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Clustering and k-Means



VISITING THE CUSTOMER
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BUYING OUR

www.unitedmedia.com
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@/13[4:77 © 1997 United Feature Syndicate, Inc.
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WRITTEN ALL
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[Scott Adams, Dilbert, Jun 13, 1997]



Clustering Overview

In clustering, the data is divided into naturally occurring
groups. Within each group, the data points are similar; from
group to group, they are dissimilar.

The gI’OUpiﬂg labels average distance to points in own average distance to points in
are not determined cluster (low is good) neighbouring cluster (high is good)
ahead of time, so
clustering is an
example of
unsupervised
learning.
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Clustering Overview

Clustering is a relatively intuitive concept for human beings as

our brains do It unconsciously

= facial recognition
» searching for patterns, etc.

In general, people are very good at messy data, but computers
and algorithms have a harder time.

Part of the difficulty is that there is no agreed-upon definition of

what constitutes a cluster:
» “| may not be able to define what it is, but | know one when | see one”



Clustering Overview

Clustering algorithms can be complex and non-intuitive, based
on varying notions of similarities between observations.

» in spite of that, the temptation to explain clusters a posterioriis strong

They are also (typically) non-deterministic:

» the same algorithm, applied twice (or more) to the same dataset, can
discover completely different clusters

» the order in which the data is presented can play a role
* SO can starting configurations



Discussion: What does this (potential) non-repeatability imply
for validation?



Clustering Requirement

A measure of similarity w (or a distance d) between observations.

Euclidean distance Cosine distance
(as the crow flies) (angle between vectors)

----» Manhattan distance Transform (normalize, center)
(you might have to drive) before calculating distance
| / _ '

Typically, w > 1asd - 0,andw - 0asd — .

Other metrics also available: Hamming, Jaccard, Pearson, etc.



Applications

Text Documents

» grouping similar documents according to their topics, based on the
patterns of common and unusual words

Product Recommendations

= grouping online purchasers based on the products they have viewed,
purchased, liked, or disliked

» grouping products based on customer reviews

Marketing and Business

= grouping client profiles based on their demographics and preferences



Applications

Music
» finding similar albums by grouping the customers who own them

Social Network Analysis
* recognizing communities within large groups of people

Medical Imaging
= differentiating between different tissue types in a 3D voxel

Genetic Clustering
» inferring structures in populations



Other Uses

Dividing a larger group (or area, or category) into smaller
groups, with members of the smaller groups guaranteed to have
similarities of some kind.

» tasks may then be solved separately for each of the smaller groups

* this may lead to increased accuracy once the separate results are
aggregated

Creating (new) taxonomies on the fly, as new items are added
to a group of items

» this would allow for easier product navigation on a website like Netflix,
for instance.



Cluster Assignment
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Clustering Schemes

k-Means
= classical (and over-used) model
» assumptions made about the shape of clusters

Hierarchical Clustering
= easy to interpret, deterministic

Latent Dirichlet Allocation
» used for topic modeling

Expectation Maximization



ing

Hierarchical Cluster
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Clustering Schemes

Balanced Iterative Reducing and Clustering using Hierarchies
= aka BIRCH

Density-Based Spatial Clustering of Applications with Noise
» graph-based

Affinity Propagation
» selects the optimal number of clusters automatically

Spectral Clustering
" recognizes non-blob clusters



DBSCAN and Spectral Clustering
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k-means is well-adapted to numerical data (although it can also
be used for categorical data), but it has a tendency to force
clusters of roughly equivalent sizes.



k-Means Algorithm

1.Select the desired number of clusters, say k

2.Randomly choose k instances as initial cluster centres

3. Calculate the distance from each observation to each centre
4.Place each instance in the cluster whose centre it is nearest to
5.Compute the centroid for each cluster

6. Repeat steps 3 — 5 with the new centroids

/.Repeat step 6 until the clusters are stable
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Initialization

[Ozden, Lee, Sullivan, Wang, Identification and Clustering of Event Patterns
From In Vivo Multiphoton Optical Recordings of Neuronal Ensembles]
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[Provost & Fawcett, Data Science for Business]

4-0 I I I |
o
3.5 "
o ° . o’ e ®
3.0} ° o e 2
Q ® o ©
: oB e g o
25} : " = Py 3
o o
20} o b’
' ¢ o o ® o..
T . .
1.5¢ L A .‘ ©
°
o® ° o*° o
1.0} ) o ©
o & .
el ®e @
» '0 Q. [2% o]
05} S o
o
* % o
0.0 F ® R ®
°
23 0 1 2 3

Movement of Centroids




[Provost & Fawcett, Data Science for Business]
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k-Means Strengths

Easy to implement (without having to actually compute pairwise
distances).

= extremely commaon as a conseqguence

» elegant and simple

In many contexts, k-means is a natural way to look at grouping
observations.

Helps provide a basic understanding of the data structure in a
first pass.



k-Means Limitations

Data points can only be assigned to one cluster.
* this can lead to overfitting
» robust solution: consider the probability of belonging to each cluster

Underlying clusters are assumed to be blob-shaped

» k-means will fail to produce useful clusters if that assumption is not
met in practice

Clusters are assumed to be separate (discrete)
» k-means does not allow for overlapping or hierarchical groupings



Distance Measures (Metrics)

Categorical Variables* Numerical Variables
» Hamming distance » Fuclidean
» Russel/Rao index = Manhattan
» Jaccard = Correlation
» Matching coefficient » Cosine
= Dice’s coefficient » Pearson
= etc. = etc.

No steadfast rule to determine which distance to use in k-means

Competing schemes are often produced using different metrics.

*may need to be dichotomized



Take-Away: with mixed data,

Hamming < Euclidean, Jaccard <« Manhattan.



Clustering Challenges

Automation
relatively intuitive for humans, but hard to automate

Lack of a clear-cut definition
no universal agreement as to what constitutes a cluster

Lack of repeatability

non-deterministic: the same algorithm, applied twice to the same dataset
can discover completely different clusters

Number of clusters
optimal number of clusters difficult to determine
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Clustering Challenges

Cluster description
should clusters be described using representative instances or average
values”?

Model validation
no true clustering information against which to contrast the clustering
scheme, so how do we determine if it is appropriate?

Ghost clustering
most methods will find clusters even if there are none in the data

A postiori rationalization
once clusters have been found, it is tempting to try to "explain’ them ...









Take-Away: clustering looks easy in 2D or 3D spaces... but in
high-dimensional spaces, almost all pairs are equidistant!



Data science students don’t have to be gardeners, but it helps.

(unknown)



Example — Iris Dataset

Iris is a genus of plants with showy flowers.

