# MAT 4376/5314E Techniques of Data Analysis

# Module 4 Feature Selection and Dimension Reduction

P.Boily (uOttawa) with O.Leduc, A.Macfie, A.Maheshwari, M.Pelletier

Fall 2020

Feature Selection and Dimension Reduction

## Outline

Data mining is the collection of processes by which we extract actionable insights from data. Inherent in this definition is the idea of **data reduction**: useful insights (whether in the form of summaries, sentiment analyses, etc.) ought to be "smaller" and "more organized" than the original raw data. The challenges presented by high data dimensionality must be addressed in order to achieve insightful and interpretable analytical results.

Scenario – NHL Game and Data Reduction (p.3)

- 4.1 Dimension Reduction (p.9)
  - The Curse of Dimensionality (p.11)
  - Principal Component Analysis (p.21)
  - The Manifold Hypothesis (p.36)

- 4.2 Feature Selection (p.64)
  - Filter Methods (p.69)
  - Wrapper Methods (p.87)
  - Subset Selection Methods (p.90)
  - Regularization (Embedded) Methods (p.92)
  - Supervised and Unsupervised Methods (p.98)
- 4.3 Advanced Topics (p.100)

#### **Course Notes + Examples (with Code) + References:**

Leduc, O., Macfie, A., Maheshwari, A., Pelletier, M., Boily, P. [2020], *Feature Selection and Data Reduction*, Data Science Report Series.

#### Scenario – NHL Game and Data Reduction

Consider the NHL game that took place between the Ottawa Senators and the Toronto Maple Leafs on February 18, 2017.

**1st Approximation:** a hockey game is a series of sequential and non-overlapping "events" involving two teams of skaters.

What does it mean to extract useful insights from such a series of events?

**Most complete raw understanding** of a game might belong to its active and passive participants: players, referees, coaches, general managers, official scorer and time-keeper, etc. People who attended the game in person, watched it on TV/Internet, or listened to it on the radio presumably also have a lot of the facts at their disposal, with **possible contamination by commentators and analysts**.

How could information about the game best be relayed to people who did not play/catch the game?

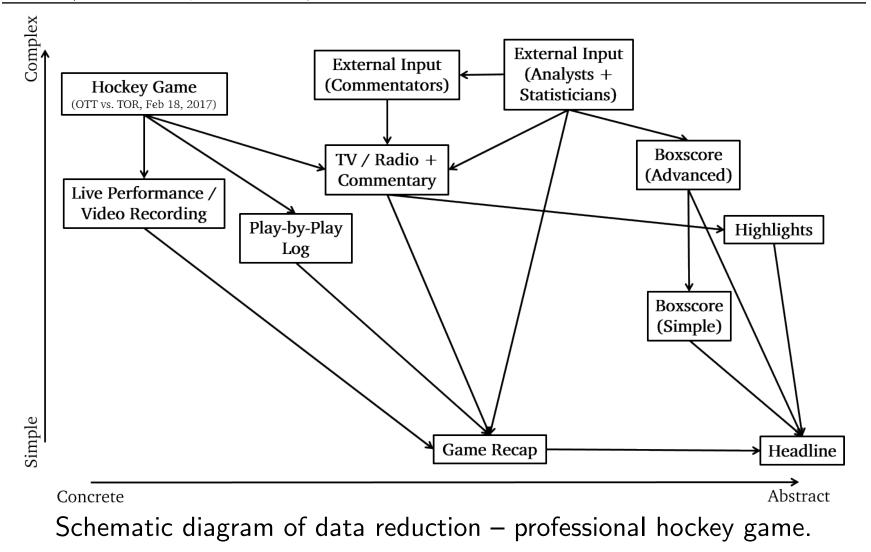
There are many ways to do so, depending on the intended **level of abstraction** and on the **target audience**.

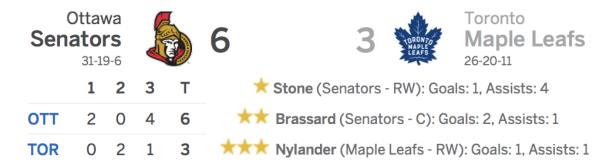
Some of these methods might yield different (even contradictory) insights.

Who is right?

Does it even make sense to ask the question?

Feature Selection and Dimension Reduction

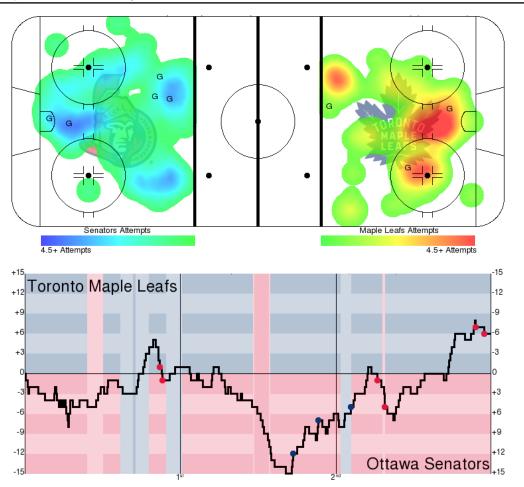




Boxscore, Ottawa Senators @ Toronto Maple Leafs, 18-02-2017 (espn.com)

## Sens rally after blowing lead, beat Leafs, gain on Habs.

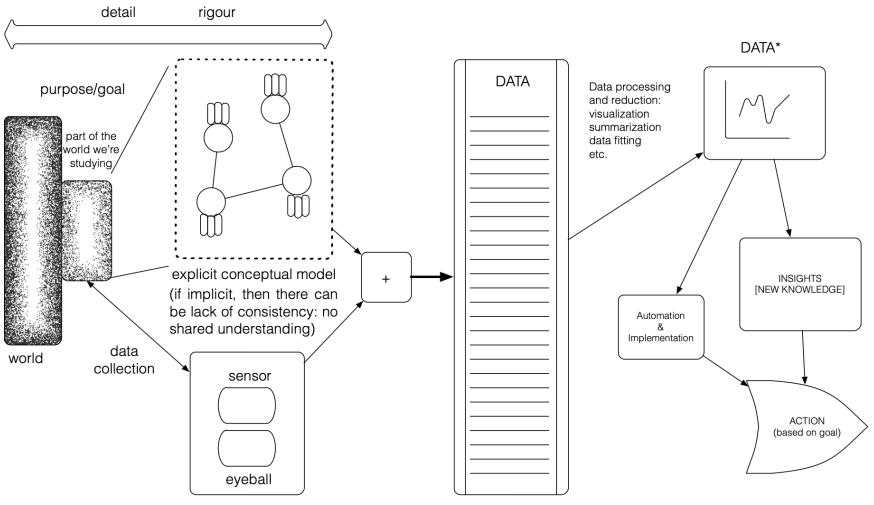
Headline, Associated Press, 18-02-2017



Unblocked shot heatmap and Corsi gameflow chart (Natural Stat Trick).



Module 4 – Feature Selection and Dimension Reduction



Schematic diagram of data reduction – general problem (Schellinck).

#### 4.1 – Dimension Reduction

Advantages of working with reduced, low-dimensional data:

- visualisation methods of all kinds are available and readily applicable to such data (great for insight extraction);
- high-dimensional datasets are subject to the curse of dimensionality

   when the number of features in a model increases, the number of
   observations required to maintain predictive power also increases, but at
   a substantially faster rate;
- in high-dimension sets, all observations are roughly dissimilar to one another – observations tend to be nearer the dataset's boundaries than they are to one another.

Dimension reduction techniques such as

- principal component analysis and independent component analysis;
- factor analysis (for numerical data) and multiple correspondence analysis (for categorical data)

project multi-dimensional datasets onto low-dimensional spaces with high-information content (see **Manifold Hypothesis**).

Some information is lost in the process, but the hope is that the loss is minimal and that the gains made by working with small-dimensional datasets can offset the losses.

#### 4.1.1 – The Curse of Dimensionality

A model is **local** if it depends solely on the observations near the input vector (kNN classification is local, linear regression is global).

With a large training set, increasing k in a kNN model, say, will yield enough data points to provide a solid approximation to the theoretical classification boundary.

The **curse of dimensionality** (CoD) is the breakdown of this approach in high-dimensional spaces: going from 2 to 3 features, how many observations are required to maintain kNN's **predictive power**? Going from 2 to 10?

If the # of features increases but the # of observations doesn't, local models become global models (global models are not affected).

Feature Selection and Dimension Reduction

#### Manifestations of CoD

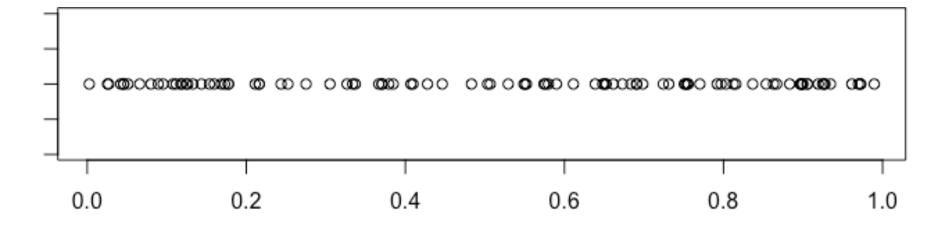
Let  $x_i \sim U^1(0,1)$  be i.i.d. for i = 1, ..., N. For any  $z \in [0,1]$  and  $\varepsilon > 0$  such that

$$I_1(z;\varepsilon) = \{ y \in \mathbb{R} : |z - y|_{\infty} < \varepsilon \} \subseteq [0, 1],$$

the expected number of observations  $x_i$  in  $I_1(z;\varepsilon)$  is

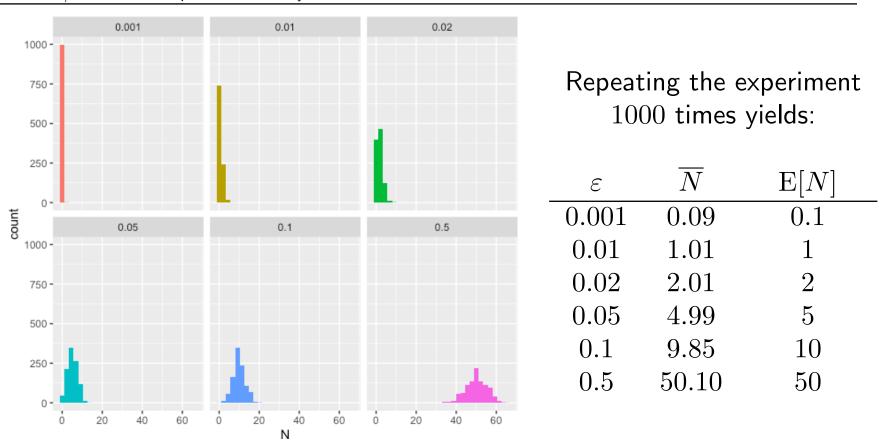
$$|I_1(z;\varepsilon) \cap \{x_i\}_{i=1}^N| \approx \varepsilon \cdot N.$$

In other words, an  $\varepsilon_{\infty}$ -ball subset of  $[0,1]^1$  contains about  $\varepsilon$  of the observations in  $\{x_i\}_{i=1}^N \subseteq \mathbb{R}$ , on average.



