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Outline

Data mining is the collection of processes by which we extract actionable
insights from data. Inherent in this definition is the idea of data reduction:
useful insights (whether in the form of summaries, sentiment analyses, etc.)
ought to be “smaller” and “more organized” than the original raw data.
The challenges presented by high data dimensionality must be addressed in
order to achieve insightful and interpretable analytical results.

Scenario – NHL Game and Data Reduction (p.3)

4.1 – Dimension Reduction (p.9)
ab The Curse of Dimensionality (p.11)

ab Principal Component Analysis (p.21)

ab The Manifold Hypothesis (p.36)
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4.2 – Feature Selection (p.64)
ab Filter Methods (p.69)

ab Wrapper Methods (p.87)

ab Subset Selection Methods (p.90)

ab Regularization (Embedded) Methods (p.92)

ab Supervised and Unsupervised Methods (p.98)

4.3 – Advanced Topics (p.100)

Course Notes + Examples (with Code) + References:
Leduc, O., Macfie, A., Maheshwari, A., Pelletier, M., Boily, P. [2020],
Feature Selection and Data Reduction, Data Science Report Series.
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Scenario – NHL Game and Data Reduction

Consider the NHL game that took place between the Ottawa Senators and
the Toronto Maple Leafs on February 18, 2017.

1st Approximation: a hockey game is a series of sequential and non-
overlapping “events” involving two teams of skaters.

What does it mean to extract useful insights from such a series of events?

Most complete raw understanding of a game might belong to its active
and passive participants: players, referees, coaches, general managers, official
scorer and time-keeper, etc.
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People who attended the game in person, watched it on TV/Internet, or
listened to it on the radio presumably also have a lot of the facts at their
disposal, with possible contamination by commentators and analysts.

How could information about the game best be relayed to people who
did not play/catch the game?

There are many ways to do so, depending on the intended level of
abstraction and on the target audience.

Some of these methods might yield different (even contradictory) insights.

Who is right?

Does it even make sense to ask the question?
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Schematic diagram of data reduction – professional hockey game.
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Boxscore, Ottawa Senators @ Toronto Maple Leafs, 18-02-2017 (espn.com)

Sens rally after blowing lead,
beat Leafs, gain on Habs.
Headline, Associated Press, 18-02-2017
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Unblocked shot heatmap and Corsi gameflow chart (Natural Stat Trick).
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Schematic diagram of data reduction – general problem (Schellinck).
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4.1 – Dimension Reduction

Advantages of working with reduced, low-dimensional data:

visualisation methods of all kinds are available and readily applicable
to such data (great for insight extraction);

high-dimensional datasets are subject to the curse of dimensionality
– when the number of features in a model increases, the number of
observations required to maintain predictive power also increases, but at
a substantially faster rate;

in high-dimension sets, all observations are roughly dissimilar to one
another – observations tend to be nearer the dataset’s boundaries than
they are to one another.
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Dimension reduction techniques such as

principal component analysis and independent component analysis;

factor analysis (for numerical data) and multiple correspondence
analysis (for categorical data)

project multi-dimensional datasets onto low-dimensional spaces with high-
information content (see Manifold Hypothesis).

Some information is lost in the process, but the hope is that the loss
is minimal and that the gains made by working with small-dimensional
datasets can offset the losses.
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4.1.1 – The Curse of Dimensionality

A model is local if it depends solely on the observations near the input
vector (kNN classification is local, linear regression is global).

With a large training set, increasing k in a kNN model, say, will yield
enough data points to provide a solid approximation to the theoretical
classification boundary.

The curse of dimensionality (CoD) is the breakdown of this approach in
high-dimensional spaces: going from 2 to 3 features, how many observations
are required to maintain kNN’s predictive power? Going from 2 to 10?

If the # of features increases but the # of observations doesn’t, local
models become global models (global models are not affected).
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Manifestations of CoD

Let xi ∼ U1(0, 1) be i.i.d. for i = 1, . . . , N . For any z ∈ [0, 1] and ε > 0
such that

I1(z; ε) = {y ∈ R : |z − y|∞ < ε} ⊆ [0, 1],

the expected number of observations xi in I1(z; ε) is∣∣I1(z; ε) ∩ {xi}Ni=1

∣∣ ≈ ε ·N.
In other words, an ε∞−ball subset of [0, 1]1 contains about ε of the
observations in {xi}Ni=1 ⊆ R, on average.
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In this instance (N = 100), the numbers of observations in I1(1/2, ε):

ε 0.001 0.01 0.02 0.05 0.1 0.5
N 0 1 2 3 5 39

E[N ] 0.1 1 2 5 10 50
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Repeating the experiment
1000 times yields:

ε N E[N ]
0.001 0.09 0.1
0.01 1.01 1
0.02 2.01 2
0.05 4.99 5
0.1 9.85 10
0.5 50.10 50
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Now, let xi ∼ U2(0, 1) be i.i.d. for i = 1, . . . , N . For any z ∈ [0, 1]2 and
ε > 0 such that