Fisher's iris dataset contains 150
observations of 5 attributes for specimens
collected by Anderson, mostly from a
Gaspé peninsula’s pasture in the 1930s:

» petal width

» petal length

= sepal width

= sepal length

" species

[http://blog.kaggle.com/wp-content/uploads/2015/04/iris_petal_sepal.png]



http://blog.kaggle.com/wp-content/uploads/2015/04/iris_petal_sepal.png

Iris Classification

Example — Iris Dataset

PC1

PC2



2 Clusters

Example — Iris Dataset
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3 Clusters

Example — Iris Dataset
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Example — Iris Dataset
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Example — Iris Dataset
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15 Clusters

Example — Iris Dataset




Clustering Validation

What does it mean for a clustering scheme to be better than
another?

What does it mean for a clustering scheme to be valid?
What does it mean for a single cluster to be good?
How many clusters are there in the data, really?

Main challenge: what are we comparing the clustering scheme
against? (versions of this problem plague unsupervised tasks)



Take-Away: right vs. wrong/good vs. bad is meaningless.

Optimal vs. sub-optimal is the way to go.



Clustering Validation

Optimal clustering scheme:
» maximal separation between clusters
= maximal similarity within groups
» agrees with human eye test
» useful at achieving its goals

Validation types
= external (uses additional information)
» internal (uses only the clustering results)
= relative (compares across clustering attempts)



Internal Clustering Validation

Davies-Bouldin Index can be used to determine the number of
clusters in k-means
2 Si + Sj
max
TN # d(ci,cp)’

where N is the number of clusters, ¢, IS the centroid of the m!™ cluster, and s,,
is the average distance of the points in the m™ cluster to ¢,y

Other Methods
= Sum of Squared Errors
= Dunn’s Index
= Silhouette Metric
= etc.




Example - Iris Dataset (revisited)
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Example - Iris Dataset (revisited)

Davies-Bouldin Index (variant)
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Example - Iris Dataset (revisited)
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Example - Iris Dataset (revisited)
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Example - Iris Dataset (revisited)
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Example - Iris Dataset (revisited)
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Take-Away: validating clusters is just as complicated as
defining clusters.

We'll have more to say on the topic.



Hierarchical Clustering



[ SSmads-Uo[TW-9J1[-9913-60-5 T 0 ¢/ SMIU/3I0°SAYd / /SA13Y]



https://phys.org/news/2015-09-tree-life-million-species.html

Hierarchical Clustering Overview

Hierarchical clustering (HC) clusters a dataset into a hierarchy of
clusters (order relation is set containment).

There are two main strategies:

* Bottom-up (agglomerative)
initially, each observation starts in its own separate cluster
clusters are merged as the hierarchy is climbed
after the last merge, all observations are in the same cluster
* Top-down (divisive)
initially, each observation starts in the same cluster
clusters are split as the hierarchy is descended down
after the last split, each observation ends in its own separate cluster

Bottom-up HC is significantly faster than Top-down HC (poly. vs. exp.)
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Hierarchical Clustering Overview

The main question: how to split, or how to merge, clusters?

This requires the notion of a distance between clusters (linkage).

*in Bottom-up HC, nearest pairs of clusters are merged up the hierarchy
(requires only computing distances between pairs)

" in Top-down HC, a cluster must be optimally split into sub-clusters down the
hierarchy (much harder, computationally)

Another issue: at what level do we report the clustering scheme?
When do we stop climbing or descending the hierarchy?

Latent class analysis might be a better approach, in general.
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Hierarchical clustering & dendrogram
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[author unknown]



Back to Knowledge Discovery
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More unsupervised learning:
what underlying structures can
we discover in this data?

[mtcars dataset]
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Back to Knowledge Discovery

What do you notice in this
diagram, structure-wise?



In a nutshell, hierarchical systems are ordered sets where
elements and/or subsets are organized in a given relationship to
one another, both among themselves and within the whole.

Relationships vary according to the field domain and type of
system, but in general, we can describe them by the properties
of elements and the laws that govern them (e.g., how they are
shared and/or related). 1. Meireilles, Design for Information



Visualizing Hierarchy

(mammals(primates (apes(orangutan,human)),
(monkeys(pygmy marmoset)),(lemurs(ruffed
lemur))),(cetacea (whales(long-finned pilot
whale,southern right whale)),(dolphins(striped
dolphin, bottle-nose dolphin))))

(*treemap from: TIBCO Spotfire Documentation: What is a Treemap?)




Button Press Hierarchical Clustering

What can we say about
the data structure if
cluster dendrogram?
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Evaluating the Results

4), dist = d)

Silhouette plot of (x = cutree(hc, k

n=32

4 clusters C;
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The Silhouette Metric

average distance to points in average distance to points in
own cluster (low is good) neighbouring cluster (high is good)

silhouette
metric =
for a point

average dissimilarity with neighbouring cluster — average dissimilaity with own cluster

maximum dissimilarity value (own or neighbour)



Evaluating the Results
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Cluster Dendrogram

1 = [ 1 1

Hierarchical Clustering Algorithm

An Illustration with mtcars
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Hierarchical Clustering Algorithm

An Illustration with mtcars
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Hierarchical Clustering Algorithm

An Illustration with mtcars

Cluster Dendrogram
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Hierarchical Clustering Algorithm
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Hierarchical Clustering Algorithm

An Illustration with mtcars

Cluster Dendrogram
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Hierarchical Clustering Algorithm

An Illustration with mtcars
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Hierarchical Clustering Algorithm

An Illustration with mtcars

Cluster Dendrogram
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Hierarchical Clustering Algorithm

An Illustration with mtcars
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Hierarchical Clustering Algorithm

An Illustration with mtcars
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Hierarchical Clustering Algorithm