In this instance (N = 100), the numbers of observations in  $I_1(1/2, \varepsilon)$ :

| ε               | 0.001 | 0.01 | 0.02 | 0.05 | 0.1 | 0.5 |
|-----------------|-------|------|------|------|-----|-----|
| $\overline{N}$  | 0     | 1    | 2    | 3    | 5   | 39  |
| $\mathrm{E}[N]$ | 0.1   | 1    | 2    | 5    | 10  | 50  |



MAT 4376/5314E – Techniques of Data Analysis

Module 4 – Feature Selection and Dimension Reduction

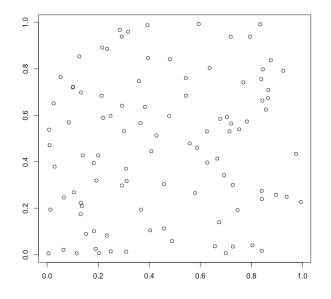
Now, let  $\mathbf{x}_i \sim U^2(0,1)$  be i.i.d. for  $i = 1, \ldots, N$ . For any  $\mathbf{z} \in [0,1]^2$  and  $\varepsilon > 0$  such that

$$I_2(\mathbf{z};\varepsilon) = \{\mathbf{y} \in \mathbb{R}^2 : \|\mathbf{z} - \mathbf{y}\|_{\infty} < \varepsilon\} \subseteq [0,1]^2,$$

the expected number of observations  $\mathbf{x}_i$  in  $I_2(\mathbf{z};\varepsilon)$  is

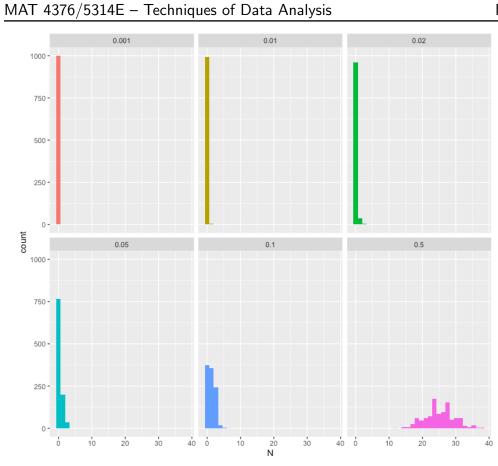
$$|I_1(\mathbf{z};\varepsilon) \cap {\mathbf{x}_i}_{i=1}^N| \approx \varepsilon^2 \cdot N.$$

In other words, an  $\varepsilon_{\infty}$ -ball subset of  $[0,1]^2$  contains approximately  $\varepsilon^2$  of the observations in  $\{\mathbf{x}_i\}_{i=1}^N \subseteq \mathbb{R}^2$ , on average.



In this instance (N = 100), the numbers of observations in  $I_2((1/2, 1/2), \varepsilon)$ :

| arepsilon       | 0.001  | 0.01 | 0.02 | 0.05 | 0.1 | 0.5 |
|-----------------|--------|------|------|------|-----|-----|
| N               | 0      | 0    | 0    | 0    | 0   | 25  |
| $\mathrm{E}[N]$ | 0.0001 | 0.01 | 0.04 | 0.25 | 1   | 25  |



# Repeating the experiment 1000 times yields:

| ${\mathcal E}$ | $\overline{N}$ | $\mathrm{E}[N]$ |
|----------------|----------------|-----------------|
| 0.001          | 0              | 0.0001          |
| 0.01           | 0.007          | 0.01            |
| 0.02           | 0.045          | 0.04            |
| 0.05           | 0.272          | 0.25            |
| 0.1            | 1.02           | 1               |
| 0.5            | 25.10          | 25              |

In general, an  $\varepsilon_{\infty}$ -ball subset of  $[0,1]^p \subseteq \mathbb{R}^p$  contains approximately  $\varepsilon^p$  of the observations in  $\{\mathbf{x}_i\}_{i=1}^N \subseteq \mathbb{R}^p$ , on average, if  $\mathbf{x}_i \sim U^p(0,1)$ .

To capture r% of uniformly i.i.d. observations in a **unit** p-hypercube, we need, on avearage, a p-hypercube with edge

$$\varepsilon_p(r) = r^{1/p}.$$

For instance, to capture r = 1/3 of the observations in a unit p-hypercube in  $\mathbb{R}$ ,  $\mathbb{R}^2$ , and  $\mathbb{R}^{10}$ , we need, on average a p-hypercube with edge  $\varepsilon_1(1/3) \approx 0.33$ ,  $\varepsilon_2(1/3) \approx 0.58$ , and  $\varepsilon_{10}(1/3) \approx 0.90$ , respectively.

As p increases, the nearest observations to a given point  $\mathbf{x}_j \in \mathbb{R}^p$  are quite distant from  $\mathbf{x}_j$ , in the Euclidean sense, on average – **locality is lost**! (Not necessarily the case if observations are not uniformly i.i.d.)

Feature Selection and Dimension Reduction

 $\triangle$  This is a problem for models and algorithms that rely on the (Euclidean) nearness of observations (k nearest neighbours, k-means clustering, etc.).

The CoD manifests itself in various ways. In datasets with a large number of features:

- most observations are nearer the edge of the sample than they are to other observations, and
- realistic training sets are necessarily sparse.

Imposing restrictions on models can help mitigate the effects of the CoD, but if the assumptions are not warranted the end result may be **even worse**.



Illustration of the CoD; N = 100 observations are uniformly distributed on the unit hypercube  $[0, 1]^d$ , d = 1, 2, 3.

The red regions represent the smaller hypercubes  $[0, 0.5]^d$ , d = 1, 2, 3.

The percentage of captured datapoints is seen to decrease with an increase in d (from simplystatistics.com).

Feature Selection and Dimension Reduction

## 4.1.2 – Principal Component Analysis

**Principal component analysis** (PCA) can be used to find the combinations of variables along which the data points are **most spread out**.

Geometrically, the procedure fits the "best"  $p-{\rm ellipsoid}$  to a centered representation of the data.

The ellipsoid axes are the **principal components** of the data.

Small axes are components along which the variance is "small"; removing these components can lead to a "small" loss of information.

There are scenarios where it could be those "small" axes that are more interesting – such as the "pancake stack" problem.

Feature Selection and Dimension Reduction

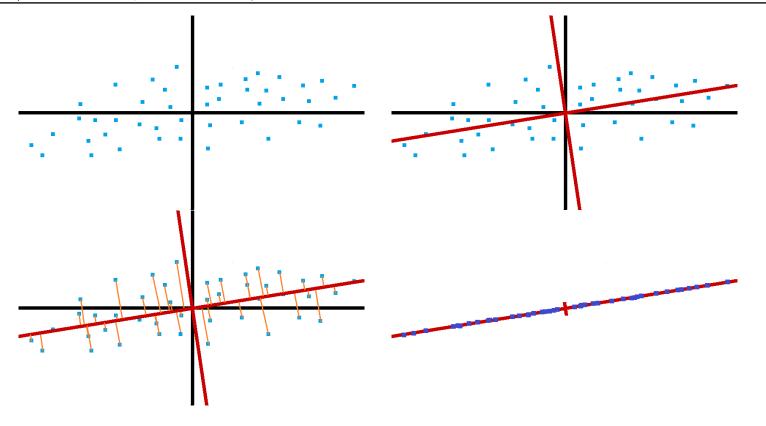


Illustration of PCA on an artificial 2D dataset. The red axes provide the best elliptic fit. Removing the minor axis by projecting the points on the major axis leads to dimension reduction and a (small) loss of information.

#### PCA Procedure:

- 1. centre and "scale" the data to obtain a matrix  $\mathbf{X}$ ;
- 2. compute the data's "covariance matrix"  $\mathbf{K} = \mathbf{X}^{\top} \mathbf{X}$ ;
- 3. compute K's eigenvalues,  $\Lambda$  (ordered diagonal matrix), and its orthonormal eigenvectors matrix W;
- 4. each eigenvector  $\mathbf{w}$  (also known as **loading**) represents an axis, whose variance is given by the associated eigenvalue  $\lambda$ .

Note that  $\mathbf{K} \geq 0 \implies \mathbf{\Lambda} \geq 0$ .

The first principal component  $PC_1$  is the eigenvector  $\mathbf{w}$ )1 of  $\mathbf{K}$  associated to its largest eigenvalue  $\lambda_1$ , and the variance of the data along  $\mathbf{w}_1$  is proportional to  $\lambda_1$ .

The second principal component  $PC_2$  is the eigenvector  $w_2$  of K associated to its second largest eigenvalue  $\lambda_2 \leq \lambda_1$ , and the variance of the data along  $w_1$  is proportional to  $\lambda_2$ , and so on.

**Final Result:**  $r = rank(\mathbf{X})$  orthonormal principal components

 $PC_1,\ldots,PC_r.$ 

If some of the eigenvalues are 0, r < p, and vice- $versa \implies$  data is embedded in a r-dimensional subspace in the first place.

Feature Selection and Dimension Reduction

PCA can provide an avenue for dimension reduction by "removing" components with small eigenvalues.

The **proportion of the spread in the data** which can be explained by each PC can be placed in a **scree plot** (eigenvalues against ordered component indices), and retain the ordered PCs:

- for which the eigenvalue is above some threshold (say, 25%);
- for which the cumulative proportion of the spread falls below some threshold (say 95%), or
- prior to a **kink** in the scree plot.

**Example:** consider an 8D dataset for which the ordered PCA eigenvalues are

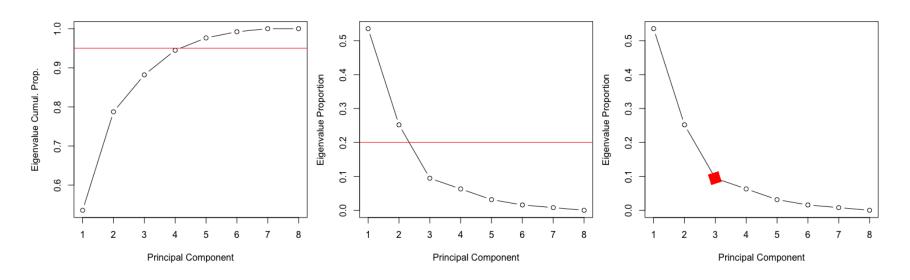
| PC    | 1  | 2  | 3  | 4  | 5  | 6   | 7    | 8   |
|-------|----|----|----|----|----|-----|------|-----|
| Var   | 17 | 8  | 3  | 2  | 1  | 0.5 | 0.25 | 0   |
| Prop  | 54 | 25 | 9  | 6  | 3  | 2   | 1    | 0   |
| Cumul | 54 | 79 | 88 | 94 | 98 | 99  | 100  | 100 |

If only the PCs that explain up to 95% of the **cumulative variance** are retained, the original dataset reduces to a 4D subset.

If only the PCs that **individually explain** more than 25% of the variance are retained, the original dataset reduces to a 2D subset.

If only the PCs that lead into the **first kink** in the scree plot are retained, the original dataset reduces to a 3D subset.

Feature Selection and Dimension Reduction



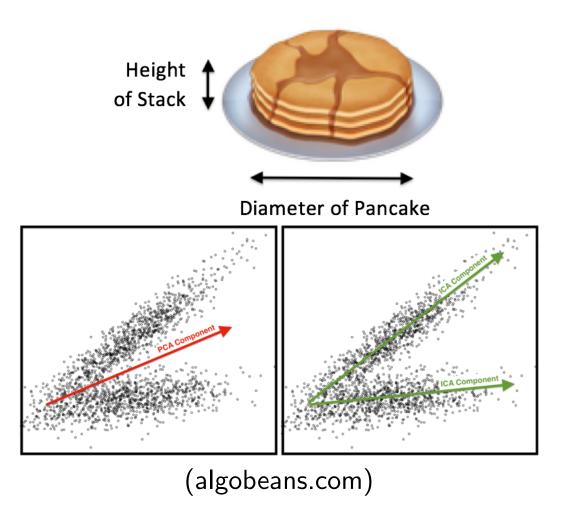
The proportion of the variance explained by each (ordered) component is shown in the first 3 charts; the cumulative proportion is shown in the last chart.

The cumulative proportion method is shown in the first image, the individual threshold method in the second, and the kink method in the third.