I2(z; ε) = {y ∈ R2 : ‖z− y‖∞ < ε} ⊆ [0, 1]2,

the expected number of observations xi in I2(z; ε) is∣∣I1(z; ε) ∩ {xi}Ni=1

∣∣ ≈ ε2 ·N.
In other words, an ε∞−ball subset of [0, 1]2 contains approximately ε2 of
the observations in {xi}Ni=1 ⊆ R2, on average.
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In this instance (N = 100), the numbers of observations in I2((1/2, 1/2), ε):

ε 0.001 0.01 0.02 0.05 0.1 0.5
N 0 0 0 0 0 25

E[N ] 0.0001 0.01 0.04 0.25 1 25
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Repeating the experiment
1000 times yields:

ε N E[N ]
0.001 0 0.0001
0.01 0.007 0.01
0.02 0.045 0.04
0.05 0.272 0.25
0.1 1.02 1
0.5 25.10 25
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In general, an ε∞−ball subset of [0, 1]p ⊆ Rp contains approximately εp of
the observations in {xi}Ni=1 ⊆ Rp, on average, if xi ∼ Up(0, 1).

To capture r% of uniformly i.i.d. observations in a unit p−hypercube,
we need, on avearage, a p−hypercube with edge

εp(r) = r1/p.

For instance, to capture r = 1/3 of the observations in a unit p−hypercube
in R, R2, and R10, we need, on average a p−hypercube with edge
ε1(1/3) ≈ 0.33, ε2(1/3) ≈ 0.58, and ε10(1/3) ≈ 0.90, respectively.

As p increases, the nearest observations to a given point xj ∈ Rp are
quite distant from xj, in the Euclidean sense, on average – locality is lost!
(Not necessarily the case if observations are not uniformly i.i.d.)
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!4 This is a problem for models and algorithms that rely on the (Euclidean)
nearness of observations (k nearest neighbours, k−means clustering, etc.).

The CoD manifests itself in various ways. In datasets with a large number
of features:

most observations are nearer the edge of the sample than they are
to other observations, and

realistic training sets are necessarily sparse.

Imposing restrictions on models can help mitigate the effects of the CoD,
but if the assumptions are not warranted the end result may be even worse.
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Illustration of the CoD; N = 100 observations are uniformly distributed on
the unit hypercube [0, 1]d, d = 1, 2, 3.

The red regions represent the smaller hypercubes [0, 0.5]d, d = 1, 2, 3.

The percentage of captured datapoints is seen to decrease with an increase
in d (from simplystatistics.com).
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4.1.2 – Principal Component Analysis

Principal component analysis (PCA) can be used to find the combinations
of variables along which the data points are most spread out.

Geometrically, the procedure fits the “best” p−ellipsoid to a centered
representation of the data.

The ellipsoid axes are the principal components of the data.

Small axes are components along which the variance is “small”; removing
these components can lead to a “small” loss of information.

There are scenarios where it could be those “small” axes that are more
interesting – such as the “pancake stack” problem.
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Illustration of PCA on an artificial 2D dataset. The red axes provide the
best elliptic fit. Removing the minor axis by projecting the points on the
major axis leads to dimension reduction and a (small) loss of information.
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PCA Procedure:

1. centre and “scale” the data to obtain a matrix X;

2. compute the data’s “covariance matrix” K = X>X;

3. compute K’s eigenvalues, Λ (ordered diagonal matrix), and its
orthonormal eigenvectors matrix W;

4. each eigenvector w (also known as loading) represents an axis, whose
variance is given by the associated eigenvalue λ.

Note that K ≥ 0 =⇒ Λ ≥ 0.
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The first principal component PC1 is the eigenvector w)1 of K associated
to its largest eigenvalue λ1, and the variance of the data along w1 is
proportional to λ1.

The second principal component PC2 is the eigenvector w2 of K
associated to its second largest eigenvalue λ2 ≤ λ1, and the variance
of the data along w1 is proportional to λ2, and so on.

Final Result: r = rank(X) orthonormal principal components

PC1, . . . ,PCr.

If some of the eigenvalues are 0, r < p, and vice-versa =⇒ data is
embedded in a r−dimensional subspace in the first place.
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PCA can provide an avenue for dimension reduction by “removing”
components with small eigenvalues.

The proportion of the spread in the data which can be explained
by each PC can be placed in a scree plot (eigenvalues against ordered
component indices), and retain the ordered PCs:

for which the eigenvalue is above some threshold (say, 25%);

for which the cumulative proportion of the spread falls below some
threshold (say 95%), or

prior to a kink in the scree plot.
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Example: consider an 8D dataset for which the ordered PCA eigenvalues
are

PC 1 2 3 4 5 6 7 8
Var 17 8 3 2 1 0.5 0.25 0

Prop 54 25 9 6 3 2 1 0
Cumul 54 79 88 94 98 99 100 100

If only the PCs that explain up to 95% of the cumulative variance are
retained, the original dataset reduces to a 4D subset.

If only the PCs that individually explain more than 25% of the variance
are retained, the original dataset reduces to a 2D subset.