Similarity-Dissimilarity

Compare objects Compare variables
> mtcars : > mtcars
——maas TSy drat wt
Mazda RX4 21.0 6 160.0 110 3.90 2.620 Mazda RX4 21.0 0 3.90 2.620
% 3 3 > Mazda RX4 Wag 21.9 .0 3.90 2.875
Datsun 710 gf.: 2 ggg.o 93 3.85 2.320 Datsun 710 22.8 ‘0 3.85 2.320
Hornet 4 Drive 21.4 .0 3.08 3.215
ngn:: Sportabout :g'z g ggg'e 175 3.15 3.440 Hornet Sportabout | 18.7 .0 3.15 3.440
Duster 360 14.3 8 360.0 245 3.21 3.570 yattane 161 Q985 2,702,950
Duster 360 14.3 .0 3.21 3.570
Merc 240D 24.4 4 146.7 62 3.69 3.190 Merc 240D 24 4 A 369 3.190
Merc 230 22.8 4 140.8 95 3.92 3.150 Merc 230 22.8 .8 3'92 3‘156
Merc 280 19.2 6 167.6 123 3.92 3.440 Merc 280 19'2 .6 3'92 3'440
Merc 28@C 17.8 6 167.6 123 3.92 3.440 Merc 280C 17-8 .6 3'92 3'440
Merc 450SE 16.4 8 275.8 180 3.07 4.070 Merc 45@SE 16.4 '8 3'07 4'070
Merc 450SL 17.3 8 275.8 180 3.07 3.730 Merc 450SL 17'3 .8 3'07 3‘730
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 Merc 450SLC 15'2 .8 3'07 3.780
Cadillac Fleetwood 10.4 8 472.@ 205 2.93 5.250 . 3 3 g >
Lincoln Continental 10.4 8 460.0 215 3.00 (:()ITlI)Elr13 Eg:;:{:ccz;igﬁzztzl ig'z 'g g'gg g‘igg
Chrysler Imperial 14.7 8 440.0 230 3.23 Chrysler Imperial 14'7 '0 3'23 5'345
Fiat 128 32.4 4 78.7 66 4.08 2.20 values Fiat 128 32.4 o 4.08 2.200
Honda Civic 30.4 4 75.7 52 4.93 1.615 Honda Civic 30'4 '7 4'93 1'615
Toyota Corolla 33.9 4 71.1 65 4.22 1. Toyota Corolla 33:9 :1 4:22 1:835
Dodge Challenger  15.5 8 318.0 150 2.76 3 Toyota: Corona el:3 1§ 973,78, 2.465
r Dodge Challenger 15.5 .0 2.76 3.520
AMC Javelin 15.2 8 304.0 150 3.15 3 AMC Javelin 15.2 2 3.15 3.435
Camaro 228 13.3 8 350.0 245 3.73 3 ; ¥ 3 f
Pontiac Firebird 19.2 8 400.0 175 3.08 3 Compare Camaro 728 13.3 -0 45 3.73 3.840
ot XT0 YA Pontiac Firebird 19.2 .0 3.08 3.845
Porsche 914-2 26.0 4 120.3 91 4.43 2 groups  Fiat xi-9 hed b sl
Porsche 914-2 26.9 .3 4.43 2.140
Lotus Europa 30.4 4 95.1 113 3.77 1 Lotus Europa 30.4 1 3.77 1.513
Ford Pantera L 15.8 8 351.0 264 4.22 3 tord Panterd: L 15.8 '0 4'22 3'170
Ferrari Dino 19.7 6 145.0 175 3.62 2 Carrari: Dine 19:7 :0 3:62 2:7?0
y : 7 Maserati Bora 15.0 0B 3.54 3.570
Volvo 142E 21.4 4 121.0 109 4711 2 Volvo 142E 21.4 " 4}11 2.780




Hierarchical Clustering Algorithm

Parameters: Linkage

smallest
° distance %

The chosen linkage algorithm
largest

distance affects which clusters are merged,
and the shape of the resulting
clusters (e.g. tighter, looser)

average of _
all distances centroid

O distance
Uy | B
= /

AN




Strengths and Limitations — Linkages

Single Linkage (smallest distance)
= can handle non-blob shapes
= sensitive to noise and outliers
= produces elongated clusters

Complete Linkage (largest distance)
= Dbalanced clusters, with similar diameters
= not overly sensitive to noise
= tends to split large clusters
= all clusters tend to have similar diameters



Strengths and Limitations — Linkages

Average Linkage (average distance)
= compromise between single and complete linkages
= not too sensitive to noise and outliers
= tends to produce blob-shaped clusters

Centroid Linkage (centroid distance)
= clusters can have a lot of internal variance



Complete Link

Average Link | Centroid Link

[https://dataaspirant.com/2018/01/08 /hierarchical-clustering-r/]



https://dataaspirant.com/2018/01/08/hierarchical-clustering-r/

Hierarchical Clustering Algorithm

Parameters: Linkage - Example

Data
Cluster A Cluster B
° 1: (5,5,5) 6: (10,10,10)
2: (5,6,5) 7:(11,10,9)
. o 3: (4,6,5) 8:(12,10,11)
x = . 4: (6,5,4) 9:(10,9,11)
§ 5:(3,1,1) 10: (13,13,13)
c: (4.6,4.6,4) c:(11.2,10.4,10.8)
o | 5 B Cluster A
X N 1 2 3 y
© o) L, gy .—
12 6 | 8.7 8.8 4;,‘;
- ke = 788 9.0 | 8.7 [145 £
: . £ 8/10.5/10.0/10.8/10.5 3
e $ , 2 T & 988 9.0 | 9.0 |14.6 §
I T s ¥ E £ 10(11.5/10.8/10.7|12.4 =
3 77) () )
vi 10.7[82]17.0[11.1

Linkage
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Hierarchical Clustering Algorithm

Returning to Our Clustering Results

09 or 0c 0
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08¢ BN
08¢ JI8N
bem Xy epzen
Xd epzeiN
aove 218N
Z-7T6 8ydsiod
'U010D BJoA0 |
0T. unsleq
32T OAIOA
0€C I8N
edoing snjo7
ouiq LeleH

186us|jey)d abpog

= [eluaunuO0D ujoour]
poOMIaa|- JB[lIpED

101

metrics also inform

Can evaluat
this choice?

3ZVT OAJOA
BU0I0D BJ0A0 L
C16 3ydsiod
0T/ unsreQ
0€Z 218N
edoin3g snjo7
aove 218N
08¢ 218N
08¢ JI8N
bem Xy epzen
7Xd epzep
6-TX Jeld
8¢T leld
©||010D Bl0A0 L
JINID epuoH
welen
9AlIQ 7 19UIOH
oulq Lella4

ullaner QY
18buajreyd abpog
1S0GY 218N
3S0G 218N
O7S0SY I8N
paigali4 denuod
nogenods 12uloH

8gZ orewe)

09€ Ja1sng

7 elaued pio4

[eluaunuo) Ujoour]
\ﬂﬂ poomiaajH oe||ipeD
reuadw J8|sAIYD

rlog nelesein

Euclidean Distance Complete Link

00T 08 09 OF 0OCc O

WBIaH

pJigali4 denuod
jnogeniods 1ouioH
827 orewe)
09€ Ja1sna
7 elajued piod
[eluaunuo) ujooul
/|‘I’.H poomsa|4 Je|jiped
reuadwy JajsAiyd

ulianer JNY
*\ 18b6us|rey) abpoa

1S0SY 21BN
3S0Sy 21BN

O71S0SY I8N
juelep
BAUQJ ¥ 1I9UIOH

elog elasep
¢-716 3YdSi0od
©U0I0D BloAO |
0T/, unsieg
32T OANOA
0€C 218N
edoin3g sno
aove 218N
0082 218N
8¢ 219N
M 7Xd BpZeiN
X epze
6-TX leld
8¢t leld