Feature Selection and Dimension Reduction

#### **PCA Limitations**:

- dependent on scaling, and so not unique;
- interpreting the PCs require domain expertise;
- (quite) sensitive to outliers;
- analysis goals not always aligned with the PCs, and
- data assumptions not always met does it always make sense that important data structures and data spread be linked (see counting pancakes problem), or that the PCs be orthogonal?



## PCA Example (Ng, Soo; USDA Data)

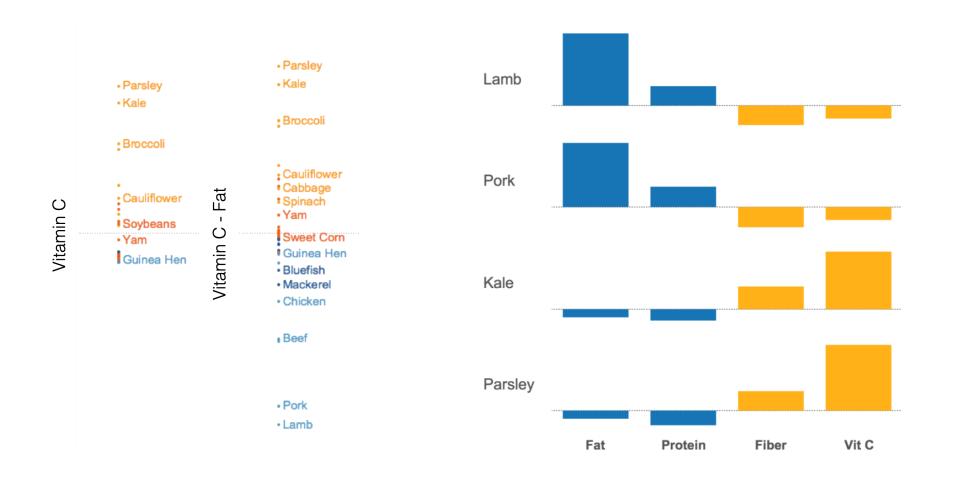
What is the best way to differentiate food items? By vitamin content, fat, or protein level? A bit of each?

Vitamin C is present in various levels in fruit and vegetables, but not in meats. It **separates** vegetables from meats, and specific vegetables from one another (to some extent), but the meats are **clumped together**.

The situation is reversed for Fat levels, so a **combination** of Vitamin C and Fat **separates** vegetables from meats, while it **spreads** them within their own groups.

See two leftmost charts on p.31.

Feature Selection and Dimension Reduction



The presence of various nutrients seems to be correlated among food items.

In the (small) sample consisting of Lamb, Pork, Kale, and Parsley, both Fat and Protein levels seem in step, as do Fiber and Vitamin C (see p.31).

In a larger dataset, the correlations between Fat and Protein, and between Fiber and Vitamin C, are r = 0.56 and r = 0.57, respectively.

|           | PC1   | PC2  | PC3   | PC4   |
|-----------|-------|------|-------|-------|
| Fat       | -0.45 | 0.66 | 0.58  | 0.18  |
| Protein   | -0.55 | 0.21 | -0.46 | -0.67 |
| Fiber     | 0.55  | 0.19 | 0.43  | -0.69 |
| Vitamin C | 0.44  | 0.70 | -0.52 | 0.22  |

The loadings matrix  ${\bf W}$  for the nutrition dataset is

The first principal component  $PC_1$  is the linear combination

 $PC_1 = -0.45 \times Fat - 0.55 \times Protein + 0.55 \times Fiber + 0.44 \times Vitamin C.$ 

Note that

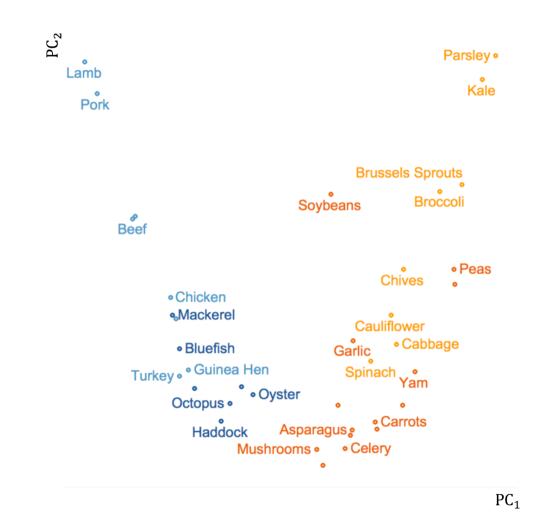
$$|-0.45|^2 + |-0.55|^2 + |0.55|^2 + |0.45|^2 = 1$$

and that  $PC_1$  pairs Fat with Protein, and Fiber with Vitamin C, with slightly more emphasis put on Protein and Fiber.

 $PC_2$  pairs Fat with Vitamin C, and Protein with Fiber, but weakly. Note that  $PC_1^TPC_2 = 0$ . What about  $PC_3$  and  $PC_4$ ?

If the corresponding eigenvalues have relative weights 43%, 23%, 20%, and 14%, then  $PC_1$  and  $PC_2$  explain about 66% of the spread in the data.

Feature Selection and Dimension Reduction



 $PC_1$  differentiates meats from vegetables;  $PC_2$  differentiates **subcategories** within meats (using Fat) and vegetables (using Vitamin C):

- meats are concentrated on the left (low PC<sub>1</sub> values).
- vegetables are concentrated on the right (high PC<sub>1</sub> values).
- "seafood meats" are concentrated at the bottom (low  $PC_2$  values);
- "non-leafy vegetables" are concentrated at the bottom (low PC<sub>2</sub> values).

There are other methods to find the **principal manifolds** of a dataset, including UMAP, self-organizing maps, auto-encoders, curvilinear component analysis, manifold sculpting and kernel PCA.

Feature Selection and Dimension Reduction

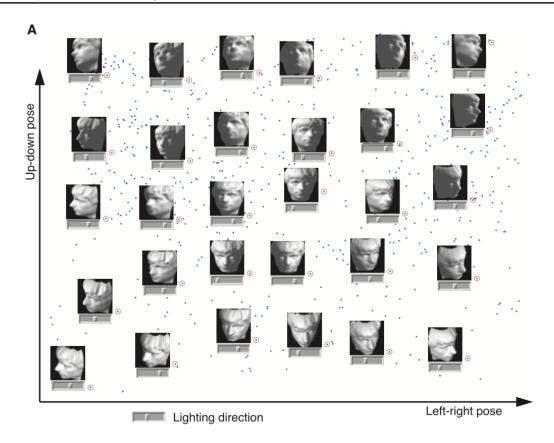
# 4.1.3 – The Manifold Hypothesis

Manifold learning: mapping high-d data to a lower-d manifold, such as

 $\mathbb{R}^3 \to T^2 \hookrightarrow 2D$  object.

The problem can also be re-cast as finding a set of **degrees of freedom** (d.f.) which can reproduce most of the variability in a dataset.

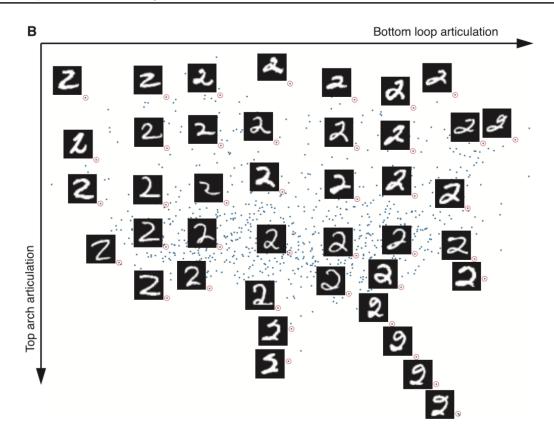
**Example:** multiple photographs of a 3D object taken from different positions (but at the same distance) can be represented by 2 d.f.: a horizontal angle and a vertical angle.



Plots showing degrees of freedom manifolds for images of faces – 3D object (Tenenbaum, Silva, Langford).

**Another example:** set of hand-written drawings of the digit "2". Each of these drawings can also be represented using a small number of d.f.:

- the ratio of the length of the lowest horizontal line to the height of the hand-written drawing;
- the ratio of the length of the arch in the curve at the top to the smallest horizontal distance from the end point of the arch to the main vertical curve;
- the rotation of the digit as a whole with respect to some baseline orientation, etc.



Plots showing degrees of freedom manifolds for images of handwritten digits (Tenenbaum, Silva, Langford).

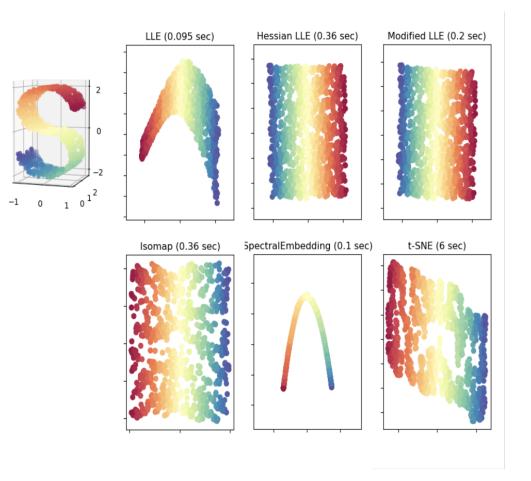
Dimensionality reduction and manifold learning are often used:

- to reduce the overall dimensionality of the data while trying to preserve its variance;
- to **display** high-dimensional datasets, or
- to reduce the processing time of supervised learning algorithms by lowering the dimensionality of the processed data.

**Example:** PCA provides a sequence of best linear approximations to highdimensional observations. The process has interesting theoretical properties for computation and applications, but data is not always well-approximated by a fully linear process. In this section, the focus is on non-linear dimensionality reduction methods, most of which are a variant of **kernel PCA**:

- LLE
- Laplacian eigenmap
- isomap
- semidefinite embedding,
- t-SNE.

**Examples:**  $\mathbb{R}^3 \to \mathbb{R}^2$  and  $\mathbb{R}^3 \to GR^1$  mappings on the next page.



#### Comparison of manifold learning methods on an artificial dataset (Cayton).

## Kernel Principal Component Analysis

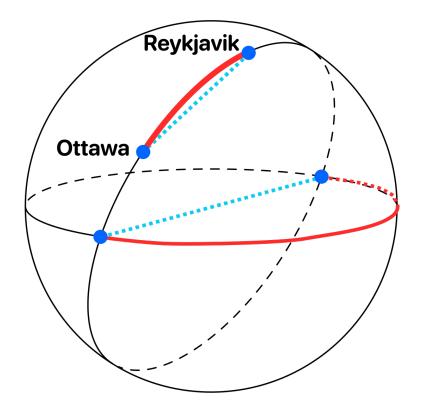
For high-d datasets, **linear PCA** may only weakly capture/explain the variance across the entire dataset.

This is partly because PCA relies on Euclidean distance as opposed to **geodesic distance**: the distance between two points *along* the manifold **if it was first unrolled** (see p.45).

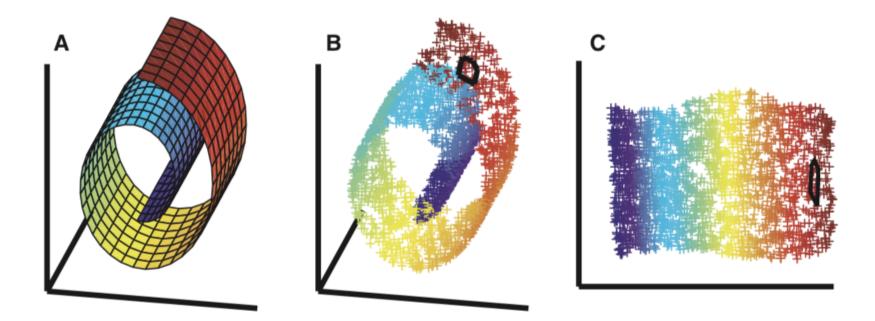
**Example:** the Euclidean distance ("as the mole burrows") between Ottawa and Reykjavik is the length of the shortest tunnel joining the two cities.