If only the PCs that lead into the first kink in the scree plot are retained,
the original dataset reduces to a 3D subset.
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The proportion of the variance explained by each (ordered) component is
shown in the first 3 charts; the cumulative proportion is shown in the last
chart.

The cumulative proportion method is shown in the first image, the individual
threshold method in the second, and the kink method in the third.
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PCA Limitations:

dependent on scaling, and so not unique;

interpreting the PCs require domain expertise;

(quite) sensitive to outliers;

analysis goals not always aligned with the PCs, and

data assumptions not always met – does it always make sense that
important data structures and data spread be linked (see counting
pancakes problem), or that the PCs be orthogonal?
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(algobeans.com)
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PCA Example (Ng, Soo; USDA Data)

What is the best way to differentiate food items? By vitamin content, fat,
or protein level? A bit of each?

Vitamin C is present in various levels in fruit and vegetables, but not
in meats. It separates vegetables from meats, and specific vegetables from
one another (to some extent), but the meats are clumped together.

The situation is reversed for Fat levels, so a combination of Vitamin C and
Fat separates vegetables from meats, while it spreads them within their
own groups.

See two leftmost charts on p.31.
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The presence of various nutrients seems to be correlated among food items.

In the (small) sample consisting of Lamb, Pork, Kale, and Parsley, both Fat
and Protein levels seem in step, as do Fiber and Vitamin C (see p.31).

In a larger dataset, the correlations between Fat and Protein, and between
Fiber and Vitamin C, are r = 0.56 and r = 0.57, respectively.

The loadings matrix W for the nutrition dataset is
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The first principal component PC1 is the linear combination

PC1 = −0.45× Fat− 0.55× Protein + 0.55× Fiber + 0.44× Vitamin C.

Note that
| − 0.45|2 + | − 0.55|2 + |0.55|2 + |0.45|2 = 1

and that PC1 pairs Fat with Protein, and Fiber with Vitamin C, with slightly
more emphasis put on Protein and Fiber.

PC2 pairs Fat with Vitamin C, and Protein with Fiber, but weakly. Note
that PC>1PC2 = 0. What about PC3 and PC4?

If the corresponding eigenvalues have relative weights 43%, 23%, 20%,
and 14%, then PC1 and PC2 explain about 66% of the spread in the data.
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PC1 differentiates meats from vegetables; PC2 differentiates sub-
categories within meats (using Fat) and vegetables (using Vitamin C):

meats are concentrated on the left (low PC1 values).

vegetables are concentrated on the right (high PC1 values).

“seafood meats” are concentrated at the bottom (low PC2 values);

“non-leafy vegetables” are concentrated at the bottom (low PC2 values).

There are other methods to find the principal manifolds of a
dataset, including UMAP, self-organizing maps, auto-encoders, curvilinear
component analysis, manifold sculpting and kernel PCA.
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4.1.3 – The Manifold Hypothesis

Manifold learning: mapping high-d data to a lower-d manifold, such as

R3 → T 2 ↪→ 2D object.

The problem can also be re-cast as finding a set of degrees of freedom
(d.f.) which can reproduce most of the variability in a dataset.

Example: multiple photographs of a 3D object taken from different
positions (but at the same distance) can be represented by 2 d.f.: a
horizontal angle and a vertical angle.
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Plots showing degrees of freedom manifolds for images of faces – 3D object
(Tenenbaum, Silva, Langford).
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Another example: set of hand-written drawings of the digit “2”. Each of
these drawings can also be represented using a small number of d.f.:

the ratio of the length of the lowest horizontal line to the height of the
hand-written drawing;

the ratio of the length of the arch in the curve at the top to the smallest
horizontal distance from the end point of the arch to the main vertical
curve;

the rotation of the digit as a whole with respect to some baseline
orientation, etc.
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Plots showing degrees of freedom manifolds for images of handwritten digits
(Tenenbaum, Silva, Langford).
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Dimensionality reduction and manifold learning are often used:

to reduce the overall dimensionality of the data while trying to
preserve its variance;

to display high-dimensional datasets, or

to reduce the processing time of supervised learning algorithms by
lowering the dimensionality of the processed data.

Example: PCA provides a sequence of best linear approximations to high-
dimensional observations. The process has interesting theoretical properties
for computation and applications, but data is not always well-approximated
by a fully linear process.
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In this section, the focus is on non-linear dimensionality reduction methods,
most of which are a variant of kernel PCA:

LLE

Laplacian eigenmap

isomap

semidefinite embedding,

t−SNE.

Examples: R3 → R2 and R3 → GR1 mappings on the next page.
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Comparison of manifold learning methods on an artificial dataset (Cayton).
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Kernel Principal Component Analysis

For high-d datasets, linear PCA may only weakly capture/explain the
variance across the entire dataset.

This is partly because PCA relies on Euclidean distance as opposed to
geodesic distance: the distance between two points along the manifold if
it was first unrolled (see p.45).

Example: the Euclidean distance (“as the mole burrows”) between Ottawa
and Reykjavik is the length of the shortest tunnel joining the two cities.