Euclidean Distance Single Link

©]|010D ©l0A0 |
JIAID BpuoH
oulq Lesad

0S¢ 00c O0ST 00T O0OS 0

wbeH

Manhattan Distance Single Link

Euclidean Distance Average Link



Silhouette plot of (x = cutree(hcmtcarssingle, k = 4), dist = dist(mtcars))
n=32 4 clusters C;
j: nj]aveieg Si
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Silhouette width s;
Average silhouette width : 0.4

Silhouette plot of (x = cutree(hcmtcarsaverage, k = 4), dist = dist(mtcars))
n

4 clusters C;
it njlaveiec si

w
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Silhouette width s;

Average silhouette width : 0.53

Hierarchical Clustering Algorithm
Silhouette of Clustering Results

Silhouette plot of (x = cutree(hcmtcarscomplete, k = 4), dist = dist(mtcars))
n=32 4 clusters C;
j: njlaveeg si
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Silhouette width s;
Average silhouette width : 0.53

Silhouette plot of (x = cutree(hcms, k = 4), dist = dist(mtcars, method = "manhattan"))
n=32 4 clusters C;
iyl aveieg si
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Hierarchical Clustering Notes

Color Key

HC is deterministic, for a
given choice of metric and
linkage.

-0. 0 0.
Row Z-Score

Space and time requirements
do make HC unattractive for
medium-to-large datasets.

Various linkage strategies: be
sure to check out Wald’s
method!

| e

[https://www.biostars.org/p/91978/]



https://www.biostars.org/p/91978/

Hierarchical Clustering Notes

Easy to understand and implement, but rarely optimal.

No real strong theoretical or first principle approach to specify the
distance metric and linkage criteria (arbitrary decisions).

Cannot handle missing values or mixed data types.

Dendrograms can only be used to select the number of clusters
when the ultrametric tree inequality holds (rarely does in practice).

Consider using latent class analysis instead.



HC Examples and Case Studies

Clustering Myths

Comparative Mythology

= Studying myths from different cultures to understand
their similarities and possibly shared origins

= Many myths have splintered off and evolved from
common Sources

Julien d'Huy (2016): Used a variety of data
mining techniques, including hierarchical
clustering, to trace the evolution of myths.

Collection of myths broken down into common A myth across cultures:
the hunter in the sky
story elements.

J.d'Huy [2016], Scientists Trace Society’s Myths to Primordial Origins, Scientific American (Online)



HC Examples and Case Studies
Clustering Myths

Myths categorized based on presence/ absence
of elements

Myths are clustered based on this categorization.
Result shows myths clustering together - could

this suggest a possible common origin for these
myths?

Remember, clustering is knowledge discovery!

A myth across cultures:
the hunter in the sky

J.d'Huy [2016], Scientists Trace Society’s Myths to Primordial Origins, Scientific American (Online)



HC Examples and Case Studies

Complex building's energy system operation patterns analysis using
bag of words representation with hierarchical clustering

A Comparison of Antioxidant, Antibacterial, and Anticancer Activity
of the Selected Thyme Species by Means of Hierarchical Clustering
and Principal Component Analysis

Use of hierarchical cluster analysis to classify prisons in Ireland into
mutually exclusive drug-use risk categories

Divisive Analysis (DIANA) of hierarchical clustering and GPS data
for level of service criteria of urban streets



Density Based Clustering



Data Point Density

° . " /

Area of low density

. * e A In density-based clustering, the
T el o density of observations
= woor e determines the clusters.
' X L0 . How do we measure density?

I Area of high density




DBSCAN Algorithm — Parameters

DBSCAN uses 2 parameters:
= a distance parameter to create -neighbourhoods, and
* the minimum number of points in an e-neighbourhood required to
include the n"hood in the cluster being constructed (including the centre)

3 distinct types of points:
= outliers: out of reach of every other point
= non-core (reachable): within reach of some number of points below the
min. threshold
= core: within reach of at least the minimum number of other points



DBSCAN Algorithm — Parameters

Reachability is not a symmetric relation: no point is reachable from
a non-core point (a non-core point may be reachable, but nothing
can be reached from it).

Two points p and g are density-connected if there is a point o
such that both p and g are reachable from o (but density-
connectedness is symmetric).

All points within a cluster are mutually density-connected. If a point
is density-reachable from any point of the cluster, it is part of the
cluster as well.



minPts = 4
Red = core

= reachable
Blue = outlier



DBSCAN Algorithm

Given € > 0 and minPts (as well as a distance metric d):

1. Find the e-neighbours of every point, and identify the core points with more
than minPts neighbours (including the core point).

2. Find the connected components of core points on the neighbor graph,
ignoring all non-core points.

3. Assign each non-core point to a nearby cluster if the cluster is an € neighbor,
otherwise assign it to noise.

That’s really all there is to it...



DBSCAN Example — Artificial Dataset
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DBSCAN Example — Artificial Dataset

Point picked at random

£ _
minPts: 3
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DBSCAN Example — Artificial Dataset

Point identified as a non-core point

£ _
minPts: 3




DBSCAN Example — Artificial Dataset

Another point picked at random

£ _
minPts: 3




DBSCAN Example — Artificial Dataset

Another point picked at random

£ _
minPts: 3




DBSCAN Example — Artificial Dataset

Points in the g-neighbourhood

€ _
minPts: 3
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DBSCAN Example — Artificial Dataset

Resulting cluster

€ _
minPts: 3




DBSCAN Example — Artificial Dataset

£: S
minPts: 3
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https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

[Adapted from https://library.creativecow.net/articles/ussing jonas/clouds 3dmax.


https://library.creativecow.net/articles/ussing_jonas/clouds_3dmax.php

DBSCAN Clustering Challenge

[1,]
[2,]
[3,]
[4,]
[5,]
[6,]
[7,]
[8,]
[9,]
(19,]
[11,]
[12,]
[13,]
(14, ]
(15,]
[16,]
[17,]
[18,]
(19, ]
(20, ]

First 20 of 603 data points from
an artificially-constructed dataset.

tpx

-100

-99
-98
=97
-96
)
-94
-93
-92
-91
-90
-89
-88
-87
-86
-85
-84
-83
-82
-81

10928.
10376.
9696.
10049.
9420.
2171.
9118.
9166.
9251.
9059.
8390.
81860.
7749,
8092.
£ol8;
7674,
7194,
7340,
7456.
6990.

tpy
249
446
948
223
883
636
230
522
633
243
208
269
231
249
351
044
916
763
145
375

tpx tpy

1 dimensional plot of points from each column.
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DBSCAN Clustering Challenge

20000
|

This looks like something DBSCAN
should be able to handle...