The geodesic distance ("as the crow flies") is the arclength of the **great circle** through the two locations.

Feature Selection and Dimension Reduction



Geodesic paths in red, Euclidean paths in light blue.



Unfolding of a high-dimensional manifold (Tenenbaum, Silva, Langford).

High-d manifolds can be **unfolded**/**unrolled** with the use of **transformations**  $\Phi : \mathbb{R}^n \to \mathbb{R}^m$ , with  $m \leq N$ , the number of observations.

If  $\Phi$  is such that

$$\sum_{i=1}^{N} \Phi(\mathbf{x}_i) = 0$$

(i.e., the transformed data is also centered in  $\mathbb{R}^m$ ), the **kernel PCA objective** in  $\mathbb{R}^n$  can be re-written as a linear PCA objective in  $\mathbb{R}^m$ :

$$\min_{V_q} \left\{ \sum_{i=1}^N \left\| \Phi(\mathbf{x}_i) - V_q V_q^\top T \Phi(\mathbf{x}_i) \right\|^2 \right\} = \min_{V_q} \left\{ \sum_{i=1}^N \left\| I - V_q V_q^\top \right\|^2 \Phi(\mathbf{x}_i)^\top \Phi(\mathbf{x}_i) \right\},$$

over the set of  $m \times q$  matrices  $V_q$  with orthonormal columns, where q is the desired dimension of the manifold.

This is the **error reconstruction** approach and it is equivalent to the **covariance** approach.

In practice, it is difficult to determine  $\Phi$  explicitly.

The problem can be resolved by working with **positive-definite kernel** functions  $K : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+$  which satisfy  $K(\mathbf{x}, \mathbf{y}) = K(\mathbf{y}, \mathbf{x})$  for all  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$  and

$$\sum_{i=1}^{k} \sum_{j=1}^{k} c_i c_j K(\mathbf{x}_i, \mathbf{x}_j) \ge 0$$

for any integer k, coefficients  $c_1, \ldots, c_k \in \mathbb{R}$  and vectors  $\mathbf{x}_1, \ldots, \mathbf{x}_k \in \mathbb{R}^n$ , with equality if and only if  $c_1, \cdots, c_k = 0$ .

In general,  $K(\mathbf{x}, \mathbf{w}) \iff \Phi(\mathbf{x})^{\top} \Phi(\mathbf{w})$ , arising in the kernel PCA objective.

Popular data analysis kernels include the:

• linear kernel 
$$K(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\top} \mathbf{y}$$
;

- ploynomial kernel  $K(\mathbf{x},\mathbf{y}) = (\mathbf{x}^{\!\top}\mathbf{y} + r)^k$ ,  $n \in \mathbb{N}$ ,  $r \ge 0$ , and
- Gaussian kernel  $K(\mathbf{x}, \mathbf{y}) = \exp\left\{\frac{-\|\mathbf{x}-\mathbf{y}\|}{2\sigma^2}\right\}$ ,  $\sigma > 0$ .

If  $\mathbf{x} \in \mathbb{R}^n$  is any (new) point, its projection onto the (non-linear) principal component  $\mathbf{w}_j \in \mathbb{R}^m$  is

$$\Phi(\mathbf{x})^{\mathsf{T}}\mathbf{w}_j = \sum_{i=1}^N w_{j,i} K(\mathbf{x}, \mathbf{x}_i).$$

Most dimension reduction algorithms can be re-expressed as a kernel PCA.

#### Kernel PCA Summary

1. Pick a kernel K, i.e. where  $K_{i,j} = K(\mathbf{x}_i, \mathbf{x}_j)$ ,  $1 \le i, j \le N$ , and compute the  $N \times N$  normalized and centered data kernel

$$\mathbf{K} = K - \frac{2}{N} \mathbf{1}_{N \times N} K + \frac{1}{N^2} \mathbf{1}_{N \times N} K \mathbf{1}_{N \times N};$$

- 2. find the ordered eigenvalue decomposition  $\{\mathbf{W}, \mathbf{\Lambda}\}\$  of  $\mathbf{K}$ , and select an appropriate  $d \leq m$  using  $\mathbf{\Lambda}$ ;
- 3. for  $1 \leq j \leq d \leq m$ , the *j*-coordinate of  $\mathbf{x} \in \mathbb{R}^n$  in  $\mathcal{M} = \mathbb{R}^d \hookrightarrow \mathbb{R}^m$  is

$$y_j = \Phi(\mathbf{x})^\top \mathbf{w}_j = \sum_{i=1}^N w_{j,i} K(\mathbf{x}, \mathbf{x}_i).$$

#### Locally Linear Embedding

**Locally linear embedding** (LLE) computes low-d, **neighbourhood**-**preserving** embedding of high-d data.

**Main assumption:** for any subset  $\{\mathbf{x}_i\} \subseteq \mathbb{R}^n$  lying on well-behaved manifold  $\mathcal{M}$ , with  $\dim(\mathcal{M}) = d$ , each data point and its neighbours lie on a **locally linear patch** of  $\mathcal{M}$ .

Using translations, rotations, and rescaling, the (high-d) coordinates of each locally linear neighbourhood is mapped to a set of **global coordinates** of  $\mathcal{M}$ , but preserving the neighbouring relationships between points.

#### **LLE Procedure:**

- 1. identify the punctured neighbourhood  $N_i = \{i_1, \ldots, i_k\}$  of each data point  $\mathbf{x}_i$  via k nearest neighbours;
- 2. find the weights  $z_{i,j}$  that provide the best linear reconstruction of each  $\mathbf{x}_i \in \mathbb{R}^n$  from their respective punctured neighbourhoods, i.e., solve

$$\min_{\mathbf{Z}} \left\{ \sum_{i=1}^{N} \left\| \mathbf{x}_{i} - \sum_{j \in N_{i}} z_{i,j} \mathbf{x}_{N_{i}(j)} \right\|^{2} \right\},\$$

where  $\mathbf{Z} = (z_{i,j})$  is an  $N \times N$  matrix  $(z_{i,j} = 0 \text{ if } j \notin N_i)$ , and

3. find the low-dimensional embedding (or code) vectors  $\mathbf{y}_i \in \mathcal{M}(\subseteq \mathbb{R}^d)$ and neighbours  $\mathbf{y}_{N_i(j)} \in \mathcal{M}$  for each *i* which are best reconstructed by the weights determined in the previous step, i.e., solve

$$\min_{\mathbf{Y}} \left\{ \sum_{i=1}^{N} \left\| \mathbf{y}_{i} - \sum_{j \in N_{i}} w_{i,j} \mathbf{y}_{N_{i}(j)} \right\|^{2} \right\} = \min_{\mathbf{Y}} \left\{ \mathsf{Tr} \left( \mathbf{Y}^{\mathsf{T}} \mathbf{Y} L \right) \right\},$$

where  $L = (I - \mathbf{Z})^{\top}(I - \mathbf{Z})$  and  $\mathbf{Y}$  is an  $N \times d$  matrix.

We can add restrictions to ensure that the global coordinates of the sampled points are centered at the origin, with unit variance in all directions, so that L has a 0 eigenvalue. The  $j^{\text{th}}$  column of  $\mathbf{Y}$  is then simply the eigenvector associated with the  $j^{\text{th}}$  smallest non-zero eigenvalue of L.

Feature Selection and Dimension Reduction

# Laplacian Eigenmaps

**Laplacian eigenmaps** are similar to LLE, except that the first step consists in constructing a **weighted graph**  $\mathcal{G}$  with N nodes (one per observation) and a set of edges connecting the neighbouring points.

As with LLE, the edges of  $\mathcal{G}$  can be obtained by finding the k nearest neighbours of each node, or by selecting all points within some fixed radius  $\varepsilon$ .

In practice, the edges' weights W are determined either by:

• by using the inverse exponential with respect to the Euclidean distance  $w_{i,j} = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{s}\right)$ , for all i, j, for some parameter s > 0, or

• by setting 
$$w_{i,j} = 1$$
, for all  $i, j$ .

The embedding map is then provided by the following objective

$$\min_{\mathbf{Y}} \left\{ \sum_{i=1}^{N} \sum_{j=1}^{N} w_{i,j} (\mathbf{y}_i - \mathbf{y}_j)^2 \right\} = \min_{\mathbf{Y}} \left\{ \mathsf{Tr}(\mathbf{Y} L \mathbf{Y}^{\top}) \right\},$$

subject to appropriate constraints, with the Laplacian L given by L = D - W, where D is the (diagonal) degree matrix of  $\mathcal{G}$  (the sum of weights emanating from each node), and W its weight matrix.

The Laplacian eigenmap construction is identical to the LLE construction, save for their definition of L.

#### Isomap

**Isomap** follows the same steps as LLE except that it uses **geodesic distance** instead of Euclidean distance when looking for each point's neighbours.

Neighbourhoods can be selected with kNN or with a fixed  $\varepsilon$ .

These neighbourhood relations are represented by a graph  $\mathcal{G}$  in which each observation is connected to its neighbours via edges with weight  $d_x(i, j)$  between neighbours.

The geodesic distances  $d_{\mathcal{M}}(i, j)$  between all pairs of points on the manifold  $\mathcal{M}$  are then estimated in the second step.

#### Semidefinite Embedding

Semidefinite embeddings (SDE) involve learning the kernel

$$K(\mathbf{x}, \mathbf{z}) = \Phi(\mathbf{x})^{\top} \Phi(\mathbf{z})$$

from the data before applying the kernel PCA transformation  $\Phi$  (semidefinite programming).

The distances and angles between observations and their neighbours are preserved under transformations by  $\Phi$ :

$$\|\Phi(\mathbf{x}_i) - \Phi(\mathbf{x}_j)\|^2 = \|\mathbf{x}_i - \mathbf{x}_j\|^2,$$

for all  $\mathbf{x}_i, \mathbf{x}_j \in \mathbb{R}^n$ .

In terms of the kernel matrix, this constraint can be written as

$$K(\mathbf{x}_i, \mathbf{x}_i) - 2K(\mathbf{x}_i, \mathbf{x}_j) + K(\mathbf{x}_j, \mathbf{x}_j) = \|\mathbf{x}_i - \mathbf{x}_j\|^2,$$

for all  $\mathbf{x}_i, \mathbf{x}_j \in \mathbb{R}^n$ .

By adding an objective function to maximize Tr(K), that is, the variance of the observations in the learned feature space, SDE constructs a semidefinite program for learning the **kernel matrix** 

$$K = (K_{i,j})_{i,j=1}^{N} = (K(\mathbf{x}_i, \mathbf{x}_j))_{i,j=1}^{N},$$

from which kernel PCA can proceed.

## **Unified Framework**

The preceding algorithms can all be rewritten in the kernel PCA framework:

- LLE if  $\lambda_{\max}$  is the largest eigenvalue of  $L = (I \mathbf{Z})^{\top}(I \mathbf{Z})$ , then  $K_{\text{LLE}} = \lambda_{\max}I L$ ;
- LE same, but with L = D W, then then the corresponding  $K_{\text{LE}}$  is related to commute times of diffusion on the underlying graph, and
- Isomap with element-wise squared geodesic distance matrix  $\mathcal{D}^2$ ,

$$K_{\text{Isomap}} = (-2n^2)^{-1} \left( nI - \mathbf{1}_{n \times n} \right) \mathcal{D}^2 \left( nI - \mathbf{1}_{n \times n} \right).$$

Note that this kernel is not always p.s.d.

#### t-SNE

Some of the new manifold learning techniques do not fit neatly in the kernel PCA framework: Uniform Manifold Approximation and Projection (see Report) and the T-distributed stochastic neighbour embedding (t-SNE).

