QoS level (for which an independent forecast is unavailable).
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Discussion
Accuracy and Potential Issues

The 𝑴/𝑴/𝟏 model on its own provides the best QoS levels estimates, while the best
estimates for the average number of active servers are provided by the Departure
model.

Some loss of information is inevitable due to the necessity of simplification
assumptions.

Possible issues which could affect the model’s accuracy:
§ Underlying arrival processes are roughly Poisson, wait time distributions are roughly

conditionally exponential for each cluster; depending on the distance between the
theoretical process and the empirical data, the 𝑀/𝑀/1 assumption may be
inappropriate.



Discussion
Accuracy and Potential Issues

Possible issues which could affect the model’s accuracy (continued):
§ Wait time distributions may be strongly biased due to missing 𝑆! scans; no easy way to

verify how representative it is
§ Server vacation policy is unknown, and may not be uniformly adhered to
§ Actual 𝑐 crudely approximated by maximum number of active lines within a 15 minute

block
§ Service rates seem to depend on other factors, not just 𝑐 and the 𝜆



Supplemental Comments 
Refinements and Recommendations

Different functional forms 𝜇 = 𝜇 𝜆, 𝑐

Model built using 2 years of data instead of a single year

Number of clusters

Queueing Approach vs. Simulation (of missing 𝑆# scans)



Consulting Post-Mortem

Clients were mathematicians: knew what they wanted, had a pretty good idea of how to get it.

Clients could have done this on their own, but were not being taken seriously by non-
technical stakeholders.

Another approach (simulation) had been used and failed to provide useful results, so there
was scepticism on the part of stakeholders.

Academics were not highly regarded, so consultant angle had to be played up.

We were able to help them find a data reporting error through preliminary analysis, which
helped solidify our credentials.

Still in use as of 2018; model performs better at the national level than at the airport level.