... and better than k-means, too.
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|
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DBSCAN Clustering Challenge
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But it turns out that
DBSCAN isn’t working
out so well for this

dataset...



DBSCAN Clustering Challenge

......

k-means appears to be doing a
better job.

But is it really detecting the clusters
more accurately, or just taking
advantage of the separation
between the two clusters?

[s there a way to get DBSCAN to
work?



DBSCAN Clustering Challenge

-, w
.‘-‘. ,o.'
oy &
L e Take a closer look at the axes on
®e \ -~ *
. ’ ‘Q' ;o‘x * o .
E ‘ ..:..‘.. %‘.».a“.‘o ):.? th 1 S p l Ot aEn
w, ¥
‘}.:o .'0"..
'o;'.‘ . 0:..’
LN =X
N, o
‘:‘-.'.'," vy - :'..":.:,'-’
“aton .? (V) "'." .
SRR



DBSCAN Clustering Challenge

Re-plotted, with the axis adjusted to match the axis:
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DBSCAN Clustering Challenge
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When data is scaled, position and length of vectors are adjusted to
normalize the distribution of the data. This pleases DBSCAN!



200 300 400

100

Comparing Algorithmic Complexity

100

O(nlogn)

DBSCAN can handle globular
clusters and non-globular
clusters — why isn’t it being
used all the time?

DBSCAN is O(nlog n) in the best
case scenario, whereas k-means
is O(nk) (more or less)

When the number of
observations increases, DBSCAN
is less efficient than k-means.



DBSCAN Advantages

No need to specify the number of clusters.
Can find arbitrarily shaped clusters.

Can recognize “noisy” points.

Robust to outliers.

Requires only two parameters (minPts and &) which can be set by
domain experts if the data is well understood.



DBSCAN Limitations

DBSCAN's clustering kryptonite:

. <% °  datasets where cluster density is not
» %% . consistent across clusters.
) .E. Hard to set parameters that consistently
. K o capture clusters while identifying
. outliers.
. e - Not entirely deterministic: border
e o ) points that are reachable from more

than one cluster can be part of either

cluster, depending on the order.



Parameters Estimation

minPts:
" minPts > # features + 1
= Jarger values are better for noisy data sets
*minPts = 2 X dim for large datasets or sets with duplicates

= if too small, a large prop. of observations is not clustered
" if too high, majority of observations are in the same cluster
" in general, small values are preferable

Distance function:
* has a major impact on the results
= should be selected before £ is chosen



DBSCAN Examples

Detecting Alzheimer’s Disease

Mild cognitive impairments (MCI) are a known
to be a risk for factor for development of
Alzheimer’s Disease

MCI are accompanied by changes in brain
structure

But which changes indicate that people will go  FMRIhighlighting some

areas of the pre-frontal

. )
on to develop Alzheimer’s? cortex.

Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease, by C. Plant, S.J. Teipel, A.
Oswald, C. Béhm, T. Meindl, J. Mourao-Miranda, A.W. Bokde, H. Hampel, M. Ewers.



DBSCAN Examples

Detecting Alzheimer’s Disease

A number of different data science techniques
applied to MRI data:

= Support Vector Machines
= Bayesian Statistics
=Voting Feature Intervals
= Feature Extraction

*DBSCAN

FMRI highlighting some
areas of the pre-frontal
cortex.

Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease, by C. Plant, S.J. Teipel, A.
Oswald, C. Béhm, T. Meindl, J. Mourao-Miranda, A.W. Bokde, H. Hampel, M. Ewers.



DBSCAN Examples

Detecting Alzheimer’s Disease

DBSCAN is used once voxels that provide high
information about the classification of the
image are identified using entropy based

measures

DBSCAN then groups pixels with similar
spatial and information levels to determine

which parts of the brain are the most FMRI highlighting some
important for the diagnosis areas of the pre-frontal
cortex.

Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease, by C. Plant, S.J. Teipel, A.
Oswald, C. Béhm, T. Meindl, J. Mourao-Miranda, A.W. Bokde, H. Hampel, M. Ewers.



DBSCAN Examples

Some More Examples

A novel approach for predicting the length of hospital stay with DBSCAN
and supervised classification algorithms

Simulation of DNA damage clustering after proton irradiation using an
adapted DBSCAN algorithm

Where traffic meets DNA: mobility mining using biological sequence
analysis revisited

Individual Movements and Geographical Data Mining. Clustering
Algorithms for Highlighting Hotspots in Personal Navigation Routes



Spectral Clustering
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Spectral clustering makes no
assumption on the shape of a cluster
Compactness vs. connectedness

Spectral clustering can be implemented
efficiently for large datasets

computing eigenvalues is numerically
o “efficient”
@)
O
o)

@)



Spectral clustering makes no
assumption on the shape of a cluster
Compactness vs. connectedness

Spectral clustering can be implemented
efficiently for large datasets

computing eigenvalues is numerically
“efficient”



Spectral clustering makes no
assumption on the shape of a cluster
Compactness vs. connectedness

Spectral clustering can be implemented
efficiently for large datasets

computing eigenvalues is numerically
“efficient”



In graph theory, the notation of a similarity graphis G = (V,E,W).
Data points x are vertices v € V.

A pair of vertices v;, vj are connected by an edge e;; = 1 if the similarity

weight w;; > 7 for a given threshold 7 € [0,1).

lanh

The edges e;; form the adjacency matrix E.

rmv]

[he weights w;; form the similarity matrix W'.

lanh

['he (diagonal) degree matrix D prov1des information about the number of
edges attached to a vertex: d;; = ]=1 e

External requirements: threshold 7, similarity measure w.



With the Gower similarity measure on data with m features
m

B 1 ‘xi,k — j,k‘
we (v, UJ') =1- m kz; range of kth feature

the similarity matrix of the previous data is

/ 0 5/6 1/2 1/2 5/6 1/6\
5/6 0 2/3 1/3 2/3 0
1/2 2/3 o 12/3 1/3 1/3
1/2 1/3 (2/3) 0 2/3 2/3
5/6 2/3 1/3 2/3 0 1/3/
1/6 o 1/3 2/3 1/3 0

|x31—%41] n %3 2—%x4,2 |}

| 1
For instance, Wg (vg, U4) — W3yq = Wy3 = 1- E{ r T
1 2

Butry, =1, =3,s0w3, = Wy3 = 1—%{|2—2|+|0—2|}=§.



