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5.2 – Quantitative Methods of Anomaly Detection

Cluster-based methods are not the only types of UL anomaly detection
methods.

Distance-based methods: distance to all points, distance to k nearest
neighbours (kNN), average distance to kNN, median distance to kNN,
etc.

Density-based methods: local outlier factor (LOF), isolation forest,
HDBSCAN, etc.
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5.2.1 – Distance-Based Methods

We find anomalous observations by comparing them to other observations
(anomalies are relative, not absolute).

In the distance-based context, the natural way to compare observations
is to consider their distance from a subset of observations: increasing
distance being increasingly suggestive of anomalous status.

Requirement: a distance function or a pre-computed table of pair-wise
distances (in discrete case).

The choice of subsets and distance functions distinguish the different
distance-based algorithms.
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Notation

D ⊂ Rn is an n-dimensional (numerical) data set

p,q ∈ D are specific observations in D

P ⊂ D is a subset of D

d : D ×D → R is a distance function on D ⊂ Rn

the distance between p and q is written d(p,q)
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the output of an anomaly detection algorithm is a function a : D → R

a(p) is a number that describes how anomalous p is

if a(p) < a(q) for p,q ∈ D, then p is less anomalous than q

α ∈ R is the absolute anomaly threshold

any p ∈ D for which a(p) > α is absolutely anomalous
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Similarity Measures

A similarity measure is a real-valued function that describes the similarity
between two objects.

A common construction for the similarity w between two points p,q:

w(p,q) =
1

1 + d(p,q)
, for some distance d.

Note: w → 1 as d→ 0, and w → 0 as d→∞.

Similarity measures can also be constructed between probability
distributions (see Hellinger distance).

Anomaly Detection and Outlier Analysis 88



ISEDC – Techniques of Data Analysis Anomaly Detection and Outlier Analysis

Anomaly Detection and Outlier Analysis 89



ISEDC – Techniques of Data Analysis Anomaly Detection and Outlier Analysis

We can think of a single point p as a probability distribution (with 0%
chance of drawing another point).

The distance between that point and any other distribution with mean µ
and covariance matrix Σ can be given using the Mahalanobis framework:

M(p) =
√

(p− µ)>Σ−1(p− µ) (BACON).

Alternatively, if p and q are drawn from the same distribution with
covariance Σ, then the Mahalanobis distance is a dissimilarity measure
between p and q:

dM(p,q) =
√

(p− q)>Σ−1(p− q).
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Example: consider a 4D-dataset drawn from a multivariate N (µ,Σ) with

µ = (1,−2, 0, 1), Σ =


1 0.5 0.7 0.5

0.5 1 0.95 0.3

0.7 0.95 1 0.3

0.5 0.3 0.3 1

 .

100 observations p1 to p100 are “normal”:

stat x1 x2 x3 x4

min −1.9049 −4.4113 −2.5324 −1.9949

Q1 0.3812 −2.6464 −0.6190 0.3361

med 0.9273 −2.0220 −0.0506 0.9381

avg 0.9374 −1.9788 0.0071 0.9438

Q3 1.4615 −1.4002 0.6296 1.5906

max 3.4414 0.5223 2.0265 2.8073

2 observations are “anomalous”: z1 = (1, 1, 1, 1), z4 = (4, 4, 4, 4).
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Visually, it seems there might be 3 outliers.
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In general, the mean vector and the covariance structure must be estimated
from the data:

µ̂ = (0.968,−1.891, 0.056, 0.974), Σ̂ =


0.900 0.569 0.665 0.503

0.569 1.312 1.069 0.469

0.665 1.069 0.992 0.397

0.503 0.469 0.397 0.904

 .

These are distinct from µ and Σ, but close enough to be explained by

sampling variation

z1, z4 6∼ N (µ,Σ)

To identify anomalous observations, compute the Mahalanobis distance
from all points to the empirical distribution, and between all pairs.
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Histogram of Mahalanobis distances to empirical distribution.