For a dataset  $\{\mathbf{x}_i\}_{i=1}^N \subseteq \mathbb{R}^n$ , the latter involves calculating probabilities

$$p_{i,j} = \frac{1}{2N} \left\{ \frac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2 / 2\sigma_i^2)}{\sum_{k \neq i} \exp(-\|\mathbf{x}_i - \mathbf{x}_k\|^2 / 2\sigma_i^2)} + \frac{\exp(-\|\mathbf{x}_i - \mathbf{x}_j\|^2 / 2\sigma_j^2)}{\sum_{k \neq j} \exp(-\|\mathbf{x}_j - \mathbf{x}_k\|^2 / 2\sigma_j^2)} \right\},$$

which are proportional to the similarity of points in  $\mathbb{R}^n$  for all i, j ( $p_{ii}$  is set to 0 for all i).

Feature Selection and Dimension Reduction

The first component in the similarity metric measures how likely it is that  $\mathbf{x}_i$  would choose  $\mathbf{x}_j$  as its neighbour  $\sim N(\mathbf{x}_i, \sigma_i^2)$ . The bandwidths  $\sigma_i$  are selected to be smaller in denser data areas.

The lower-d manifold  $\{\mathbf{y}_i\}_{i=1}^N \subseteq \mathcal{M} \subseteq \mathbb{R}^d$  is selected to preserve the similarities  $p_{i,j}$  as much as possible, by building the (reduced) probabilities

$$q_{i,j} = \frac{(1 + \|\mathbf{y}_i - \mathbf{y}_j\|^2)^{-1}}{\sum_{k \neq i} (1 + \|\mathbf{y}_i - \mathbf{y}_k\|^2)^{-1}}$$

for all i, j (note the asymmetry) and minimizing the Kullback-Leibler divergence of Q from P over possible coordinates  $\{\mathbf{y}_i\}_{i=1}^N$ :

$$\mathsf{KL}(P||Q) = \sum_{i \neq j} p_{i,j} \log \frac{p_{i,j}}{q_{i,j}}.$$

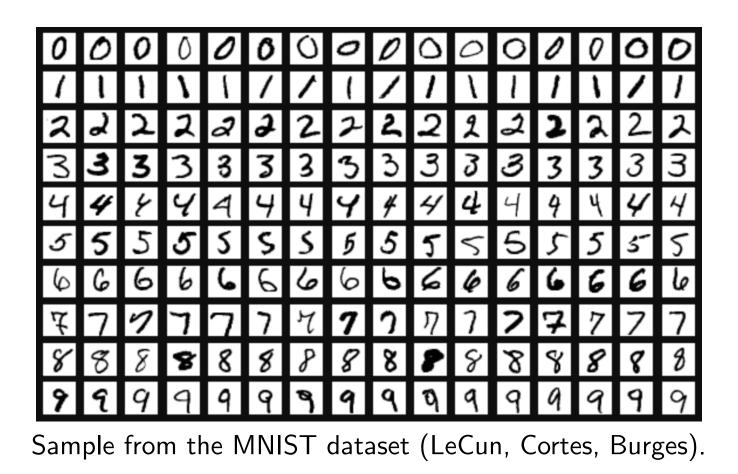
## MNIST Example

The methods of this section are used to learn manifolds for the MNIST dataset, a database of handwritten digits.

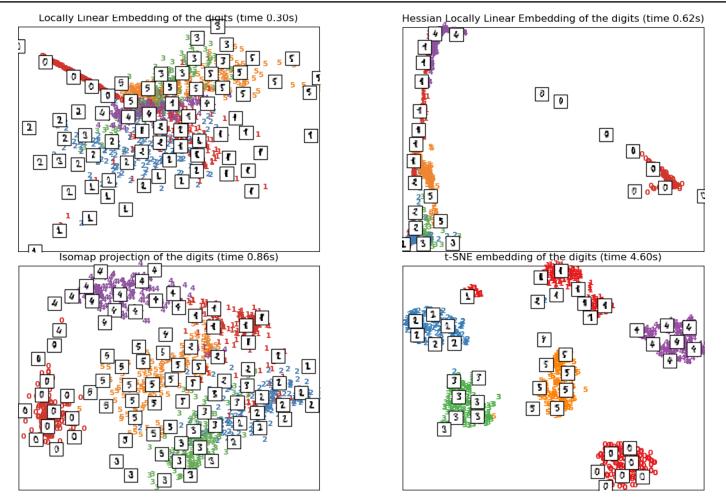
The results for 4 of those are shown on p.63.

The analysis of optimal manifold learning methods is **subjective**, as it depends on the outcome AND on the computing cost and run time.

Naïvely, one would expect to see the coordinates in the reduced manifold congregate in 10 (or more) distinct groups; in that regard, t-SNE seems to perform admirably on MNIST.







Manifold learning on digits 0-5: LLE, Hessian LLE, Isomap, t-SNE.

#### 4.2 – Feature Selection

Dimension reduction methods can be used to learn **low-dimensional manifolds** for high-dimensional data.

If the resulting loss in information content can be kept small (not always possible), this can help to mitigate the impact of the CoD.

**Non-technical challenge:** the manifold coordinates are not usually **interpretable** in the context of the original dataset.

**Example:** consider a dataset with 4 features ( $X_1 = \text{Age}$ ,  $X_2 = \text{Height}$ ,  $X_3 = \text{Weight}$ , and  $X_4 = \text{Gender} (0, 1)$ , say).

It is straightforward to justify a data-driven decision based on the rule

 $X_1 = \mathsf{Age} > 25,$ 

for example, but not as easy for a rule such as

 $Y_2 = 3(\mathsf{Age} - \overline{\mathsf{Age}}) - (\mathsf{Height} - \overline{\mathsf{Height}}) + 4(\mathsf{Weight} - \overline{\mathsf{Weight}}) + \mathsf{Gender} > 7$ 

(even if there is nothing wrong with the rule from a technical perspective).

Datasets often contain **irrelevant** and/or **redundant** features; identifying and removing these variables is a common data processing task.

#### Motivations:

- modeling tools do not handle redundant variables well, due to variance inflation or similar issues,
- attempts to overcome the CoD or to avoid situations where the number of variables is larger than the number of observations.

The main goal of **feature selection** is to remove (not transform nor project) attributes that add noise and reduce model performance: we seek to retain a subset of the most **relevant features**, in order create simpler models, decrease training time, and reduce **overfitting**.

This requires a target value to predict, against which we can evaluate features for relevance.

Feature Selection and Dimension Reduction

Feature selection methods fall in one of three families:

 filter methods focus on the relevance of each feature individually, applying a ranking metric to each of them;

the variables that do not meet a **preset benchmark** on the ranking or the ranking metric value are removed from the model building process; different metrics/thresholds might retain different relevant features;

- wrapper methods focus on the usefulness of each feature to the task (classification/regression/etc.), but do not consider features individually; they evaluate and compare the performance of different combinations of features in order to select the best-performing subset of features;
- embedded methods are a combination of both, using implicit metrics to evaluate the performance of various subsets.

Feature selection methods can also be categorized:

- unsupervised methods, which determine features' importance only through their values (with potential feature interactions), and
- supervised methods, which evaluate features' importance in relationship with the target feature.

Wrapper methods are typically supervised.

Unsupervised filter methods search for **noisy features** and include the removal of constant variables, of ID-like variables, or features with low variability.

# 4.2.1 – Filter Methods

**Filter methods** evaluate features without resorting to the use of classification or regression algorithms; these methods can either be

- **univariate**, where each feature is ranked independently, or
- **multivariate**, where features are considered jointly.

Filter criteria are chosen based on which metrics suit the data/problem.

The selected criterion is used to assign a score/rank to the features; those for which it lies beyond a pre-selected threshold  $\tau$  are deemed **relevant** and are retained.

Feature Selection and Dimension Reduction

#### Advantages:

- computationally efficient;
- tend to be robust against overfitting

Common methods:

- Pearson correlation coefficient;
- information gain (or mutual information), and
- relief.

Let Y be the target variable, and  $X_1, \ldots, X_p$  be the predictors.

#### **Pearson Correlation Coefficient**

The **Pearson correlation coefficient** (PCC) quantifies the linear relationship between two continuous variables.

The PCC between a predictor  $X_i$  and the target Y is

$$\rho_i = \frac{\operatorname{Cov}(X_i,Y)}{\sigma_{X_i}\sigma_Y}.$$

Features for which

- $|\rho_i|$  is large (near 1) are **linearly correlated** with Y;
- those for which  $|\rho_i| \approx 0$  are **not linearly correlated** with Y.

We might decide to only retain those features  $X_i$  for which  $|\rho_i| > \tau$ , for a given  $0 < \tau < 1$ .

We might also decide to rank the features according to

$$|\rho_{i_1}| \ge |\rho_{i_2}| \ge \dots \ge |\rho_{i_p}|$$

and only retain the first d features, for a given d.

The PCC  $\rho_i$  is only defined if both  $X_i$  and Y are numerical; there are alternatives for categorical and for mixed  $X_i$  and Y.

 $\triangle$  The correlation between a predictor  $X_i$  and the target Y could be strong, but not linear; as the PCC cannot capture such relationships, it is likely that the Pearson filter would fail to retain this predictor.

Feature Selection and Dimension Reduction

### **Mutual Information**

**Information gain** (IG) is an entropy-based method that measures the dependence between features by quantifying the amount of **mutual information** between them:

$$\mathsf{IG}(X_i;Y) = H(X_i) - H(X_i|Y),$$

where  $H(X_i)$  is the marginal entropy of  $X_i$  and  $H(X_i|Y)$  is the conditional entropy of  $X_i$  given Y, and

 $H(X_i) = E_{X_i}[-\log p(X_i)], \ H(X_i|Y) = E_{(X_i,Y)}[-\log p(X_i|Y)]$ 

where  $p(X_i)$  and  $p(X_i|Y)$  are the PDFs of  $X_i$  and  $X_i|Y$ , respectively.

Feature Selection and Dimension Reduction

**Example:** let Y represent the salary of an individual (continuous),  $X_1$  their hair colour (categorical),  $X_2$  their age (continuous),  $X_3$  their height (continuous), and  $X_4$  their self-reported gender (categorical).

Summary statistics for a sample of 2144 individuals are shown on p. 75.

In a general population, the distribution of salaries, say, is likely to be fairly haphazard. It might be hard to explain why, specifically, it has the shape that it does (see p. 76).

it could be perhaps be explained by knowing the relationship between the salary and the other variables.