Let’s use a threshold value T = 0.6.

The adjacency matrix is thus

Incidentally, the degree matrix is

0
/1
0
0
1

0

2
(o
0
0

0
0

O ROk O K

O O OO WO

0

OO RO K

0

S o onN O

0

== O O

0

o O WO O

1

SO RO K

S W oo O O

0
0\
0
1

0
0

0
0)
0
0
0

1

The similarity graph G is read

directly from E :
P
(25>
©

Now all that is left is to partition the
graph!



A graph cut partitions a graph into two sub-graphs (clusters) A, B.

The goal is to partition the graph so that edges within a group have large weights
(so the vertices they join are similar) and edges across groups have small weights
(so the vertices they join are dissimilar).

We focus on one way to do this: the Normalized Cut.

Other partition schemes: Min Cut, Ratio Cut, Min Max Cut

An objective function J(A4, B) must be minimized against the set of all possible
partitions (4, B).

The partition which minimizes J gives rise to the first clustering levell.

The procedure can be repeated as necessary on the cluster sub-graphs.



Sum of all the weights on

edges emanating from B

ObieCtive function: Sum of all the weights on

1 ) edges emanating from A

Vol(4) © Vol(B)

Sum of all the weights on edges starting

in one group and ending in the other

Advantages:

Takes into consideration the size of
partitioned groups

Tends to avoid isolating vertices
Takes into consideration intra-group variance

Limitations

Not an easy optimization problem to solve
(NP-hard!!)



Objective function: o
1 1
= Cut(4, B ( + ) o
]NCUt ( ) VO](A) VO](B) o A = {vélu v6}

Advantages: e‘e

Takes into consideration the size of

partitioned groups o B = {vq,v,,v3,Vc}
Tends to avoid isolating vertices

Takes into consideration intra-group variance Cut(4,B) = Y;c ajeBWij = 3

Limitations Vol(4) = Xiea jev Wij = 13/3
Not an easy optimization problem to solve Vol(B) = Xiev,jep Wij = 32/3
(NP-hard!!)

INcut(4,B) = 0.97



Spectral clustering is a compromise: it solves an easier problem than Normalized
Cut optimization, but with similar solutions.

The Laplacian matrix is a spectral representation of a graph.
Simple Lap]acian; L=D—-—F Careful! There are competing definitions.

Symmetric Laplacian: Ly = D~1/2LD~1/?
Asymmetric Laplacian (random walk): L, = DL

In the case of two clusters, Jncyt 1s minimized when finding the eigenvector f for
the second smallest eigenvalue of L¢, leading to the name of the method (special
case of general algorithm, See later). L is positive semi-definite and its smallest eigenvalue is 0

The clustering is recovered by sending v; € A when f; > 0, and v; € B otherwise
(or vice-versa). Deterministic?



An eigenvalue A of a matrix T is a complex number (potentially with no imaginary
part) such that dim ker(T — Al) > 0.

In other words, 1 is an eigenvalue of T if there exists (at least) an eigenvector v # 0
such Tv = Av.

The Laplacian matrix L of a graph is a matrix representation of that graph.

The Laplacian matrix has a bevy of nice properties that ensure that its eigenvalues
behave “as they should”; for instance, the dimension of the eigenspace associated

with the eigenvalue A = 0 measures the number of connected components in the
graph_ A first guess for # of clusters?
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Algorithm to cluster {x4, ..., x,, } into k clusters: Choice of # of clusters

Form similarity matrix W. Choice of similarity measure
Define the degree matrix D. Choice of adjacency threshold
Construct the Laplacian matrix L. Choice of Laplacian

Compute the first k orthogonal eigenvectors {u, ... uy} of the Laplacian L corresponding to
its k smallest eigenvalues.

Construct U, using 4, ..., U as columns.

Normalize the rows of U so that they each have unit length; call the new matrix Y.
Cluster the rows of Y into k clusters. Choice of clustering method

Assign the original point x; to cluster j if the it row of Y was assigned to cluster j.

Other algorithms: un-normalized spectral clustering, Shi and Malik’s algorithm
(see von Luxburg’s tutorial).



20

250 times series

average absolute gap between
series used as distance d

Gaussian similarity measure
d?
W = exp 52
o = 300
adjacency threshold 7 = 0.9

k = 5 clusters
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Project: Francis R. Bach and Michael I. Jordan combined prior relevant knowledge
with learning similarity algorithm, to explain spectral clustering.

Goal: apply the algorithm to separate two speakers from a one-microphone blind
source.

Data: Two speakers give speech and their voice signal is collected by a one-
microphone blind source. A

Spectrogram of speech (two simultaneous >
. c
English speakers). S
= ~
= .
The gray intensity is proportional to the = | .
amplitude of the spectrogram. C A A ’
\ - -
Nk . e

Time



Method:

Assume partitions are known in the given sample data.
Perform spectral clustering on the similarity matrices
Obtain the same partitions as assumed previously

Algorithm: Similar to NJW.

Challenges:
Limited to the setting of ideal acoustics and equal-strength mixing of two speakers
Training examples can be created by mixing previously captured signals
Spectral clustering needs to be robust to irrelevant features
Computation challenge of spectral clustering applied to speech separation



The result is an optimized segmenter for spectrograms of speech mixtures.
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Selected result: (Left) Optimal segmentation for the spectrogram of English speakers, where the two speakers are “black” and “grey”; this
segmentation is obtained from the known separated signals. (Right) The blind segmentation obtained with our algorithm.
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Project: H. T. Kung and Dario Vlah describe a spectral clustering approach to
identify bad sensors, by using a simple model problem.

Motivation: current status and environment affect sensors performance and
impractical to bring calibrate device to test each sensor

Goal: using peer sensors to detect badly performing sensors

Method: simulation and spectral clustering



Model design: sensors are indexed by their antenna orientations

assume that the matching of a sensor and a target is based on the degree to which their
antenna orientations match

use of non-principal eigenvector with the principal one, to detect clustering structures

Sensors and targets in
the same region

(a) 3 targets with 3 antenna orientations (b) 19 sensors with 19 antenna orientations



Simulation of large systems on the same model design

Data: 100 sensors and 10 targets

Assumption 1: sensors and targets are evenly partitioned into three groups, with antenna
orientations of 0, 45 and 90 degrees

Assumption 2: some randomly selected sensors are bad sensors in the sense that their
measurements can be off by any amount from -100% to +100%

Results:

When the number k of leading eigenvectors used increases, the accuracy performance
improves
The number of false positives decreases with the number of bad sensors input to the simulator.