Anomaly Detection and Outlier Analysis 95



ISEDC – Techniques of Data Analysis Anomaly Detection and Outlier Analysis

Scatter plot of Mahalanobis distances to empirical distribution.
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Mahalanobis distances between each pair (empirical distribution).
Notice observations 101 and 102, as well as the diffuse cloud of points

above the value 5.0.
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Mean Mahalanobis distances between each pair (empirical distribution).
Notice observations 101 and 102 again. The red lines represent the median

mean distance, and 1 standard deviation the median mean distance.
The Mahalanobis framework seems to identify 2 outliers.
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If Σ is diagonal, then

dM(p,q) =

√√√√ n∑
i=1

(pi − qi)2

σ2
i

,

where σ2
i is the variance along the i-th dimension.

If Σ is the identity matrix, then we recover the Euclidean distance

d2(p,q) =

√√√√ n∑
i=1

(pi − qi)2.

In an anomaly detection context, a linear normalization is usually applied
to each dimension so that each entry lies in the hypercube [−1, 1]n.
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The Minkowski distance of order p is a generalization of the Euclidean
distance:

dp(p,q) =

(
n∑
i=1

|pi − qi|p
)1/p

.

For p = 1, we recover the Manhattan distance:

d1(p,q) =

n∑
i=1

|pi − qi|;

for p =∞, we recover the supremum (Chebychev) distance

d∞(p,q) =
n

max
i=1
{|pi − qi|} .
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The Minkowski distance dp is only an actual distance function (a metric)
when p ≥ 1, but an exception is made for

d−∞(p,q) =
n

min
i=1
{|pi − qi|} .

When working with categorical data (such as in one-hot encoding of text),
it can be useful to use distances for binary vectors.

Let p,q ∈ {0, 1}n.

The Hamming distance between p and q counts the number of positions
where they differ:

dH(p,q) =

n∑
i=1

|pi − qi|.
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The Jaccard similarity of two datasets P and Q, is defined as the size of
their intersection divided by the size of their union

J(P,Q) =
|P ∩Q|
|P ∪Q|

=
|P ∩Q|

|P |+ |Q| − |P ∩Q|

Their Jaccard distance is dJ(P,Q) = 1− J(P,Q). This can be extended
to binary vectors p and q.

Consider an arbitrary set D = {x1, x2, . . . , xn}. We build P as follows: if
pi = 1 then xi ∈ P ; otherwise xi 6∈ P . Similarly for Q.

Then |P | =
∑
pi, |Q| =

∑
qi, |P ∩Q| =

∑
piqi = p · q and

dJ(p,q) = dJ(P,Q) = 1− J(P,Q) = 1− p · q∑
(pi + qi)− p · q

.
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Finally, let p,q 6= 0. Recall that p · q = ‖p‖‖q‖ cos θ, where θ is the
angle between p and q.

The cosine similarity between p and q is

cos θ =
p · q
‖p‖‖q‖

=

∑n
i=1 piqi√∑n

i=1 p
2
i

√∑n
i=1 q

2
i

.

This also holds p,q are non-binary. The value ranges between 1 and −1:

cos θ = 1 when p = q;

cos θ = −1 when p = −q, and

cos θ = 0 when p and q are perpendicular.
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Distance-Based Approaches

Finding the right distance function to use for anomaly detection is NOT AN
EASY TASK – contextual understanding and domain expertise are required.

Any such distance function can be used as the basis for anomaly detection
algorithms (the ideas can also be extended to more complex algorithms).

Given some distance function d, dataset D, and integers k, ν ≤ |D|,
the distance to all points (DTAP) anomaly detection algorithm considers
each point p in D and adds the distance from p to every other point in D:

a(p) =
∑

q 6=p∈D

d(q,p).
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The ν points with largest values for a are then said to be anomalous
according to a.

This approach often selects the most extreme observations as anomalous,
which may be of limited use in practice.

The distance to nearest neighbour (DTNN) algorithm uses

a(p) = min
q 6=p∈D

{d(q,p)},

with a similar definition for the ν anomalous points.

The average distance to k nearest neighbours and median distance to
k nearest neighbours are defined similarly.
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Mahalanobis Euclidean Supremum
102 102 102
101 62 62
67 67 101
14 101 14
12 14 67

Manhattan Minkowski (p = 0.5) Minkowski (p = 4)
102 102 102
62 62 62
67 67 101
14 14 67
49 49 14

DTAP anomalies (ν = 5), for various distances; unscaled data.
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Euclidean Supremum Manhattan
102 102 102
61 62 62
67 14 14
101 55 67
14 49 49

DTAP anomalies (ν = 5), for various distances; scaled data.