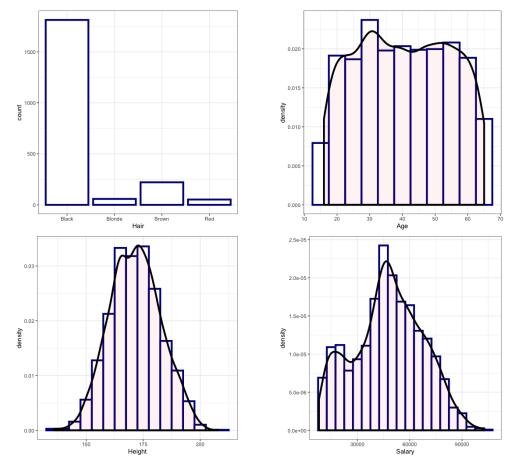
It is this idea that forms the basis of mutual information feature selection.

| Hair           |             |                          | Gene                                                                                                                            | ler                                               |                                       |                                            | S                               | um                               | mar                                   | у                                                    | Age                                            | Height                                        | t s                                    | Sala                                   | ry                                                |                                                                  | Sa                                                      | lary                             | ,                                           |                                            |                                                    |                                                      | Hair                                               |                                                                                                                               |                                                                                | т                                                                                        |                                                                       |
|----------------|-------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------|--------------------------------------------|---------------------------------|----------------------------------|---------------------------------------|------------------------------------------------------|------------------------------------------------|-----------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------|----------------------------------|---------------------------------------------|--------------------------------------------|----------------------------------------------------|------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Black          | 181         | 3                        | Fema                                                                                                                            | ale                                               | 1                                     | 083                                        | Ν                               | ИIN                              |                                       |                                                      | 16                                             | 136                                           | 5                                      | 80                                     | 000                                               |                                                                  | De                                                      | cile                             | s                                           | Bla                                        | ck                                                 | Blon                                                 | de                                                 | Brown                                                                                                                         | Red                                                                            | d l'                                                                                     | otal                                                                  |
| Blonde         | 5           | 8                        | Male                                                                                                                            |                                                   | 1                                     | 061                                        | C                               | 21                               |                                       |                                                      | 29                                             | 164                                           | 1                                      | 340                                    | 000                                               | 1                                                                |                                                         |                                  |                                             | :                                          | 193                                                |                                                      | 7                                                  | 25                                                                                                                            | 8                                                                              | 8                                                                                        | 233                                                                   |
| Brown          | 22          | 1                        |                                                                                                                                 |                                                   | 2                                     | 144                                        | Ν                               | ИED                              |                                       |                                                      | 40                                             | 172                                           | 2                                      | 480                                    | 000                                               | 2                                                                |                                                         |                                  |                                             | :                                          | 180                                                |                                                      | 9                                                  | 25                                                                                                                            | 5                                                                              | 8                                                                                        | 222                                                                   |
| Red            | 5           | 2                        |                                                                                                                                 |                                                   |                                       |                                            | C                               | 23                               |                                       |                                                      | 53                                             | 179                                           | Э                                      | 612                                    | 250                                               | 3                                                                |                                                         |                                  |                                             | :                                          | 180                                                |                                                      | 4                                                  | 30                                                                                                                            | (                                                                              | 6                                                                                        | 220                                                                   |
|                | 214         |                          |                                                                                                                                 |                                                   |                                       |                                            |                                 | ЛАХ                              |                                       |                                                      | 65                                             | 208                                           | 3 1                                    | 1030                                   |                                                   | 4                                                                |                                                         |                                  |                                             |                                            | 187                                                |                                                      | 4                                                  | 14                                                                                                                            |                                                                                |                                                                                          | 208                                                                   |
|                |             |                          |                                                                                                                                 |                                                   |                                       |                                            | _                               | ИЕА                              |                                       |                                                      | 40.4                                           | 171.6                                         |                                        | 767                                    |                                                   | 5                                                                |                                                         |                                  |                                             |                                            | 182                                                |                                                      | 8                                                  | 26                                                                                                                            | 1                                                                              |                                                                                          | 224                                                                   |
|                |             |                          |                                                                                                                                 |                                                   |                                       |                                            |                                 | TDE                              |                                       |                                                      | 14.2                                           | 11.2                                          |                                        |                                        |                                                   | 6                                                                |                                                         |                                  |                                             |                                            | 185                                                |                                                      | 5                                                  | 18                                                                                                                            |                                                                                |                                                                                          | 209                                                                   |
|                |             |                          |                                                                                                                                 |                                                   |                                       |                                            |                                 | SKEV                             |                                       |                                                      | 0.01                                           | 0.06                                          |                                        |                                        | .04                                               | 7                                                                |                                                         |                                  |                                             |                                            | 183                                                |                                                      | 5                                                  | 18                                                                                                                            |                                                                                |                                                                                          | 21                                                                    |
|                |             |                          |                                                                                                                                 |                                                   |                                       |                                            |                                 |                                  | •                                     |                                                      | 0.01                                           | 0.00                                          |                                        | 0                                      | .04                                               | 8                                                                |                                                         |                                  |                                             |                                            | 184                                                |                                                      | 6                                                  | 19                                                                                                                            |                                                                                |                                                                                          | 21                                                                    |
|                |             |                          |                                                                                                                                 |                                                   |                                       |                                            |                                 |                                  |                                       |                                                      |                                                |                                               |                                        |                                        |                                                   |                                                                  |                                                         |                                  |                                             |                                            |                                                    |                                                      |                                                    |                                                                                                                               |                                                                                |                                                                                          | 21                                                                    |
|                |             |                          |                                                                                                                                 |                                                   |                                       |                                            |                                 |                                  |                                       |                                                      |                                                |                                               |                                        |                                        |                                                   |                                                                  |                                                         |                                  |                                             |                                            | 60                                                 |                                                      | 0                                                  | 22                                                                                                                            |                                                                                | E                                                                                        | 20                                                                    |
|                |             |                          |                                                                                                                                 |                                                   |                                       |                                            |                                 |                                  |                                       |                                                      |                                                |                                               |                                        |                                        |                                                   | 9                                                                |                                                         |                                  |                                             |                                            | 168                                                |                                                      | 8                                                  | 22                                                                                                                            |                                                                                |                                                                                          |                                                                       |
|                |             |                          |                                                                                                                                 |                                                   |                                       |                                            |                                 |                                  |                                       |                                                      |                                                |                                               |                                        |                                        |                                                   | 1                                                                | .0                                                      |                                  |                                             | :                                          | 171                                                |                                                      | 2                                                  | 24                                                                                                                            |                                                                                |                                                                                          | 19                                                                    |
|                |             |                          |                                                                                                                                 |                                                   |                                       |                                            |                                 |                                  |                                       |                                                      |                                                |                                               |                                        |                                        |                                                   | 1                                                                |                                                         | I                                |                                             | :                                          |                                                    |                                                      |                                                    |                                                                                                                               | 5                                                                              |                                                                                          | 203<br>197<br><b>14</b> 4                                             |
| Salary         | 1 3         | 2 3                      | 3 4                                                                                                                             | Age D                                             | eciles<br>6                           | 7                                          | 8                               | 9                                | 10                                    | Total                                                | Salary                                         |                                               | 2                                      | 3                                      | He<br>4                                           | 1<br>T                                                           | .0<br><b>'ota</b><br>Decile                             | es                               | 8                                           | 18                                         | l71<br>8 <b>13</b>                                 | Total                                                | 2<br>58<br>Sala                                    | 24<br><b>221</b><br>ary G                                                                                                     | 52<br>iende                                                                    | <b>22</b><br>r                                                                           | 19                                                                    |
| Deciles        |             | <b>2</b> :<br>30         | 3 4                                                                                                                             | Age D                                             | eciles<br>6                           |                                            | 8                               | 9                                | 10                                    | Total<br>233                                         | Salary<br>Decile                               |                                               | <b>2</b><br>22                         | <b>3</b><br>21                         | Не<br>4<br>24                                     | 1<br>T                                                           | 0<br><b>ota</b>                                         |                                  | <b>8</b><br>21                              | :                                          | 171<br>8 <b>13</b>                                 | Total<br>233                                         | 2<br>58                                            | 24<br><b>221</b><br>ary G<br>iles Fem                                                                                         | 52                                                                             | <b>22</b><br>r                                                                           | 19<br><b>14</b><br>Tota                                               |
| <b>Deciles</b> | 203         | 30                       | <b>3 4</b><br>39 :                                                                                                              | 5                                                 |                                       |                                            | 8                               | 9                                | <b>10</b>                             |                                                      | Decile                                         | s 1                                           | <b>2</b><br>22<br>26                   | <b>3</b><br>21<br>22                   | 4                                                 | 1<br>T<br>ight [<br>5                                            | .0<br><b>'ota</b><br>Decile<br>6                        | es<br>7                          | -                                           | 18<br>9                                    | 10<br>171<br>10                                    |                                                      | 2<br>58<br>Sala<br>Deci                            | 24<br>221<br>ary G<br>iles Fem                                                                                                | 52<br>iende<br>ale N<br>44                                                     | <b>2 2</b><br>r<br>⁄Iale                                                                 | 19<br>14<br>Tot                                                       |
| Deciles        | 203<br>40 1 | 30<br>33                 |                                                                                                                                 | <b>5</b>                                          | 6                                     | 7                                          | 8                               | <b>9</b><br>14                   |                                       | 233                                                  | Decile<br>1                                    | <b>s 1</b><br>28                              |                                        |                                        | <b>4</b><br>24                                    | 1<br>ight (<br>5<br>25                                           | 0<br><b>ota</b><br>Decile<br>6<br>17                    | es<br>7<br>27                    | 21                                          | 18<br>9<br>21                              | 10<br>27                                           | 233                                                  | 2<br>58<br>Sala<br>Deci                            | 24<br>221<br>ary G<br>iles Fem<br>1<br>1                                                                                      | 52<br>iende<br>ale N<br>144                                                    | <b>2 2</b><br>r<br>Male<br>89                                                            | 19<br>14<br>Tot:<br>23<br>22                                          |
| Deciles        | 203<br>40 1 | 30<br>33<br>26           | 39                                                                                                                              | 5<br>. 1<br>. 24                                  | <b>6</b><br>5                         | <b>7</b>                                   |                                 | _                                | 2                                     | 233<br>222                                           | Decile<br>1<br>2                               | s 1<br>28<br>19                               | 26                                     | 22                                     | <b>4</b><br>24<br>18                              | 1<br>ight (<br>5<br>25<br>30                                     | .0<br><b>ota</b><br>Decile<br>6<br>17<br>19             | <b>7</b><br>27<br>23             | 21<br>22                                    | 18<br>9<br>21                              | 10<br>27<br>21                                     | 233<br>222                                           | 2<br>58<br>Sala<br>Deci<br>1<br>2                  | 24<br>221<br>ary G<br>iles Fem                                                                                                | <b>5</b> 2<br>iende<br>ale N<br>144                                            | <b>2 2</b><br>r<br>Male<br>89<br>105                                                     | 19<br>14<br>Tot:<br>23<br>22<br>22                                    |
| Deciles        | 203<br>40 1 | 30<br>33<br>26<br>6      | 39 :<br>73 2:                                                                                                                   | 5<br>. 1<br>. 24<br>) 27                          | <b>6</b><br>5<br>15                   | 7<br>1<br>11                               | 4                               | 14                               | 2<br>32                               | 233<br>222<br>220                                    | <b>Decile</b><br>1<br>2<br>3                   | s 1<br>28<br>19<br>34                         | 26<br>38                               | 22<br>34                               | <b>4</b><br>24<br>18<br>26                        | 1<br>ight (<br>5<br>30<br>39                                     | 0<br>ota<br>0<br>cota<br>6<br>17<br>19<br>12            | <b>7</b><br>27<br>23<br>15       | 21<br>22<br>9                               | 18<br>9<br>21                              | 10<br>27<br>21                                     | 233<br>222<br>220                                    | 2<br>58<br>Sala<br>Deci<br>1<br>2<br>3             | 24<br>221<br>ary G<br>iles Fem<br>1<br>1<br>1<br>1                                                                            | <b>5</b> 2<br>iende<br>ale N<br>144<br>117<br>198                              | 22<br>r<br>Male<br>89<br>105<br>22                                                       | 19<br>14<br>Tot:<br>23<br>22<br>22<br>20                              |
| Deciles        | 203<br>40 1 | 30<br>33<br>26<br>6<br>5 | 39 :<br>73 2:<br>26 5(                                                                                                          | 5<br>. 1<br>. 24<br>) 27<br>. 31                  | <b>6</b><br>5<br>15<br>17             | 7<br>1<br>11<br>13                         | 4<br>14                         | 14<br>24                         | 2<br>32<br>31                         | 233<br>222<br>220<br>208                             | <b>Decile</b><br>1<br>2<br>3<br>4              | s 1<br>28<br>19<br>34<br>33                   | 26<br>38<br>32                         | 22<br>34<br>31                         | <b>4</b><br>24<br>18<br>26<br>28                  | 1<br>ight I<br>25<br>30<br>39<br>18                              | 0<br>ota<br>0<br>ecile<br>17<br>19<br>12<br>16          | <b>7</b><br>27<br>23<br>15<br>15 | 21<br>22<br>9<br>20                         | 21<br>22<br>6<br>8                         | 10<br>27<br>21<br>7<br>7                           | 233<br>222<br>220<br>208                             | 2<br>58<br>Sala<br>Deci<br>1<br>2<br>3<br>4        | 24<br>221<br>ary G<br>iles Fem<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                             | <b>5</b> 2<br>iende<br>ale M<br>144<br>177<br>198<br>169                       | 22<br>r<br>Male<br>89<br>105<br>22<br>39                                                 | 19<br>14<br>Tot:<br>22<br>22<br>20<br>22                              |
| Deciles        | 203<br>40 1 | 30<br>33<br>26<br>6<br>5 | 39     2       73     2       26     50       31     4       21     3       7     40                                            | 5<br>24<br>27<br>31<br>34<br>33                   | 5<br>15<br>17<br>18<br>27<br>36       | 7<br>1<br>11<br>13<br>16<br>16<br>23       | 4<br>14<br>25<br>21<br>31       | 14<br>24<br>26<br>33<br>19       | 2<br>32<br>31<br>28<br>15<br>22       | 233<br>222<br>220<br>208<br>224<br>209<br>211        | <b>Decile</b> 1 2 3 4 5 6 7                    | s 1<br>28<br>19<br>34<br>33<br>34<br>33<br>20 | 26<br>38<br>32<br>29<br>25<br>24       | 22<br>34<br>31<br>19<br>26<br>24       | 4<br>24<br>18<br>26<br>28<br>25<br>14<br>17       | 1<br>ight (<br>5<br>30<br>39<br>18<br>32<br>33<br>24             | 0<br>ota<br>6<br>17<br>19<br>12<br>16<br>18<br>13<br>16 | <b>7</b> 27 23 15 15 21 22 16    | 21<br>22<br>9<br>20<br>20<br>15<br>19       | 21<br>22<br>6<br>8<br>14                   | <b>10</b><br>27<br>21<br>7<br>12<br>15<br>21       | 233<br>222<br>220<br>208<br>224<br>209<br>211        | 2<br>58<br>2000<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | 24<br>221<br>ary G<br>iles Fem<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 52<br>ale N<br>44<br>17<br>198<br>169<br>158<br>128<br>95                      | <b>2 2</b><br><b>r</b><br><b>Male</b><br>89<br>105<br>22<br>39<br>66<br>81<br>116        | 19<br>14<br>Tot<br>22<br>22<br>20<br>22<br>20<br>21                   |
| <b>Deciles</b> | 203<br>40 1 | 30<br>33<br>26<br>6<br>5 | 39     39       73     23       26     50       31     44       21     39                                                       | 5<br>24<br>24<br>27<br>31<br>34<br>33<br>33<br>38 | 5<br>15<br>17<br>18<br>27<br>36<br>36 | 7<br>1<br>11<br>13<br>16<br>16<br>23<br>28 | 4<br>14<br>25<br>21<br>31<br>33 | 14<br>24<br>26<br>33<br>19<br>20 | 2<br>32<br>31<br>28<br>15<br>22<br>30 | 233<br>222<br>220<br>208<br>224<br>209<br>211<br>217 | Decile<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | s 1<br>28<br>19<br>34<br>33<br>34<br>33       | 26<br>38<br>32<br>29<br>25<br>24<br>15 | 22<br>34<br>31<br>19<br>26<br>24<br>15 | 4<br>24<br>18<br>26<br>28<br>25<br>14<br>17<br>22 | 1<br>ight 1<br>5<br>25<br>30<br>39<br>18<br>32<br>33<br>24<br>32 | 0<br>ota<br>6<br>17<br>19<br>12<br>16<br>18<br>13       | <b>7</b> 27 23 15 15 21 22 16 18 | 21<br>22<br>9<br>20<br>20<br>15<br>19<br>36 | 21<br>22<br>6<br>8<br>14<br>13<br>30<br>20 | <b>10</b><br>27<br>21<br>7<br>12<br>15<br>21<br>31 | 233<br>222<br>220<br>208<br>224<br>209<br>211<br>217 | 2<br>58<br>Deci<br>1<br>2<br>3<br>4<br>5           | 24<br>221<br>ary G<br>iles Fem<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | <b>5</b><br><b>ale N</b><br>144<br>177<br>198<br>169<br>158<br>128<br>95<br>54 | <b>2 2</b><br><b>r</b><br><b>Male</b><br>89<br>105<br>22<br>39<br>66<br>81<br>116<br>163 | 19<br>14<br>Tot<br>23<br>22<br>20<br>22<br>20<br>22<br>20<br>21<br>21 |
| <b>Deciles</b> | 203<br>40 1 | 30<br>33<br>26<br>6<br>5 | 39       2         73       2         26       50         31       44         21       39         7       40         2       30 | 5<br>24<br>27<br>31<br>34<br>33                   | 5<br>15<br>17<br>18<br>27<br>36       | 7<br>1<br>11<br>13<br>16<br>16<br>23       | 4<br>14<br>25<br>21<br>31       | 14<br>24<br>26<br>33<br>19       | 2<br>32<br>31<br>28<br>15<br>22       | 233<br>222<br>220<br>208<br>224<br>209<br>211        | <b>Decile</b> 1 2 3 4 5 6 7                    | s 1<br>28<br>19<br>34<br>33<br>34<br>33<br>20 | 26<br>38<br>32<br>29<br>25<br>24       | 22<br>34<br>31<br>19<br>26<br>24       | 4<br>24<br>18<br>26<br>28<br>25<br>14<br>17       | 1<br>ight (<br>5<br>30<br>39<br>18<br>32<br>33<br>24             | 0<br>ota<br>6<br>17<br>19<br>12<br>16<br>18<br>13<br>16 | <b>7</b> 27 23 15 15 21 22 16    | 21<br>22<br>9<br>20<br>20<br>15<br>19       | 9<br>21<br>22<br>6<br>8<br>14<br>13<br>30  | <b>10</b><br>27<br>21<br>7<br>12<br>15<br>21       | 233<br>222<br>220<br>208<br>224<br>209<br>211        | 2<br>58<br>2000<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | 24<br>221<br>ary G<br>iles Fem<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 52<br>ende<br>ale N<br>144<br>117<br>198<br>128<br>128<br>95<br>54<br>18       | <b>2 2</b><br><b>r</b><br><b>Male</b><br>89<br>105<br>22<br>39<br>66<br>81<br>116        | 19<br><b>14</b>                                                       |