Spectral clustering achieves almost perfect performance in specific circumstances.



There is NO optimal validation approach.

Possibilities include:
comparing with the optimal clustering (external)
comparing with other clustering methods (external)
visualizing the clusters (external)
Davies-Bouldin, Within-SS (internal) # of clusters
repeated clusterings (internal) co-clustered items

Scenario 1: given data D, true clustering C, algorithm A produces C’:
is C’ “close” to C?

Scenario 2: given data D, true clustering C, algorithm A produces C’; algorithm A"
produces C*, and so forth.
are C’, C7, ..., “close” to C? Which one is “closer”?



A distance measurement d(C, C') between clusterings is needed...
Let C = {C4, ..., Ci} be a clustering of a set of n data points {x4, ..., x,, }.

The quadratic cost is the function defined by
A(C) = —Trace(ZT(C) - W - Z(0)),
where Z is the matrix representation of C:

- 1 lfxl € Ck
“ik =10 ifx; & Cy

In some sense, the clustering scheme for which A(C) is minimized is optimal
against quadratic cost. For a given choice of similarity measure



Clustering Validation



INTRODUCTION



Clustering

In machine learning, clustering is
defined as grouping objects based
on their over-all similarity (or
dissimilarity) to each other

Note that each object has multiple
dimensions, or attributes available
for comparison

It's tempting to focus on_just one or
two attributes, but that is typically
not what we are doing in (machine
learning) clustering!

When we cluster, even if we were
to focus on one particular attribute,
all of the other attributes would still
come along for the ride

What is the same about these objects?
What is different?

Do they belong in the same group?
How many groups? How many classes?



Fruit Image Dataset

= 20 images of fruit

= Are there right or
wrong groupings of
this dataset?

= Are there multiple
possible ‘natural’
clusterings?

= Could different
clusterings be used
differently?

= Will some clusterings
be of (objectively)
higher quality than
others?




Making Concepts
Concrete

= To appreciate
clustering validation,
it helps to relate the
concepts to
something tangible

= |n what follows, take
the time to think
about how the
presented concepts
can be related to the
images from this
small dataset




KEY CONCEPTS ILLUSTRATED



Concept vs. Instance

We group instances of objects into
larger categories (clusters,
classes, types)

These larger categories can be
represented by a concept,
exemplar, representative or
definition

The concept (exemplar/definition)
IS a generalized representation - it
captures something about all of
the instances

For a given grouping — can we
come up with a clear concept
that captures the ‘essence’ of
that grouping?

If yes, does that make it a good
clustering?

Exemplar,
Concept,
Representative

Definition: “the fleshy,
usually rounded red, yellow,
or green edible pome fruit of
a usually cultivated tree
(genus Malus) of the rose
family” Mirriam-Webster

Instances



Instance Properties

For machine learning purposes, we
represent properties of object instances

using vectors

Each vector element represents an
attribute of the object.

The value of the vector element

represents the value of that property (e.g.

the colour) of that object
Vector Properties:
* Length

* (= number of
dimensions/attributes)

. For each dimension
« Continuous/Discrete
* Numeric/Categorical
* Range/Possible Values

L

[12, 9.12, round, golden delicious]

Does this vector sufficiently
describe this object?



Instance-Instance
Relationships

Defined relationships between
iInstances

Comparison functions between
iInstances:

« Take as input vectors or parts of
vectors

« Might only take certain types of input
(e.g. numeric)

« Outputs a comparison result
Similarity
« Similarity as defined on a single
dimension? Multiple dimensions?

« Can we come up with functions that
give us an overall similarity measure,
across all dimensions?

[3, 10.43, round, macintosh]
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[12, 9.12, round, golden delicious]



Distance

Distance is a popular strategy for
defining how similar to objects are to
each other

It is called distance because it is
calculated in the same manner as
Euclidean distance

Importantly, distance takes into account
all of the properties of the objects in
guestion — it doesn't just focus on one
or two

Only numeric attributes are allowed as
input, but it is technically possible to
convert categorical attributes to
numeric ones

This only works as long as the
categorical concepts are in some sense
equidistant from each other,
conceptually. Consider as an example
where they are not - [apple, pear,
vegetable].

How far apart are these apples?



Cluster Properties

Number of instances

Similarity measures
across instances within
cluster

* minimum similarity

* maximum similarity

* average similarity
Cluster Representative:

* may be an instance

* may be an amalgamation

of multiple instances (e.g.

exemplar)

Which are the most similar? Which are the
least? Which is the best representative?




Cluster — Instance
Relationship

= Comparison of instance to
cluster

= Might compare with
representative instance

» See also instance instance
relationships for
comparison between the
Instance and specific
instances within the
cluster:

* Instance with cluster instance
the greatest distance away
from it

* [nstance with cluster instance
that is most similar

Is this instance
similar to this cluster?
Does it belong in this
cluster?



Cluster — Cluster
Relationship

= Comparison of cluster
level properties:
* number of instances
* max or min similarity
» cluster representatives




Comparisons Summary

Comparison of cluster
level properties

* number of instances

* max or min similarity

» cluster representatives

« Comparison of cluster to
instance properties

* [nstance vector to cluster
representative vector

« Comparison of instance
to instance properties
* similarity measures
« Comparisons may occur
both within cluster and
across clusters




Getting to quality clusters

« Cluster and instance
comparisons can be combined
In many different ways.

« These can be used to generate
a_vast number of different
cluster validation functions

« What do these tell us about the
quality of a particular clustering:

* relative to some objective criteria
about good clustering schemes

« relative to another clustering option

« relative to external information (e.g.
functionality, natural classes)




A Quality Clustering? Natural?

B L

What level of quality is this clustering? Are there higher quality clusterings?
Lower? How would you quantify this? Use some of the introduced concepts?



TYPES OF CLUSTERING VALIDATION



Clustering Operations

= Clustering involves two main
activities
+ Creating clusters
* Assessing cluster quality
= \We create functions to carry out
both of these activities

» Clustering functions
* Input: Instances (vectors)
* Output: Cluster assignment to each
instance
= Assessing cluster quality

* Input: Instances + Cluster
Assignments (+ similarity matrix,
usually)

*  Output: A numeric value

Clustering Validation
Function

Clustering Validation
Function

Clustering Validation
Function

n

n

e

0.53



Clustering Validation Function Components

There are a huge number of both of clustering and cluster validation

functions
However, all are built up out of the basic measures relating to instance or

cluster properties we have already reviewed:

Instance Properties

Cluster Properties

Instance — Instance relationship properties
Cluster — Instance Relationship Properties
Cluster — Cluster Relationship Properties
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external validation

Three types of validation (

* Internal Validation: Based only on properties Q Q
available within a single clustering result D Q
(note that this comprises multiple clusters)

» Relative Validation: Comparison of one D O Q O O

(entire) clustering result with another D
» External Validation: Comparison of a (single)

clustering result with some external standard sharp edged obejcts round edged objects

internal validation

distance between clusters relative validation

( ) (

0 00
0 0
0 () o ()()o
s OQQ 2P o

N J N

Clustering 1 VS Clustering 2




INTERNAL VALIDATION



Validity vs. Quality

Context is very relevant to the
guality of a given clustering

BUT what if we have no context?

