
data-action-lab.com

INTRODUCTION TO PROGRAMMING

data-action-lab.com

OUTLINE

1. Programming Fundamentals

2. Code Components

3. Designing Using Pseudo-Code

4. From Pseudo-Code to Runnable Code

data-action-lab.com

PROGRAMMING FUNDAMENTALS

data-action-lab.com

GOAL AND LEARNING OBJECTIVES OF THIS SECTION

1. Provide you with fundamental concepts that you can apply to any programming
language

2. Give you insight into what is common across all computer languages

3. Help you to learn any programming language, through reference to these
common fundamentals

4. Prepare you for your first lab – when you will be designing and implementing
computer programs in R and/or Python

data-action-lab.com

What is computer code?

What is a computer program?

DISCUSSION

data-action-lab.com

COMPUTER PROGRAM: EXAMPLE IN C

An algorithm written in a computer language, providing instructions to a computer for carrying out a series of operations

data-action-lab.com

COMPUTER PROGRAM: DEFINITION

An algorithm, written in a computer language, that provides instructions to a
computer for carrying out a sequence of operations.

It can be compiled or interpreted as a series of hardware operations, carried out by
the electrical components of a computer.

data-action-lab.com

SOME FUNDAMENTAL CONCEPTS

Algorithm

Computer Language

(Formal) Language

data-action-lab.com

FORMAL LANGUAGE: EXAMPLE

Alphabet: {‘a’, ‘b’, ‘C’, ‘D’,’!’}

Rules (Grammar):

¡ letters may be placed to the left or right of another letter

¡ a letter instance must always have another instance of the same letter to either the left or the
right

¡ upper case letters must always have a lower case letter to the left or right

data-action-lab.com

FORMAL LANGUAGE: DEFINITION

In a formal language:

¡ words are created from a pre-defined alphabet

¡ a grammar provides rules about how letters may be combined to form words

data-action-lab.com

COMPUTER LANGUAGE: DEFINITION

A (formal) language constructed to provide instructions to a computer, so that it can
be compiled into low-level instructions that the computer processor can carry out.

data-action-lab.com

COMPUTER LANGUAGE: FORMAL DEFINITION OF C

A language constructed to provide instructions to a computer

data-action-lab.com

COMPUTER PROGRAM: DEFINITION

An algorithm, written in a computer language, that provides instructions to a
computer for carrying out a sequence of operations.

It can be compiled or interpreted as a series of hardware operations, carried out by
the electrical components of a computer.

data-action-lab.com

ALGORITHM: EXAMPLE

1. Pour ½ cup flour into bowl

2. Break one egg into bowl

3. Pour 3 tablespoons oil into bowl

4. Pour 1 teaspoon baking powder into bowl

5. Mix with spoon until smooth

6. Pour mixture into muffin tins

7. Bake for 15 minutes at 350 degrees Fahrenheit

data-action-lab.com

ALGORITHM: DEFINITION

A sequence of instructions which have one or more well defined stopping points.

data-action-lab.com

COMPUTER PROGRAM: DETAILS

Higher level computer languages are compiled
into (or interpreted as) ‘machine code’ – a series
of very basic instructions that tell the computer
hardware how to behave.

When the computer is carrying out the
instructions, we say it is ‘running’ the program –
as a process

We can instruct a computer to run a program.
Computers can also tell themselves to run
programs!

data-action-lab.com

COMPUTER PROGRAMS: THE BIG PICTURE

All computers operate by running (compiled) computer programs.

The internet is a collection of computers connected by physical wires or radio wave
transmitters and receivers.

Computers transmit to, and receive signals from, other computers on this network.

The signals sent from computer to computer, and what is done with received signals,
are based on what programs the computers are running.

The cloud is a part of the internet loosely defined as a collection of computers used
mainly to store and serve content to other computers.

data-action-lab.com

CODE COMPONENTS

data-action-lab.com

What are the fundamental elements of computer code?

DISCUSSION

data-action-lab.com

ELEMENTS OF COMPUTER CODE

Variables

Data Structures

Operators

Statements and Expressions

Blocks (and Scope)

Functions

Logical (Control) Flow

Libraries/Packages/Modules

Inputs/Outputs

Interpreters/Compilers

data-action-lab.com

library(igraph)

my_graph_function <- function(my_number_nodes, my_colour, my_density)
{

my_graph <- sample_gnp(my_number_nodes, my_density, directed = FALSE, loops = FALSE)

if(ecount(my_graph) >= my_number_nodes){V(my_graph)$color <- my_colour}

plot(my_graph, layout=layout.fruchterman.reingold, vertex.color=V(my_graph)$color)

}

my_graph_function(30,”green”,0.3)

load additional functions (package/module/
library) from outside the current code

user-defined function
with three argumentsvariable

conditional logic
statement (control flow)

creating a data structure/
object (a graph)

calling the user-defined function
generating output

(a visualization of the graph)

block

1

2

3

4

5

6

7

8 9

10

11
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
27

28

29

30

data-action-lab.com

READY TO START PROGRAMMING???