The geodesic distance (“as the crow flies”) is the arclength of the great
circle through the two locations.
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Geodesic paths in red, Euclidean paths in light blue.
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Unfolding of a high-dimensional manifold (Tenenbaum, Silva, Langford).
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High-d manifolds can be unfolded/unrolled with the use of transfor-
mations Φ : Rn → Rm, with m ≤ N , the number of observations.

If Φ is such that
N∑
i=1

Φ(xi) = 0

(i.e., the transformed data is also centered in Rm), the kernel PCA
objective in Rn can be re-written as a linear PCA objective in Rm:

min
Vq

{
N∑
i=1

∥∥Φ(xi)− VqV>q TΦ(xi)
∥∥2} = min

Vq

{
N∑
i=1

∥∥I − VqV>q ∥∥2 Φ(xi)
>Φ(xi)

}
,

over the set of m× q matrices Vq with orthonormal columns, where q is the
desired dimension of the manifold.
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This is the error reconstruction approach and it is equivalent to the
covariance approach.

In practice, it is difficult to determine Φ explicitly.

The problem can be resolved by working with positive-definite kernel
functions K : Rn × Rn → R+ which satisfy K(x,y) = K(y,x) for all
x,y ∈ Rn and

k∑
i=1

k∑
j=1

cicjK(xi,xj) ≥ 0

for any integer k, coefficients c1, . . . , ck ∈ R and vectors x1, . . . ,xk ∈ Rn,
with equality if and only if c1, · · · , ck = 0.

In general, K(x,w) ! Φ(x)>Φ(w), arising in the kernel PCA objective.
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Popular data analysis kernels include the:

linear kernel K(x,y) = x>y;

ploynomial kernel K(x,y) = (x>y + r)k, n ∈ N, r ≥ 0, and

Gaussian kernel K(x,y) = exp
{
−‖x−y‖

2σ2

}
, σ > 0.

If x ∈ Rn is any (new) point, its projection onto the (non-linear) principal
component wj ∈ Rm is

Φ(x)>wj =

N∑
i=1

wj,iK(x,xi).

Most dimension reduction algorithms can be re-expressed as a kernel PCA.
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Kernel PCA Summary

1. Pick a kernel K, i.e. where Ki,j = K(xi,xj), 1 ≤ i, j ≤ N , and compute
the N ×N normalized and centered data kernel

K = K − 2

N
1N×NK +

1

N2
1N×NK1N×N ;

2. find the ordered eigenvalue decomposition {W,Λ} of K, and select an
appropriate d ≤ m using Λ;

3. for 1 ≤ j ≤ d ≤ m, the j−coordinate of x ∈ Rn in M = Rd ↪→ Rm is

yj = Φ(x)>wj =

N∑
i=1

wj,iK(x,xi).
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Locally Linear Embedding

Locally linear embedding (LLE) computes low-d, neighbourhood-
preserving embedding of high-d data.

Main assumption: for any subset {xi} ⊆ Rn lying on well-behaved
manifold M, with dim(M) = d, each data point and its neighbours lie on
a locally linear patch of M.

Using translations, rotations, and rescaling, the (high-d) coordinates of
each locally linear neighbourhood is mapped to a set of global coordinates
of M, but preserving the neighbouring relationships between points.
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LLE Procedure:

1. identify the punctured neighbourhood Ni = {i1, . . . , ik} of each data
point xi via k nearest neighbours;

2. find the weights zi,j that provide the best linear reconstruction of each
xi ∈ Rn from their respective punctured neighbourhoods, i.e., solve

min
Z

{
N∑
i=1

∥∥∥xi −∑j∈Nizi,jxNi(j)

∥∥∥2} ,
where Z = (zi,j) is an N ×N matrix (zi,j = 0 if j 6∈ Ni), and
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3. find the low-dimensional embedding (or code) vectors yi ∈ M(⊆ Rd)
and neighbours yNi(j) ∈ M for each i which are best reconstructed by
the weights determined in the previous step, i.e., solve

min
Y

{
N∑
i=1

∥∥∥yi −∑j∈Niwi,jyNi(j)

∥∥∥2} = min
Y

{
Tr
(
Y>YL

)}
,

where L = (I − Z)>(I − Z) and Y is an N × d matrix.

We can add restrictions to ensure that the global coordinates of the sampled
points are centered at the origin, with unit variance in all directions, so that
L has a 0 eigenvalue. The jth column of Y is then simply the eigenvector
associated with the jth smallest non-zero eigenvalue of L.
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Laplacian Eigenmaps

Laplacian eigenmaps are similar to LLE, except that the first step consists
in constructing a weighted graph G with N nodes (one per observation)
and a set of edges connecting the neighbouring points.

As with LLE, the edges of G can be obtained by finding the k nearest
neighbours of each node, or by selecting all points within some fixed radius ε.

