## **5.3 – Qualitative Methods**

**Categorical** (or qualitative) variables are one whose levels are measured on a nominal scale.

Examples include:

- the mother tongue of an individual,
- her hair colour,
- her age,
- and so forth.

The **central tendency** of the values of such a variable is its **mode**.

Measures of **spread** are much more difficult to define in a consistent manner. One possibility: use the proportion of levels with more than a certain percentage of the observations above a given threshold.

**Example:** consider a dataset with n = 517 individuals and p = 3 features:

- age (25-, 25-44, 45-64, 65+);
- mother tongue (French, English, Mandarin, Arabic, Other), and
- hair colour (black, brown, blond, red).

Their respective modes are 25 - 44, English, and brown. And their spread?

Anomaly Detection and Outlier Analysis

| A ~~~ | Mother Hair Colour |       |       |       | Mother Hair Colour |          |       |        | Hair Colour |     |                                          |         |          |        |       |
|-------|--------------------|-------|-------|-------|--------------------|----------|-------|--------|-------------|-----|------------------------------------------|---------|----------|--------|-------|
| Age   | Tongue             | Black | Brown | Blond | Red                | Tongue   | Black | Brown  | Blond       | Red | Black                                    | Brown   | Blond    | Red    |       |
| 24-   | French             | 11    | 24    | 12    | 2                  | French   | 34    | 70     | 32          | 5   | 187                                      | 217     | 79       | 34     | •     |
|       | English            | 12    | 44    | 3     | 6                  | English  | 40    | 111    | 13          | 18  | 36.2%                                    | 42.0%   | 15.3%    | 6.6%   | m     |
|       | Mandarin           | 16    | 2     | 1     | 0                  | Mandarin | 46    | 6      | 2           | 0   |                                          |         |          |        | -     |
|       | Arabic             | 9     | 1     | 0     | 0                  | Arabic   | 30    | 4      | 0           | 2   | Mother Tongue                            |         |          |        |       |
|       | Other              | 11    | 7     | 13    | 1                  | Other    | 37    | 26     | 32          | 9   | French                                   | English | Mandarin | Arabic | Other |
| 25-44 | French             | 15    | 32    | 17    | 2                  |          |       |        |             |     | 141                                      | 182     | 54       | 36     | 104   |
|       | English            | 21    | 47    | 8     | 7                  | Ago      |       | Hair C | Colour      |     | <b>27.3% 35.2%</b> 10.4%                 |         |          | 7.0%   | 20.1% |
|       | Mandarin           | 23    | 3     | 1     | 0                  | Aye      | Black | Brown  | Blond       | Red |                                          |         |          |        |       |
|       | Arabic             | 15    | 2     | 0     | 2                  | 24-      | 59    | 78     | 29          | 9   | Age                                      |         |          |        |       |
|       | Other              | 15    | 16    | 12    | 6                  | 25-44    | 89    | 100    | 38          | 17  | 24-                                      | 25-44   | 45-64    | 65+    |       |
| 45-64 | French             | 7     | 12    | 2     | 1                  | 45-64    | 23    | 33     | 5           | 5   | 175                                      | 244     | 66       | 32     |       |
|       | English            | 4     | 17    | 2     | 3                  | 65+      | 16    | 6      | 7           | 3   | 33.8%                                    | 47.2%   | 12.8%    | 6.2%   | _     |
|       | Mandarin           | 3     | 1     | 0     | 0                  |          |       |        |             |     |                                          |         |          |        |       |
|       | Arabic             | 3     | 1     | 0     | 0                  | Mother   |       | A      | ge          |     | <b>Total Number of Observations:</b> 517 |         |          | 517    |       |
|       | Other              | 6     | 2     | 1     | 1                  | Tongue   | 24-   | 25-44  | 45-64       | 65+ |                                          |         |          |        |       |
| 65+   | French             | 1     | 2     | 1     | 0                  | French   | 49    | 66     | 22          | 4   | Percentage of Levels Above: 15%          |         |          | 25%    |       |
|       | English            | 3     | 3     | 0     | 2                  | English  | 65    | 83     | 26          | 8   | Hair Colour 75%                          |         |          | 50%    |       |
|       | Mandarin           | 4     | 0     | 0     | 0                  | Mandarin | 19    | 27     | 4           | 4   | Mother Tongue 60%                        |         |          | 60%    |       |
|       | Arabic             | 3     | 0     | 0     | 0                  | Arabic   | 10    | 19     | 4           | 3   | Age 50%                                  |         |          |        | 50%   |
|       | Other              | 5     | 1     | 6     | 1                  | Other    | 32    | 49     | 10          | 13  |                                          |         |          |        |       |

Qualitative features are often associated to numerical values: in R, for instance, there is a difference between factor **levels** and factor **labels**.