Not so fast!

data-action-lab.com

DESIGNING CODE (USING PSEUDO-CODE)

data-action-lab.com

DISCUSSION

What does it mean to design an algorithm, or a program?

data-action-lab.com

DESIGN COMPONENTS

In designing an algorithm, we need to specify:

¡ inputs

¡ outputs

¡ how the inputs should be transformed to provide the outputs

From a bigger picture perspective, we can also talk about the function, or purpose of
the algorithm.

data-action-lab.com

PSEUDO-CODE: EXAMPLE

j_cluster(array_of_points, max_n_neighbour_distance)

{

for each point[i] in array_of_points

{

for each remaining point[j] in array_of_points

{

distance_between_ij = distance(point[i], point[j])

if distance_between_ij <= max_n_neighbour_distance

then neighbours[i] = add_to_neighbours(point[i],point[j])

}

. . .

data-action-lab.com

PSEUDOCODE: WHAT IT REALLY LOOKED LIKE!

r — s

^OJlL piv--|pl)>''̂ 'f-jPî ll̂

4 o ^

,0,

r — s

^OJlL piv--|pl)>''̂ 'f-jPî ll̂

4 o ^

,0,

data-action-lab.com

PSEUDO-CODE: DESCRIPTION

Pseudo-code is the term for a rough sketch of an algorithm which indicates the
general expected input, output and steps, but which ‘black boxes’ the details of the
functions.

Keeping in mind the main elements of any computer language (e.g. variables,
functions, logical flow, etc.) we can design an algorithm without using a specific
language.

data-action-lab.com

PSEUDO-CODE: STRATEGY

Define an input

Define an output

Write a set of programmatic instructions that will take you from input to output

Remember that you can ‘black box’ parts of the code – describing functionality at a
high level

data-action-lab.com

PSEUDO-CODE: LEVEL OF ABSTRACTION

Getting a feel for the right level of detail in pseudocode takes practice.

To some extent, it depends on the level of abstraction of the programming language
you will (likely) be using:

¡ High-level languages – have a lot of built in functions

¡ Low-level languages – many details and functions must be programmed ‘by hand’

High-level languages let you program at a higher level of abstraction.

At the same time, you may sacrifice utility for understanding.

data-action-lab.com

EXERCISE IN PSEUDO-CODE AND ALGORITHM DESIGN: SORTING

Your input is a list of numbers in unknown order

Your output is the same list of numbers sorted in the right order

Write pseudo-code that will take you from input to output

Remember that you can ‘black box’ parts of the code – describing functionality at a
high level

In terms of level of detail – take into account the manipulation of individual numbers
or groups of numbers within the list.

data-action-lab.com

FROM PSEUDO-CODE TO RUNNABLE CODE

data-action-lab.com

THE REAL DEAL

To go from pseudo-code to real code, there are
a number of steps:

¡ Determine the appropriate syntax of the language
you want to use and rewrite your pseudo-code as
real code in this language

¡ Replace black box functions with real code

¡ Determine how to connect your piece of code (the
software) up to the computer, so your code can be
compiled/interpreted, run by the computer,
receive input and generate output

PSEUDO-CODE

CODE-CODE

data-action-lab.com

FROM CODE TO COMPUTER

Many roadblocks can arise when going from code – which is just text files – to
having code that runs on your computer. These roadblocks can include:

¡ libraries

¡ input/output + file system

¡ compilers/interpreters

In broad terms, a certain amount of infrastructure must be in place!

We are taking care of much of this for you by setting up notebooks for you.

data-action-lab.com

PROGRAMMING RESOURCES

Much of the information about how to use a particular computer language or how to
make code run on a particular hardware configuration, is not written down in any
single authoritative reference manual.

This is likely because the world of coding and computers changes so quickly.

To successfully code, you must be embedded in a community of coders. Luckily,
the internet has made this much easier – most questions about coding have already
been answered somewhere on the internet.

In short – STACK EXCHANGE (and other similar sites)

data-action-lab.com

R STUDIO

data-action-lab.com

JUPYTER NOTEBOOK ANATOMY

data-action-lab.com

COMPONENTS OF R COMPUTER CODE

Variables

Data Structures

Operators

Statements and Expressions

Blocks (and Scope)

Functions

Logical (Control) Flow

Libraries/Packages/Modules

Inputs/Outputs

Interpreters/Compilers

data-action-lab.com

R: SOME KEY INFO (I)

To create a variable in R, simply
come up with a name and use the
assignment operator to assign a
value to the variable

The value might be of variable
types: number, character, string,
vector, list, matrix, data frame or
some other object

R uses the data frame object a lot!

data-action-lab.com

OBJECT ORIENTED VS PROCEDURAL LANGUAGES

R and Python are objected oriented languages, as opposed to procedural languages.

What does this mean?