MAT 4376/5314E - Techniques of Data Analysis

Module 4 – Feature Selection and Dimension Reduction

Summary statistics for the salary dataset; two-way tables use decile data.



Univariate distributions (hair colour, age, height, salary).

If the theoretical distributions are known, the entropy integrals can be computed/approximated directly.

Gender and hair colour can be modeled using multinomial distributions, but there is more uncertainty related to the numerical variables.

$$H(X_1) = -\sum_{\text{colour}} p(\text{colour}) \log p(\text{colour})$$
$$H(X_2) = -\int p(\text{age}) \log p(\text{age}) d\text{age}$$
$$H(X_3) = -\int p(\text{height}) \log p(\text{height}) d\text{height}$$
$$H(X_4) = -\sum_{\text{gender}} p(\text{gender}) \log p(\text{gender})$$

$$\begin{split} H(X_1|Y) &= -\int p(Y) \left\{ \sum_{\text{colour}} p(\text{colour}|Y) \log p(\text{colour}|Y) \right\} dY \\ H(X_2|Y) &= -\iint p(Y) p(\text{age}|Y) \log p(\text{age}|Y) \, d\text{age} \, dY \\ H(X_3|Y) &= -\iint p(Y) \int p(\text{ht}|Y) \log p(\text{ht}|Y) \, d\text{ht} \, dY \\ H(X_4|Y) &= -\int p(Y) \left\{ \sum_{\text{gender}} p(\text{gender}\text{--}Y) \log p(\text{gender}\text{--}Y) \right\} \, dY \end{split}$$

**Potential approach:** recode the continuous variables as **decile variables** taking values  $\{1, \ldots, 10\}$  according to which decile of the original variable the observation falls. The integrals can then be replaced by sums:

$$\begin{split} H(X_1) &= -\sum_{\text{colour}} p(\text{colour}) \log p(\text{colour}) \\ H(X_2) &\approx -\sum_{k=1}^{10} p(\text{age}_d = k) \log p(\text{age}_d = k) \\ H(X_3) &\approx -\sum_{k=1}^{10} p(\text{height}_d = k) \log p(\text{height}_d = k) \\ H(X_4) &= -\sum_{\text{gender}} p(\text{gender}) \log p(\text{gender}) \end{split}$$

$$\begin{split} H(X_1|Y) &\approx -\sum_{j=1}^{10} p(Y_d = j) \sum_{c \in \text{colour}} p(c|Y_d = j) \log p(c|Y_d = j) \\ H(X_2|Y) &\approx -\sum_{j=1}^{10} p(Y_d = j) \sum_{k=1}^{10} p(a_d = k|Y_d = j) \log p(a_d = k|Y_d = j) \\ H(X_3|Y) &\approx -\sum_{j=1}^{10} p(Y_d = j) \sum_{k=1}^{10} p(h_d = k|Y_d = j) \log p(h_d = k|Y_d = j) \\ H(X_4|Y) &\approx -\sum_{j=1}^{10} p(Y_d = k) \sum_{g \in \text{gender}} p(g|Y_d = j) \log p(g|Y_d = j) \end{split}$$

| X      | H (X ) | H (X   Y) | IG(X;Y) | Ratio |
|--------|--------|-----------|---------|-------|
| Hair   | 0.24   | 0.24      | 0.00    | 0.00  |
| Age    | 1.00   | 0.74      | 0.26    | 0.26  |
| Height | 1.00   | 0.96      | 0.03    | 0.03  |
| Gender | 0.30   | 0.22      | 0.08    | 0.26  |
|        |        |           |         |       |

Mutual information obtained about each predictor after observing the target response Y (salary).

The percentage decrease in entropy after having observed Y is shown in the column "Ratio."

Raw IG numbers would seem to suggest that Gender has a small link to Salary; the Ratio numbers suggest that this could be due to the way the Age and Height levels have been categorized (deciles).

Feature Selection and Dimension Reduction

## Relief

**Relief** scores (numerical) features based on the identification of feature value differences between nearest-neighbour instance pairs.

If there is a feature value difference in a neighbouring instance pair:

- of the same class (as given by Y), the relief score decreases;
- in **different classes**, the relief score increases.

More specifically, let  $D = \{(\mathbf{x}_n, y_n)\}_{n=1}^N \subset \mathbb{R}^p \times \{\pm 1\}$  be a dataset where  $\mathbf{x}_n$  is the *n*-th data sample and  $y_n$  is its corresponding class label.