In practice, the edges’ weights W are determined either by:

by using the inverse exponential with respect to the Euclidean distance

wi,j = exp
(
−‖xi−xj‖2

s

)
, for all i, j, for some parameter s > 0, or

by setting wi,j = 1, for all i, j.
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The embedding map is then provided by the following objective

min
Y


N∑
i=1

N∑
j=1

wi,j(yi − yj)
2

 = min
Y

{
Tr(YLY>)

}
,

subject to appropriate constraints, with the Laplacian L given by
L = D −W , where D is the (diagonal) degree matrix of G (the sum of
weights emanating from each node), and W its weight matrix.

The Laplacian eigenmap construction is identical to the LLE construction,
save for their definition of L.
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Isomap

Isomap follows the same steps as LLE except that it uses geodesic distance
instead of Euclidean distance when looking for each point’s neighbours.

Neighbourhoods can be selected with kNN or with a fixed ε.

These neighbourhood relations are represented by a graph G in which
each observation is connected to its neighbours via edges with weight
dx(i, j) between neighbours.

The geodesic distances dM(i, j) between all pairs of points on the manifold
M are then estimated in the second step.
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Semidefinite Embedding

Semidefinite embeddings (SDE) involve learning the kernel

K(x, z) = Φ(x)>Φ(z)

from the data before applying the kernel PCA transformation Φ
(semidefinite programming).

The distances and angles between observations and their neighbours are
preserved under transformations by Φ:

‖Φ(xi)− Φ(xj)‖2 = ‖xi − xj‖2,

for all xi,xj ∈ Rn.

Feature Selection and Dimension Reduction 56



MAT 4376/5314E – Techniques of Data Analysis Module 4 – Feature Selection and Dimension Reduction

In terms of the kernel matrix, this constraint can be written as

K(xi,xi)− 2K(xi,xj) +K(xj,xj) = ‖xi − xj‖2,

for all xi,xj ∈ Rn.

By adding an objective function to maximize Tr(K), that is, the variance of
the observations in the learned feature space, SDE constructs a semidefinite
program for learning the kernel matrix

K = (Ki,j)
N
i,j=1 = (K(xi,xj))

N
i,j=1 ,

from which kernel PCA can proceed.
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Unified Framework

The preceding algorithms can all be rewritten in the kernel PCA framework:

LLE – if λmax is the largest eigenvalue of L = (I − Z)>(I − Z), then
KLLE = λmaxI − L;

LE – same, but with L = D −W , then then the corresponding KLE is
related to commute times of diffusion on the underlying graph, and

Isomap – with element-wise squared geodesic distance matrix D2,

KIsomap = (−2n2)−1 (nI − 1n×n)D2 (nI − 1n×n) .

Note that this kernel is not always p.s.d.
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t−SNE

Some of the new manifold learning techniques do not fit neatly in the
kernel PCA framework: Uniform Manifold Approximation and Projection
(see Report) and the T−distributed stochastic neighbour embedding
(t−SNE).

For a dataset {xi}Ni=1 ⊆ Rn, the latter involves calculating probabilities

pi,j =
1

2N

{
exp(−‖xi − xj‖2/2σ2

i )∑
k 6=i exp(−‖xi − xk‖2/2σ2

i )
+

exp(−‖xi − xj‖2/2σ2
j )∑

k 6=j exp(−‖xj − xk‖2/2σ2
j )

}
,

which are proportional to the similarity of points in Rn for all i, j (pii is set
to 0 for all i).
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The first component in the similarity metric measures how likely it is that xi
would choose xj as its neighbour ∼ N(xi, σ

2
i ). The bandwidths σi are

selected to be smaller in denser data areas.

The lower-d manifold {yi}Ni=1 ⊆ M ⊆ Rd is selected to preserve the
similarities pi,j as much as possible, by building the (reduced) probabilities

qi,j =
(1 + ‖yi − yj‖2)−1∑
k 6=i(1 + ‖yi − yk‖2)−1

for all i, j (note the asymmetry) and minimizing the Kullback-Leibler
divergence of Q from P over possible coordinates {yi}Ni=1:

KL(P ||Q) =
∑
i6=j

pi,j log
pi,j
qi,j

.
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MNIST Example

The methods of this section are used to learn manifolds for the MNIST
dataset, a database of handwritten digits.

The results for 4 of those are shown on p.63.

The analysis of optimal manifold learning methods is subjective, as it
depends on the outcome AND on the computing cost and run time.

Näıvely, one would expect to see the coordinates in the reduced manifold
congregate in 10 (or more) distinct groups; in that regard, t−SNE seems to
perform admirably on MNIST.
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Sample from the MNIST dataset (LeCun, Cortes, Burges).
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a

a
Manifold learning on digits 0− 5: LLE, Hessian LLE, Isomap, t−SNE.
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4.2 – Feature Selection

Dimension reduction methods can be used to learn low-dimensional
manifolds for high-dimensional data.

If the resulting loss in information content can be kept small (not always
possible), this can help to mitigate the impact of the CoD.

Non-technical challenge: the manifold coordinates are not usually
interpretable in the context of the original dataset.