The rankings change according to the selected distance function, the data
scaling, and the choice of algorithm (see following slides).

How do we make these decisions, then?
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Mahalanobis Euclidean Supremum
102 102 102
101 62 62
67 101 101
14 11 12
12 12 23

Manhattan Minkowski (p = 0.5) Minkowski (p = 4)
102 102 102
62 62 62
101 101 101
12 11 12
11 23 11

DTNN anomalies (ν = 5), for various distances; unscaled data.
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5.2.2 – Density-Based Methods

The flexibility in the choice of distance functions, scaling, and distance-based
anomaly detection algorithm gives rise to different anomaly rankings. This
is par for the course in the anomaly detection context.

Density-based approaches view points as anomalous if they occur in low
density regions. Methods include:

local outlier factors;

DBSCAN, and

isolation forests.
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Low-density areas as outlier nurseries [Baron].
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Local Outlier Factor

The Local Outlier Factor (LOF) algorithm works by measuring the local
deviation of each observation from its k nearest neighbours.

An observation is said to be anomalous if the deviation is large.

A local k−region around a point p is simply the set Nk(p) of the k
nearest neighbours of p =⇒ need to select a distance measure.

Local k−regions have different extent from one observation to the next
=⇒ each p has a local density.

Observations with anomalously small local density compared to its
k−neighbours are identified as outliers.
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For k = 2, p has lower density than its k−neighbours q1,q2. The formal
procedure is provided in Algorithm 1.
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Any point with a local outlier factor ak(p) above some threshold τ is a
local outliers.

!4 Selecting appropriate k and threshold τ is not simple.

Using a derived reachability distance improves the stability of the algorithm
results: within Nk(p),

dreach(p,q) = max
`
{d(p,q`); q` ∈ Nk(p)};

outside of Nk(p),
dreach(p,q) = d(p,q).
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The region of uniform reachability distance around p for k = 3:

dreach(p,q1) = dreach(p,q2) = dreach(p,q3) = d(p,q3); dreach(p,q4) = d(p,q4).
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DBSCAN

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is
a density-based clustering algorithm that groups nearby points together.

Points that do not fall in the clusters are labeled as (potential) anomalies.

Hierarchical DBSCAN (HDBSCAN), which removes the problem of choosing
one of DBSCAN’s parameters (the radius of neighbourhoods).

!4 We won’t be talking about clustering in a general sense – it could form
the basis of 2+ courses – but it would be a good idea to take some time to
read up on the topic if you are not familiar with it.
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Clusters of regular customers (red, green, blue) and potential
anomalies/outliers (grey) in an artificial dataset.
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In DBSCAN,

p is a core point if there are m+ points within distance r of p;

q (non-core) is a border point if it is within distance r of a core point;

o is an outlier if it is neither a core nor a border point.

For minimum neighbourhood size m = 2 and the fixed radius r above, o is
an outlier, p is a core point, and q1,q2 are border points.
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DBSCAN considers each point in the dataset individually:

if a point is not a core point or a border point, it is considered an outlier;

if it is a border point, it is not considered an outlier, but it does not form
the basis of a new cluster of regular observations;

if it is a core point, then its r-neighbourhood forms the beginning of a
new cluster;

each point in this r-neighbourhood is then considered in turn, with the
r-neighbourhoods of other core points contained in the neighbourhood
being added to the cluster (regular observations).

This expansion repeats until all points have been examined.
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During the expansion, points that were previously labelled as outliers may
be updated as they become border points in a new cluster.

This process continues until every point has either been assigned to a
cluster or labelled as an outlier.

DBSCAN’s dual use as a clustering algorithm may seem irrelevant in
the outlier detection setting, but its ability to succesfully identify clusters is
crucial (the remaining points are outliers).

The formal procedure is provided in Algorithm 2.