Categorical variables with numerical levels are treated as **ordinal** variables.

#### ▲ These should not be interpreted as numerals!

If we use the code "red" = 1, "blond" = 2, "brown" = 3, and "black" = 4 to represent hair colour, we **cannot conclude** that "blond" > "red", even though 2 > 1, or that "black" – "brown" = "red", even though 4-3 = 1.

A categorical variable that has exactly two levels is a **dichotomous** (binary) variable; a variable with more than two levels is **polytomous**.

Regression on categorical variables  $\implies$  multinomial logistic regression.

Distances (apart from the 0-1 distance and the related Hamming distance) require numerical inputs.

But representing categorical variables with numerical features can lead to traps (see previous slide).

Anomaly detection methods based on distance or on density are not recommended in the qualitative context (unless the distance function has been modified appropriately).

Another option is to look at combinations of feature levels, but this can be computationally expensive.

# 5.3.1 – AVF Algorithm

The **Attribute Value Frequency** (AVF) algorithm is a fast and simple way to detect outlying observations in categorical data.

It can be done without having to create or search through various combinations feature levels (which increase the search time).

Intuitively, outlying observations are points which occur relatively infrequently in the (categorical) dataset; an "ideal" anomalous point is one for which **each feature value is extremely anomalous** (or relatively infrequent).

The **rarity** of an attribute level can be measured by summing the number of times the corresponding feature takes that value in the dataset.

Anomaly Detection and Outlier Analysis

Let's say that there are n observations in the dataset:  $\{\mathbf{x}_i\}$ , i = 1, ..., n, and that each observation is a collection of m features.

We write

$$\mathbf{x}_i = (x_{i,1}, \cdots, x_{i,\ell}, \cdots, x_{i,m}),$$

where  $x_{i,\ell}$  is  $\mathbf{x}_i$ 's  $\ell$ th feature's level.

Example: in the previous example, we may have

$$\begin{aligned} \mathbf{x}_1 &= (x_{1,1}, x_{2,1}, x_{3,1}) = (24-, \mathsf{French}, \mathsf{blond}) \\ &\vdots \\ \mathbf{x}_{517} &= (x_{517,1}, x_{517,1}, x_{517,1}) = (24-, \mathsf{Mandarin}, \mathsf{blond}). \end{aligned}$$

The **AVF score** of an observation  $\mathbf{x}_i$  is

AVFscore
$$(\mathbf{x}_i) = \frac{1}{m} \sum_{\ell=1}^m f(x_{i,\ell}),$$

where  $f(x_{i,\ell})$  is the number of dataset observations  $\mathbf{x}$  for which the  $\ell$ th feature takes on the level  $x_{i,\ell}$ .

A low AVF score indicates that the observation is likely to be an outlier.

An "ideal" anomalous observation minimizes the AVF score – reached when the observation's features' levels occurs only once in the dataset.

For an integer k, the suggested outliers are the k observations with smallest AVF scores. The formal procedure is provided in Algorithm 5.

Anomaly Detection and Outlier Analysis

#### Algorithm 5: AVF

1 Inputs: dataset D (n observations, m features), number of anomalous observations k2 while  $i \leq n$  do i = 13 AVFscore( $\mathbf{x}_i$ ) =  $f(x_{i,j})$ 4 while  $j \leq m$  do 5  $AVFscore(\mathbf{x}_i) = AVFscore(\mathbf{x}_i) + f(\mathbf{x}_{i,i});$ 6 i = i + 1end 7  $AVFscore(\mathbf{x}_i) = Mean(AVFscore(\mathbf{x}_i))$ 8 i = i + 19 10 end 11 **Outputs:** k observations with smallest AVF scores