Feature Selection and Dimension Reduction

For each feature i and observation n, two values are selected:

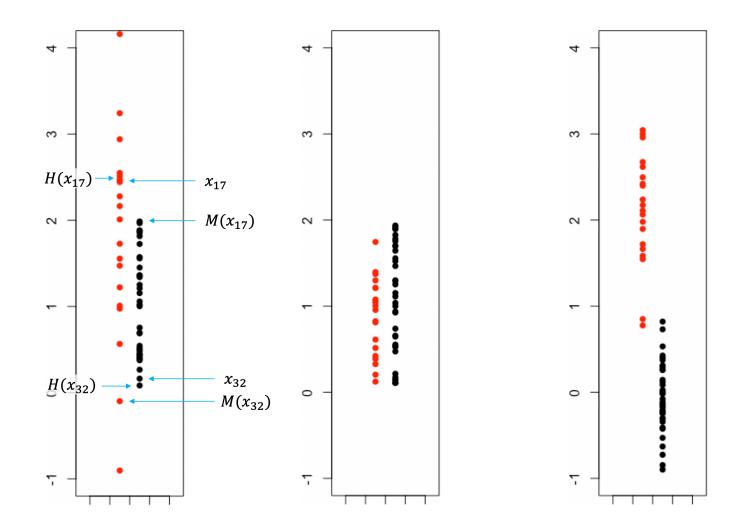
- the near hit  $H(x_{n,i})$  is the value of  $X_i$  which is nearest to  $x_{n,i}$  among all instances in the same class as  $\mathbf{x}_n$ ;
- the near miss  $M(x_{n,i})$  is the value of  $X_i$  which is nearest to  $x_{n,i}$  among all instances in the opposite class as  $\mathbf{x}_n$ .

The **relief score** of the  $i^{th}$  feature is

$$S_i^d = \frac{1}{N} \sum_{n=1}^N \left\{ d(x_{n,i}, M(x_{n,i})) - d(x_{n,i}, H(x_{n,i})) \right\},\$$

for some pre-selected distance  $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_0^+$ .

Feature Selection and Dimension Reduction



A feature for which near-hits tend to be nearer than near-misses has

$$d(x_{n,i}, M(x_{n,i})) > d(x_{n,i}, H(x_{n,i})),$$

on average;  $S_i^d$  should be larger than one for which the opposite holds.

Features are **relevant** when their relief score is greater than a threshold  $\tau$ .

Relief is noise-tolerant and robust to interactions; its effectiveness decreases with small N.

There are variants to accommodate potential feature interactions of multiclass problems.

### **Other Filter Methods (Non-Exhaustive)**

- Other correlation metrics (Kendall, point-biserial correlation, etc.)
- Other entropy-based metrics (gain ratio, symmetric uncertainty, etc.)
- Other relief-type algorithms (ReliefF, Relieved-F, etc.)
- ANOVA
- Fisher Score
- Gini Index

# 4.2.2 – Wrapper Methods

Wrapper methods evaluate the quality of subsets of features for predicting the target output under a selected predictive algorithm and select the optimal combination (for a given training set and algorithm).

In contrast to filter methods, wrapping methods are integrated directly into the classification or clustering process.

Wrapper methods treats feature selection as a **search problem** in which different subsets of features are explored.

This process is computationally expensive: the size of the search space increases exponentially with the number of predictors.

Feature Selection and Dimension Reduction

Wrapper methods iterate over the following steps, until an "optimal" set of features is identified:

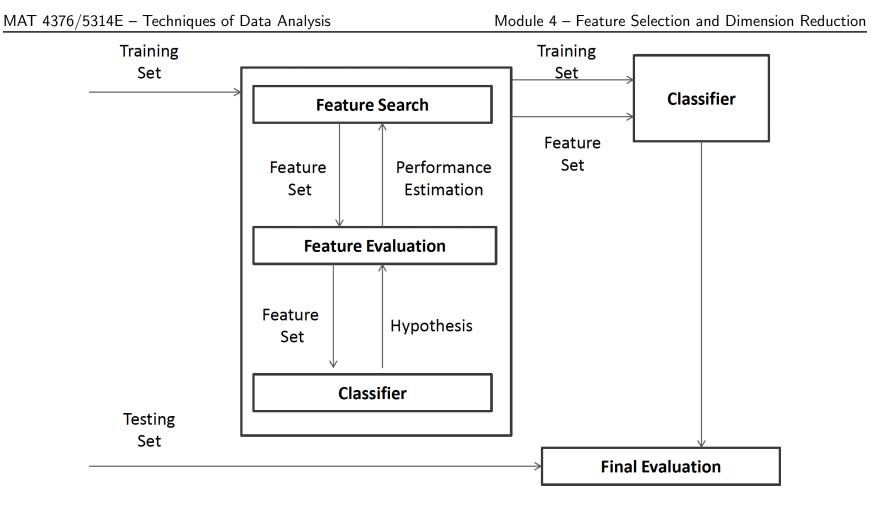
- select a feature subset, and
- evaluate the performance of the selected feature subset.

The search ends when the desired quality is reached (adjusted  $R^2$ , etc.).

Various search methods provide approximate solutions to the **optimal feature subset problem**: hill-climbing, best-first, genetic algorithms, etc.

Wrapper methods are not as efficient as filter methods and not as robust against overfitting; but are very effective at improving the model's performance due to their attempt to minimize the error rate.

Feature Selection and Dimension Reduction



Feature selection process for classification wrapper methods (Aggarwal).

### 4.2.3 – Subset Selection Methods

**Stepwise selection** is a form of *Occam's Razor*: at each step, a new feature is considered for inclusion or removal from the current features set based on some criterion (F-test, t-test, etc.).

**Greedy search methods** have proven to be robust against overfitting and among the least computationally expensive wrapper methods:

- Backward elimination begins with the full set of features and sequentially eliminates the least relevant ones until further removals increase the error rate of the predictive model above some threshold.
- Forward selection begins with an empty set of features and progressively adds relevant features until some threshold is met.

In both cases, model performance should be tested using **cross-validation** – more information on this very important approach to performance evaluation is available in ISLR (James, et al).

#### **Stepwise Selection Methods Limitations:**

- the tests are biased, since they are all based on the same data;
- the adjusted  $R^2$  only takes into account the # of features in the final fit, and not the df that have been used in the entire model;
- if cross-validation is used, stepwise selection has to be repeated for each sub-model but that is not usually done, and
- it's a classic example of *p*-hacking.

Feature Selection and Dimension Reduction

### 4.2.4 – Regularization (Embedded) Methods

An interesting hybrid is provided by the **least absolute shrinkage and selection operator** (LASSO) and its variants.

Let  $\mathbf{X} \in \mathbb{M}_{N,p}$  be the **centered** and **scaled** training matrix and let  $\mathbf{y}$  be the target output vector; the  $j^{\text{th}}$  ordinary least square (OLS) coefficient is

$$\hat{\beta}_{\mathrm{LS},j} = [(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}]_j.$$

Set a threshold  $\lambda > 0$ , whose actually value depends on the training dataset (in practice, good values can be determined by cross-validation).

By construction,  $\hat{\beta}_{\rm LS}$  is the exact solution to the OLS problem

$$\hat{\beta}_{\mathrm{LS}} = \arg_{\beta} \min\{\|\mathbf{y} - \mathbf{X}\beta\|_2^2\}.$$

There is **no restriction** on the values taken by the coefficients  $\hat{\beta}_{LS,j}$ ;

 $|\hat{\beta}_{\mathrm{LS},j}|$  large  $\implies X_j$  plays an important role in predicting Y.

This observation forms the basis of a series of useful OLS variants.

**Ridge regression** (RR) provides a way to **regularize** the OLS regression coefficients, by penalizing solutions with large coefficient magnitudes.

If, in spite of this, the magnitude of a specific coefficient is "large," then it must have **great relevance** in predicting the target variable.

The problem consists in solving a modified version of the OLS scenario:

$$\hat{\beta}_{\mathrm{RR}} = \arg_{\beta} \min\{\|\mathbf{y} - \mathbf{X}\beta\|_2^2 + N\lambda\|\beta\|_2^2\}.$$

Usually, solving the RR problem requires the use of numerical methods and of cross-validation to determine the optimal  $\lambda$ .

For orthonormal covariates  $(\mathbf{X}^{\top}\mathbf{X} = I_p)$ , however, the ridge coefficients can be expressed in terms of the OLS coefficients:

$$\hat{\beta}_{\mathrm{RR},j} = \frac{\hat{\beta}_{\mathrm{LS},j}}{1+N\lambda}.$$

**Regression with best subset selection** (BS) uses a different penalty term, which effectively sets some of the coefficients to 0, which could be used to select the features with non-zero coefficients.

The problem consists in solving a modified version of the OLS scenario:

$$\hat{\beta}_{BS} = \arg_{\beta} \min\{\|\mathbf{y} - \mathbf{X}\beta\|_2^2 + N\lambda\|\beta\|_0\}, \quad \|\beta\|_0 = \sum_j \operatorname{sgn}(|\beta_j|).$$

For orthonormal covariates, the **best subset** coefficients can be expressed in terms of the OLS coefficients:

$$\hat{\beta}_{\mathrm{BS},j} = \begin{cases} 0 & \text{if } |\hat{\beta}_{\mathrm{LS},j}| < \sqrt{N\lambda} \\ \hat{\beta}_{\mathrm{LS},j} & \text{if } |\hat{\beta}_{\mathrm{LS},j}| \ge \sqrt{N\lambda} \end{cases}$$

For the **LASSO** problem

$$\hat{\beta}_{BS} = \arg_{\beta} \min\{\|\mathbf{y} - \mathbf{X}\beta\|_2^2 + N\lambda\|\beta\|_1\},\$$

the penalty effectively yields coefficients combining the properties of RR and BS, usually selecting no more than one feature per group of highly correlated variables.

For orthonormal covariates, the LASSO coefficients can be expressed in term of the OLS coefficients:

$$\hat{\beta}_{\mathrm{L},j} = \hat{\beta}_{\mathrm{LS},j} \cdot \max\left(0, 1 - \frac{N\lambda}{|\hat{\beta}_{\mathrm{LS},j}|}\right).$$

Other penalty functions provides various extensions: elastic nets; group, fused and adaptive lassos; bridge regression, etc.

Regularization can be achieved for general models as well.

For a loss function  $\mathcal{L}(\mathbf{y}, \mathbf{\hat{y}}(\mathbf{W}))$ , where  $\mathbf{\hat{y}}(\mathbf{W})$  are the predicted target values (depending on the parameters  $\mathbf{W}$ ), and a **penalty** vector

$$\mathbf{R}(\mathbf{W}) = (R_1(\mathbf{W}), \cdots, R_k(\mathbf{W})),$$

 $\mathbf{W}^*$  solves the **general regularization** problem

$$\mathbf{W}^* = \arg\min_{\mathbf{W}} \{ \mathcal{L} \left( \mathbf{y}, \mathbf{\hat{y}}(\mathbf{W}) \right) + \lambda^{\top} \mathbf{R}(\mathbf{W}) \},\$$

which can be solved numerically, assuming nice properties on  $\mathcal{L}$  and  $\mathbf{R}$ .

Feature Selection and Dimension Reduction

## 4.2.5 – Supervised and Unsupervised Methods

Feature selection methods are usually categorised as filter, wrapper, or embedded, but they can also be categorised as **supervised** or **unsupervised** methods.

Feature selection methods are supervised if the labels are incorporated into the feature reduction process, otherwise they are unsupervised.

In unsupervised methods, feature selection is carried out based only on the characteristics of the attributes, without any reference to labels or a target variable.

For **clustering problems**, supervised feature selection methods are contraindicated.

Feature Selection and Dimension Reduction

### What Method Should Be Used?

It depends on a number of factors:

- required processing time and size of dataset;
- acceptable level of uncertainty for task;
- past successes, etc.

**Suggestion:** always try multiple methods. If multiple feature selection methods agree on a core set of features, that provides some model-independent support for the relevance of that set of features to the prediction task at hand.

Feature Selection and Dimension Reduction

# 4.3 – Advanced Topics

When used appropriately, the approaches to feature selection and dimension reduction methods presented in the last two sections provide a **solid toolkit** to help mitigate the effects of the curse of dimensionality.

These are, for the most part, rather straightforward.

However, an increase in conceptual complexity can lead to insights that are out of reach by more direct approaches.

In the accompanying report, we discuss 3 additional methods that are decidedly more sophisticated, from a mathematical perspective: **singular value decomposition**, **spectral feature selection**, and **uniform manifold approximation and projection**.