(But why use DBSCAN instead of any other of the 50+ cluster algorithms?)
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Point picked at random
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Point identified as non-core point
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Point identified as non-core point
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Another point picked at random
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Point identified as a core point
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Points in the ε−neighbourhood
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Resulting cluster
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Clusters and outliers
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Strengths:

the number of clusters does not need to be known beforehand;

clusters of arbitrary shape can be detected;

with HDBSCAN, only the parameter for the minimum cluster size m ≥
n+ 1 is required (larger values of m allow for better noise identification).

Limitations:

not entirely deterministic, as border points can be assigned to different
clusters depending on the order in which core points are considered (does
not affect its use as an anomaly detection algorithm).
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suffers from the Curse of Dimensionality – in high-dimensional
spaces, Euclidean-based distances have a difficult time distinguish near
observations from distant ones;

cannot handle differences in local densities when the radius r of a
neighbourhood is fixed =⇒ sparser clusters could be labelled as outliers,
or outliers surrounding a denser cluster could be included in the cluster.
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DBSCAN, d2, unscaled data, ε = 0.4, minPts = 4
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DBSCAN, d2, unscaled data, ε = 1, minPts = 4
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DBSCAN, d2, unscaled data, ε = 1, minPts = 8
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DBSCAN, d2, unscaled data, ε = 2, minPts = 8
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HDBSCAN, d2, unscaled data, minPts = 4

Anomaly Detection and Outlier Analysis 156



ISEDC – Techniques of Data Analysis Anomaly Detection and Outlier Analysis

OPTICS, d2, unscaled data, ε = 1, minPts = 4, εcl = 1
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OPTICS, d2, unscaled data, ε = 1, minPts = 4, εcl = 1, ξ = 0.05
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Isolation Forest

Both the LOF and the DBSCAN approach first construct models of what
normal points look like, and then identify points that do not fit this model.

The isolation forest (IsoForest) algorithm tries instead to explicitly identify
outliers under the assumptions that:

there are few outliers, and

that these outliers have very different attributes compared to normal
observations.

IsoForest uses sampling techniques that increase algorithmic speed while
decreasing memory requirements.
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IsoForest tries to isolate anomalous points by randomly selecting an
attribute and a split value between that attribute’s min/max values,
continuing until every point is alone in its component.
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This recursive partitioning yields an Isolation Tree (IsoTree):

the root of this tree is the entire dataset;

each node is a subset of the observations;

each branch corresponds to one of the generated partitions, and

the leaves are sets containing a single isolated point.

Each point is then assigned a score derived from how deep in the tree its
singleton partition appears.

Points that are shallower in the tree are easier to separate from the
rest =⇒ likely outliers?
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The points are of interest are shallow: once the height of the tree has
reached a given threshold (expected height of a random binary tree?),
stop growing the tree (reduces computational cost).

IsoTrees can be constructed from subsets: the location of any point
within this smaller tree can be estimated (reduces computational cost).

A collection of IsoTrees forms an Isolation Forest.

An IsoForest score can be computed for each point: search each tree
for the point’s location and record the path length required to reach it. The
score is simply the average path length (it can be normalized to make it
independent of the dataset’s size); low scores =⇒ outliers.

The formal procedure is provided in Algorithms 3 and 4.
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Isolation Forest schematics [Baron].
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With |D| = n, it can be shown (not obvious!) that the expected length to
a random point in an IsoTree is

c(n) = 2H(n− 1)− 2(n− 1)

n
,

where H(n) is the (n)th harmonic number: H(n) ≈ lnn+ 0.577.

The normalized anomaly score of p in the IsoForest, a(p), is

log2 a(p) = −average path length to p in the Isolation Trees

c(n)
.

If a(p) ≈ 1, we label p an anomaly; if a(p) ≤ 0.5, a regular observation.
If every point receives a score around 0.5, there are no outright outlier.
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Strengths:

small time and memory requirements;

can handle high dimensional data;

do not need labeled anomalies in the training set.

Main Limitation:

anomaly score can have high variance over multiple runs.

In general, density-based schemes are more powerful than distance-based
schemes when a dataset contains patterns with diverse characteristics, but
less effective when the patterns are of comparable densities with the outliers.

Anomaly Detection and Outlier Analysis 168



ISEDC – Techniques of Data Analysis Anomaly Detection and Outlier Analysis

Anomaly Detection and Outlier Analysis 169