Example: consider a dataset with 4 features (X1 = Age, X2 = Height,
X3 = Weight, and X4 = Gender (0, 1), say).
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It is straightforward to justify a data-driven decision based on the rule

X1 = Age > 25,

for example, but not as easy for a rule such as

Y2 = 3(Age−Age)− (Height−Height)+4(Weight−Weight)+Gender > 7

(even if there is nothing wrong with the rule from a technical perspective).

Datasets often contain irrelevant and/or redundant features; identifying
and removing these variables is a common data processing task.
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Motivations:

modeling tools do not handle redundant variables well, due to variance
inflation or similar issues,

attempts to overcome the CoD or to avoid situations where the number
of variables is larger than the number of observations.

The main goal of feature selection is to remove (not transform nor project)
attributes that add noise and reduce model performance: we seek to retain
a subset of the most relevant features, in order create simpler models,
decrease training time, and reduce overfitting.

This requires a target value to predict, against which we can evaluate
features for relevance.
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Feature selection methods fall in one of three families:

filter methods focus on the relevance of each feature individually,
applying a ranking metric to each of them;

the variables that do not meet a preset benchmark on the ranking or
the ranking metric value are removed from the model building process;
different metrics/thresholds might retain different relevant features;

wrapper methods focus on the usefulness of each feature to the task
(classification/regression/etc.), but do not consider features individually;

they evaluate and compare the performance of different combinations
of features in order to select the best-performing subset of features;

embedded methods are a combination of both, using implicit metrics
to evaluate the performance of various subsets.
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Feature selection methods can also be categorized:

unsupervised methods, which determine features’ importance only
through their values (with potential feature interactions), and

supervised methods, which evaluate features’ importance in relationship
with the target feature.

Wrapper methods are typically supervised.

Unsupervised filter methods search for noisy features and include the
removal of constant variables, of ID-like variables, or features with low
variability.
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4.2.1 – Filter Methods

Filter methods evaluate features without resorting to the use of
classification or regression algorithms; these methods can either be

univariate, where each feature is ranked independently, or

multivariate, where features are considered jointly.

Filter criteria are chosen based on which metrics suit the data/problem.

The selected criterion is used to assign a score/rank to the features; those
for which it lies beyond a pre-selected threshold τ are deemed relevant and
are retained.
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Advantages:

computationally efficient;

tend to be robust against overfitting

Common methods:

Pearson correlation coefficient;

information gain (or mutual information), and

relief.

Let Y be the target variable, and X1, . . . , Xp be the predictors.
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Pearson Correlation Coefficient

The Pearson correlation coefficient (PCC) quantifies the linear
relationship between two continuous variables.

The PCC between a predictor Xi and the target Y is

ρi =
Cov(Xi, Y )

σXiσY
.

Features for which

|ρi| is large (near 1) are linearly correlated with Y ;

those for which |ρi| ≈ 0 are not linearly correlated with Y .
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We might decide to only retain those features Xi for which |ρi| > τ , for a
given 0 < τ < 1.

We might also decide to rank the features according to

|ρi1| ≥ |ρi2| ≥ · · · ≥ |ρip|

and only retain the first d features, for a given d.

The PCC ρi is only defined if both Xi and Y are numerical; there are
alternatives for categorical and for mixed Xi and Y .

!4 The correlation between a predictor Xi and the target Y could be
strong, but not linear; as the PCC cannot capture such relationships, it is
likely that the Pearson filter would fail to retain this predictor.
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Mutual Information

Information gain (IG) is an entropy-based method that measures the
dependence between features by quantifying the amount of mutual
information between them:

IG(Xi;Y ) = H(Xi)−H(Xi|Y ),

where H(Xi) is the marginal entropy of Xi and H(Xi|Y ) is the
conditional entropy of Xi given Y , and

H(Xi) = EXi[− log p(Xi)], H(Xi|Y ) = E(Xi,Y )[− log p(Xi|Y )]

where p(Xi) and p(Xi|Y ) are the PDFs of Xi and Xi|Y , respectively.
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Example: let Y represent the salary of an individual (continuous), X1

their hair colour (categorical), X2 their age (continuous), X3 their height
(continuous), and X4 their self-reported gender (categorical).

Summary statistics for a sample of 2144 individuals are shown on p. 75.

In a general population, the distribution of salaries, say, is likely to be
fairly haphazard. It might be hard to explain why, specifically, it has the
shape that it does (see p. 76).

it could be perhaps be explained by knowing the relationship between
the salary and the other variables.

It is this idea that forms the basis of mutual information feature selection.
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Summary statistics for the salary dataset; two-way tables use decile data.
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Univariate distributions (hair colour, age, height, salary).
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If the theoretical distributions are known, the entropy integrals can be
computed/approximated directly.

Gender and hair colour can be modeled using multinomial distributions,
but there is more uncertainty related to the numerical variables.