ISEDC – Techniques of Data Analysis

Anomaly Detection and Outlier Analysis

| Age   | Mother   |       | Hair Colour |       |       | A = 0 | Mother   |       | Hair Colour |       |      |
|-------|----------|-------|-------------|-------|-------|-------|----------|-------|-------------|-------|------|
|       | Tongue   | Black | Brown       | Blond | Red   | Age   | Tongue   | Black | Brown       | Blond | Red  |
| 24-   | French   | 167.7 | 177.7       | 131.7 | 116.7 |       | French   | 131.3 | 141.3       | 95.3  | 80.3 |
|       | English  | 181.3 | 191.3       | 145.3 | 130.3 |       | English  | 145.0 | 155.0       | 109.0 | 94.0 |
|       | Mandarin | 138.7 | 148.7       | 102.7 | 87.7  | 45-64 | Mandarin | 102.3 | 112.3       | 66.3  | 51.3 |
|       | Arabic   | 132.7 | 142.7       | 96.7  | 81.7  |       | Arabic   | 96.3  | 106.3       | 60.3  | 45.3 |
|       | Other    | 155.3 | 165.3       | 119.3 | 104.3 |       | Other    | 119.0 | 129.0       | 83.0  | 68.0 |
| 25-44 | French   | 190.7 | 200.7       | 154.7 | 139.7 |       | French   | 120.0 | 130.0       | 84.0  | 69.0 |
|       | English  | 204.3 | 214.3       | 168.3 | 153.3 |       | English  | 133.7 | 143.7       | 97.7  | 82.7 |
|       | Mandarin | 161.7 | 171.7       | 125.7 | 110.7 | 65+   | Mandarin | 91.0  | 101.0       | 55.0  | 40.0 |
|       | Arabic   | 155.7 | 165.7       | 119.7 | 104.7 |       | Arabic   | 85.0  | 95.0        | 49.0  | 34.0 |
|       | Other    | 178.3 | 188.3       | 142.3 | 127.3 |       | Other    | 107.7 | 117.7       | 71.7  | 56.7 |

AVF scores; 10 lowest scores highlighted (in red).

AVFscore
$$(24-, French, blond) = \frac{1}{3}(f(24-) + f(French) + f(blond))$$
  
=  $\frac{1}{3}(175 + 141 + 79) = 131.7$ 

### 5.3.2 – Greedy Algorithm

The **greedy** algorithm identifies a set OS of **candidate** anomalous observations in an efficient manner.

The entropy of a set  $\Sigma \subseteq D$  is a measure of the disorder in  $\Sigma$ . Let X be a feature of D; the set of levels that X takes on  $\Sigma$  is denoted by

$$S(X; \Sigma) = \{ z | X = z, \ \mathbf{x} \in \Sigma \}.$$

Let  $p_X(z)$  be the % of observations in  $\Sigma$  for which X = z. The **entropy** of a feature X on  $\Sigma$  is

$$H(X;\Sigma) = -\sum_{z \in S(X;\Sigma)} p_X(z) \log p_X(z).$$



The mathematical formulation of the problem is simple: in order to find k anomalous observations in a dataset D, solve the optimization problem

$$OS = \arg \min_{O \subseteq D} \{H(D \setminus O)\}, \text{ subject to } |O| = k,$$

where the entropy  $H(D \setminus O)$  is the sum of the entropy of each feature:

$$H(D \setminus O) = H(X_1; D \setminus O) + \dots + H(X_m; D \setminus O)$$
$$H(X_{\ell}; D \setminus O) = -\sum_{z_{\ell} \in S(X_{\ell}; D \setminus O)} p(z_{\ell}) \log p(z_{\ell}),$$

where  $S(X_{\ell}; D \setminus O)$  is the set of levels that the  $\ell$ th feature takes in  $D \setminus O$ .

The greedy algorithm solves the optimization problem as follows:

- 1. The set of outlying and/or anomalous observations OS is initially set to be empty, and all observations of  $D \setminus OS$  are identified as normal.
- 2. Compute  $H(D \setminus OS)$ .
- 3. Every normal observation x is temporarily taken out of  $D \setminus OS$  to create a subset  $D'_x$ , whose entropy  $H(D'_x)$  is also computed.
- 4. The y which provides the **maximal entropy impact** is added to OS:

$$\mathbf{y} = \arg\min_{\mathbf{x}\in D\setminus\mathsf{OS}} \left\{ H(D\setminus\mathsf{OS}) - H(D'_{\mathbf{x}}) \right\}.$$

5. Repeat steps 2-4 another k - 1 times to obtain a set OS of k candidate anomalous observations.