To understand the answer we must first understand:

¡ Data Types

¡ Data structures

¡ Functions

data-action-lab.com

DATA TYPES

Languages have a set of built in basic variable types – e.g.:

¡ Integer: 5

¡ Character: ‘m’

¡ List: (5, 3, 9)

Other variables types can be built up out of these basic types – e.g.:

¡ String = list of characters: (‘t’, ‘a’, ‘b’, ‘l’, ‘e’)

data-action-lab.com

DATA STRUCTURES AND OBJECTS

A user might want to define their own set of related variables – a data structure:
¡ struct myNames = {string firstName, string middleName, string lastName}

¡ jenNames might be a variable of type myNames, with firstName = Jen, middleName = Adele,
lastName = Schellinck

In addition a programmer might want to always be able to carry out a set of
predefined instructions, or functions, on that data structure:

¡ jenNames.print_middle_name

An object is loosely defined as a user defined data structure plus a set of functions
that goes along with that data structure.

data-action-lab.com

R DATA FRAMES

The data frame object in R is structured similar to a spreadsheet in Excel:

¡ It has rows and columns, with associated row and column names

¡ You can carry out predefined operations on specific values, on selected rows or selected
columns

People familiar working with databases, AND people used to working with more
vector-focused languages (e.g. Java) might find the data frame implementation in R
frustrating!

data-action-lab.com

SORTING ALGORITHM: A SKETCH IN R

Your challenge: write and run a program that sorts numbers in R.

data-action-lab.com

SOME USEFUL ADDITIONAL DETAILS

data-action-lab.com

COMPILED VS INTERPRETED LANGUAGES

Compiled Language: Program is written as a whole, compiler checks the code as a
whole and turns it into a low level language

Interpreted Language: Interpreter reads, turns into low-level code, and carries out
one statement at a time.

Using an interpreter lets you program in a more free-form, improvisational way – like
playing jazz instead of classical music.

This can be useful if you are doing exploratory work, but you can run into trouble if
you use this strategy to generate larger or more substantial programs.

data-action-lab.com

DEBUGGING

Debugging is mostly about revealing what is in memory at different points in the
control flow of the code – is the code doing what you think it is?

Debugging is a bit of an art form

Debugging requires you to be a detective

Debugging teaches you perseverance

There are debugging tools that can help you all of this

data-action-lab.com

SOME RELEVANT COMPUTER SCIENCE FRAMEWORKS

Languages (Computer, Mark Up)

Libraries/APIs

Software (Applications, Utilities, Systems)

Code (Open-Source, Uncompiled)

Protocol/Standard

Programming Models/Styles

data-action-lab.com

OPTIONAL EXERCISES AND READINGS

data-action-lab.com

EXERCISES: LABS COMING UP!

In the next sessions, you will have the opportunity learn more about R and to run
some pre-made code.

But in general, the programming responsibility will fall to you.

For out-of-class work, you are encouraged to:
¡ review the ‘Introduction to R’ notebook

¡ try writing R statements and ‘code snippets’ in the Rstudio/Notebook environment, in order to
become comfortable with R

data-action-lab.com

OPTIONAL EXERCISES: TRY IT OUT

Starting from an empty (new) notebook:

¡ Load some data from a file into a data frame

¡ Create a plot or graph using some of the loaded data

Note – using code from other notebooks or from on-line resources is not cheating!

data-action-lab.com

REFERENCES

data-action-lab.com

REFERENCES

Sample of C language specifications:
https://www2.cs.arizona.edu/~debray/Teaching/CSc453/DOCS/cminusminusspec.html

C code snippet: https://www.programiz.com/c-programming/examples/swapping

Cheat Sheet for Jupyter Notebooks:
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Jupyter_Notebook_Cheat_Sheet.pdf

Cheat sheet for R: https://cran.r-project.org/doc/contrib/Short-refcard.pdf

Cheat sheet for Markdown:
https://scottboms.com/downloads/documentation/markdown_cheatsheet.pdf

https://www2.cs.arizona.edu/~debray/Teaching/CSc453/DOCS/cminusminusspec.html
https://www.programiz.com/c-programming/examples/swapping
https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Jupyter_Notebook_Cheat_Sheet.pdf
https://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://scottboms.com/downloads/documentation/markdown_cheatsheet.pdf

data-action-lab.com

IMAGES

Signpost: https://upload.wikimedia.org/wikipedia/commons/2/29/Worden_park_signpost.jpg

Muffins:
https://commons.wikimedia.org/wiki/Category:Muffins#/media/File:Sweet_potato_pecan.jpg

Assembly Language:
https://en.wikipedia.org/wiki/Assembly_language#/media/File:Motorola_6800_Assembly_Language
.png

Internet Map: https://upload.wikimedia.org/wikipedia/commons/d/d2/Internet_map_1024.jpg

https://upload.wikimedia.org/wikipedia/commons/2/29/Worden_park_signpost.jpg
https://commons.wikimedia.org/wiki/Category:Muffins
https://en.wikipedia.org/wiki/Assembly_language
https://upload.wikimedia.org/wikipedia/commons/d/d2/Internet_map_1024.jpg