H(X1) = −
∑
colour

p(colour) log p(colour)

H(X2) = −
∫
p(age) log p(age) dage

H(X3) = −
∫
p(height) log p(height) dheight

H(X4) = −
∑

gender

p(gender) log p(gender)
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H(X1|Y ) = −
∫
p(Y )

{∑
colour

p(colour|Y ) log p(colour|Y )

}
dY

H(X2|Y ) = −
∫∫

p(Y )p(age|Y ) log p(age|Y ) dage dY

H(X3|Y ) = −
∫∫

p(Y )

∫
p(ht|Y ) log p(ht|Y ) dht dY

H(X4|Y ) = −
∫
p(Y )

∑
gender

p(gender—Y) log p(gender—Y)

 dY
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Potential approach: recode the continuous variables as decile variables
taking values {1, . . . , 10} according to which decile of the original variable
the observation falls. The integrals can then be replaced by sums:

H(X1) = −
∑
colour

p(colour) log p(colour)

H(X2) ≈ −
10∑
k=1

p(aged = k) log p(aged = k)

H(X3) ≈ −
10∑
k=1

p(heightd = k) log p(heightd = k)

H(X4) = −
∑

gender

p(gender) log p(gender)
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H(X1|Y ) ≈ −
10∑
j=1

p(Yd = j)
∑

c∈colour

p(c|Yd = j) log p(c|Yd = j)

H(X2|Y ) ≈ −
10∑
j=1

p(Yd = j)

10∑
k=1

p(ad = k|Yd = j) log p(ad = k|Yd = j)

H(X3|Y ) ≈ −
10∑
j=1

p(Yd = j)

10∑
k=1

p(hd = k|Yd = j) log p(hd = k|Yd = j)

H(X4|Y ) ≈ −
10∑
j=1

p(Yd = k)
∑

g∈gender

p(g|Yd = j) log p(g|Yd = j)
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Mutual information obtained about each predictor after observing the target
response Y (salary).

The percentage decrease in entropy after having observed Y is shown
in the column “Ratio.”

Raw IG numbers would seem to suggest that Gender has a small link
to Salary; the Ratio numbers suggest that this could be due to the way the
Age and Height levels have been categorized (deciles).
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Relief

Relief scores (numerical) features based on the identification of feature
value differences between nearest-neighbour instance pairs.

If there is a feature value difference in a neighbouring instance pair:

of the same class (as given by Y ), the relief score decreases;

in different classes, the relief score increases.

More specifically, let D = {(xn, yn)}Nn=1 ⊂ Rp × {±1} be a dataset where
xn is the n-th data sample and yn is its corresponding class label.
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For each feature i and observation n, two values are selected:

the near hit H(xn,i) is the value of Xi which is nearest to xn,i among
all instances in the same class as xn;

the near miss M(xn,i) is the value of Xi which is nearest to xn,i among
all instances in the opposite class as xn.

The relief score of the ith feature is

Sdi =
1

N

N∑
n=1

{d(xn,i,M(xn,i))− d(xn,i, H(xn,i))} ,

for some pre-selected distance d : R× R→ R+
0 .
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A feature for which near-hits tend to be nearer than near-misses has

d(xn,i,M(xn,i)) > d(xn,i, H(xn,i)),

on average; Sdi should be larger than one for which the opposite holds.

Features are relevant when their relief score is greater than a threshold τ .

Relief is noise-tolerant and robust to interactions; its effectiveness decreases
with small N .

There are variants to accommodate potential feature interactions of multi-
class problems.
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Other Filter Methods (Non-Exhaustive)

Other correlation metrics (Kendall, point-biserial correlation, etc.)

Other entropy-based metrics (gain ratio, symmetric uncertainty, etc.)

Other relief-type algorithms (ReliefF, Relieved-F, etc.)

ANOVA

Fisher Score

Gini Index
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4.2.2 – Wrapper Methods

Wrapper methods evaluate the quality of subsets of features for
predicting the target output under a selected predictive algorithm and
select the optimal combination (for a given training set and algorithm).

In contrast to filter methods, wrapping methods are integrated directly
into the classification or clustering process.

Wrapper methods treats feature selection as a search problem in which
different subsets of features are explored.

This process is computationally expensive: the size of the search space
increases exponentially with the number of predictors.
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Wrapper methods iterate over the following steps, until an “optimal” set of
features is identified:

select a feature subset, and

evaluate the performance of the selected feature subset.

The search ends when the desired quality is reached (adjusted R2, etc.).

Various search methods provide approximate solutions to the optimal
feature subset problem: hill-climbing, best-first, genetic algorithms, etc.

Wrapper methods are not as efficient as filter methods and not as
robust against overfitting; but are very effective at improving the model’s
performance due to their attempt to minimize the error rate.
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Feature selection process for classification wrapper methods (Aggarwal).
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4.2.3 – Subset Selection Methods

Stepwise selection is a form of Occam’s Razor : at each step, a new
feature is considered for inclusion or removal from the current features set
based on some criterion (F−test, t−test, etc.).

Greedy search methods have proven to be robust against overfitting
and among the least computationally expensive wrapper methods:

Backward elimination begins with the full set of features and
sequentially eliminates the least relevant ones until further removals
increase the error rate of the predictive model above some threshold.

Forward selection begins with an empty set of features and progressively
adds relevant features until some threshold is met.
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In both cases, model performance should be tested using cross-validation –
more information on this very important approach to performance evaluation
is available in ISLR (James, et al).

Stepwise Selection Methods Limitations:

the tests are biased, since they are all based on the same data;

the adjusted R2 only takes into account the # of features in the final
fit, and not the df that have been used in the entire model;

if cross-validation is used, stepwise selection has to be repeated for each
sub-model but that is not usually done, and

it’s a classic example of p-hacking.
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4.2.4 – Regularization (Embedded) Methods

An interesting hybrid is provided by the least absolute shrinkage and
selection operator (LASSO) and its variants.

Let X ∈ MN,p be the centered and scaled training matrix and let y
be the target output vector; the jth ordinary least square (OLS) coefficient
is

β̂LS,j = [(X>X)−1X>y]j.

Set a threshold λ > 0, whose actually value depends on the training dataset
(in practice, good values can be determined by cross-validation).
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By construction, β̂LS is the exact solution to the OLS problem

β̂LS = argβmin{‖y −Xβ‖22}.

There is no restriction on the values taken by the coefficients β̂LS,j;

|β̂LS,j| large =⇒ Xj plays an important role in predicting Y.

This observation forms the basis of a series of useful OLS variants.

Ridge regression (RR) provides a way to regularize the OLS regression
coefficients, by penalizing solutions with large coefficient magnitudes.
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If, in spite of this, the magnitude of a specific coefficient is “large,” then it
must have great relevance in predicting the target variable.

The problem consists in solving a modified version of the OLS scenario:

β̂RR = argβmin{‖y −Xβ‖22 +Nλ‖β‖22}.

Usually, solving the RR problem requires the use of numerical methods and
of cross-validation to determine the optimal λ.

For orthonormal covariates (X>X = Ip), however, the ridge coefficients
can be expressed in terms of the OLS coefficients:

β̂RR,j =
β̂LS,j

1 +Nλ
.
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Regression with best subset selection (BS) uses a different penalty term,
which effectively sets some of the coefficients to 0, which could be used to
select the features with non-zero coefficients.

The problem consists in solving a modified version of the OLS scenario:

β̂BS = argβmin{‖y −Xβ‖22 +Nλ‖β‖0}, ‖β‖0 =
∑
j

sgn(|βj|).

For orthonormal covariates, the best subset coefficients can be expressed
in terms of the OLS coefficients:

β̂BS,j =

{
0 if |β̂LS,j| <

√
Nλ

β̂LS,j if |β̂LS,j| ≥
√
Nλ
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For the LASSO problem

β̂BS = argβmin{‖y −Xβ‖22 +Nλ‖β‖1},

the penalty effectively yields coefficients combining the properties of RR
and BS, usually selecting no more than one feature per group of highly
correlated variables.

For orthonormal covariates, the LASSO coefficients can be expressed in
term of the OLS coefficients:

β̂L,j = β̂LS,j ·max

(
0, 1− Nλ

|β̂LS,j|

)
.

Feature Selection and Dimension Reduction 96



MAT 4376/5314E – Techniques of Data Analysis Module 4 – Feature Selection and Dimension Reduction

Other penalty functions provides various extensions: elastic nets; group,
fused and adaptive lassos; bridge regression, etc.

Regularization can be achieved for general models as well.

For a loss function L (y, ŷ(W)), where ŷ(W) are the predicted target
values (depending on the parameters W), and a penalty vector

R(W) = (R1(W), · · · , Rk(W)) ,

W∗ solves the general regularization problem

W∗ = arg min
W
{L (y, ŷ(W)) + λ>R(W)},

which can be solved numerically, assuming nice properties on L and R.
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4.2.5 – Supervised and Unsupervised Methods

Feature selection methods are usually categorised as filter, wrapper, or
embedded, but they can also be categorised as supervised or unsupervised
methods.

Feature selection methods are supervised if the labels are incorporated
into the feature reduction process, otherwise they are unsupervised.

In unsupervised methods, feature selection is carried out based only on
the characteristics of the attributes, without any reference to labels or a
target variable.

For clustering problems, supervised feature selection methods are contra-
indicated.
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What Method Should Be Used?

It depends on a number of factors:

required processing time and size of dataset;

acceptable level of uncertainty for task;

past successes, etc.

Suggestion: always try multiple methods. If multiple feature selection
methods agree on a core set of features, that provides some model-
independent support for the relevance of that set of features to the prediction
task at hand.
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4.3 – Advanced Topics

When used appropriately, the approaches to feature selection and dimension
reduction methods presented in the last two sections provide a solid toolkit
to help mitigate the effects of the curse of dimensionality.

These are, for the most part, rather straightforward.

However, an increase in conceptual complexity can lead to insights that are
out of reach by more direct approaches.

In the accompanying report, we discuss 3 additional methods that are
decidedly more sophisticated, from a mathematical perspective: singular
value decomposition, spectral feature selection, and uniform manifold
approximation and projection.
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