Is there a way to objectively
measure cluster quality without
any specific context?

The term ‘validity’ suggests there
IS a correct clustering, and all we
need to do is see how close we
are to that

Alternatively Lewis, Ackerman
and de Sa (2012) use the term

Clustering Quality Measures
(CQM) instead




A (Small?) Sample of Internal CQMSs

The Ball-Hall index

The Banfeld-Raftery index
The C index

The Calinski-Harabasz index
The Davies-Bouldin index
The Det Ratio index

The Dunn index

The Baker-Hubert Gamma index
The GDI index

The Gplus index

The KsgDetW index

The LogDetRatio index

The LogSSRatio index

The McClain-Rao index

The PBM index

The Point-Biserial index
The Ratkowsky-Lance index
The Ray-Turi index

The Scott-Symons index
The SD index

The SDbw index

The Silhouette index

The Tau index

The TraceW index

The TraceWIiB index

The Wemmert-Ganc, arski index
The Xie-Beni index

(These are all defined and available in the clusterCrit package for R)

What are we to make of all these different, supposedly context free measures of

clustering quality?




Very Broad Goals

= Within clusters, everything is very similar.

= Between clusters, there is a lot of
difference.

» The problem: there are many ways for
clusters to deviate from this ideal.

» |n specific clustering cases, how do we
weigh the good aspects (e.g. high within
cluster similarity) relative to the bad (e.qg.
low between cluster separation)

» Thus the large number of CQMs

= Question: is this trade-off (and the
resulting CQMSs) really context
independent?

= Maybe different weightings are more
relevant in different contexts?

large between
cluster difference

small within
cluster difference




Comparing measures across datasets

Vendramin et al 2010 used a number of benchmark tests to compared a
large number of intrinsic validation measures

Broad conclusion: variants of Silhouette performed well across tests

Point-Biserial

Tau [ 0.000

Ch™
ASWC [-0.021[0.000{ 0015
ASSWC -0.015/0.000 | 0.027

PEM [-0.027( 0.000 | 0.017 |

SWC
SSWC 0,000 [0.016|
Dunn12 -0.016(0.000]0.018 |
Dunn&2
Dunn13

VRC

Ball and Hall

0.005| 0.018
1-0.005[0.000[0.013
0.018]-0.013[0.000

| =<| x| S| < || =|w| n|O|v|o|Z |8 | x|« |=|x|0|n|m|o|n|m(>

Niog{ITVIWI) 0.006 | 0.009
Trace{CoviW) 0.000] 0.
[§ |-0.009]-0.003 0.
Tog(SSEISSW) 0035
Dunn11 0.024
Gamma . 0.0000.007 | O
McClain and Rao 0.000] 0
C-Index -0.039[-0.032
ITWI
Trace(W"B)
Gl+)

@an\ 0.959 0.913 0.733 0.712 0.697 0.670 0.653 0.586 0.569 0.551 0471 0.404 0.393 0.388 0.375 0.323 0.316 0.314 0.264 0.254 0.230 0.223 0.191 0.137 0.122 -0.148)

Fig. 10 Mean values (bottom bar) and their differences (cells) for Pearson correlation between relative and external (Jaccard) criteria



Machine Learning vs

Human Learning

« Lewis et al compare 6 common CQMs with human
evaluation of clustering results

« Main finding: Human clustering evaluation was
most similar to Silhouette and Calinski-Harabasz

« Maybe internal validation/CQM is saying something
about clustering across all contexts?

« Maybe easier to identify the clearly bad than all the

variations of good?

Table 1: Correlation coefficients between human responses and CQMs with k factored out (except for the k column). Text in
bold (excluding k column) if p < .0025 after Bonferroni correction for n = 20 comparisons per subject group and o = .05.

o 2 2

:g §0 E gb =} g

< 2 ¢zl % : 3

- g 8
pld B Z Z |0 ©w A < < U B |k
ExpertPos | 1 -35 56 -19|-15 46 40 -39 34 44 .19 |-43
Expert Neg 1 -13 4| 09 -27 -12 4 -18 -36 -30| .32
Novice Pos 1 -04|-13 39 40 -20 23 30 .04 ]|-73
Novice Neg 1 .08 -27 01 30 -07 -25 -27]| .71

Figure 1: All stimuli. Datasets are in rows; partitions are in
columns.



Silhouette Index: Algorithm

average distance to points in average distance to points in
own cluster (low is good) neighbouring cluster (high is good)

silhouette metric = (average dissimiliarity with neighbouring cluster - average dissimilarity with own cluster)
for a point

maximum dissimilarity value (own or neighbour)

A strong internal validation metric that incorporates a number of measures.



Silh

ouette Metric

Silhouette plot of pam(x = ndf, k = 5)
n=65

am

ple Resu

5 clusters C;
j: nj|aveieg ¢
1: 31032
2: 28] 0.19
3: 13 ] 017
4: 16 | 0.11
5: 5] 051
[ T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Average silhouette width : 0.2

Silhouette width s;

Its (1)



Dunn’s Index: Algorithm

Within a cluster, the size of the
cluster (e.g. greatest distance
between points)

Between two clusters, the
distance between the clusters
(e.g. minimum distance
between points)

Ratio: The minimum
Intercluster distance across all
pairs of clusters / maximum
Intracluster distance across all
clusters

A number of possible ways to
define inter cluster distance
and cluster size.

smallest distance

largest distance

Comparison with Silhouette Index: In a
sense, a simpler measure. More of a
whole cluster measure, rather than a point
by point measure. Evaluates based on
extremes (max and min).



RELATIVE VALIDATION



data
More is better? !

. algorithm selection
clustering .
N

= (Getting a single algorithms
validation measure for a
single clustering is not
that useful — could the ;
results be better? Is this ——

the best we can hope l \
for? o
*

= How about comparing
results across runs or *
parameter settings? Q
= Main emphasis with
relative validation is how S orme
to compare results of
individual runs.
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Correlation Measures

= Look at correlation between clustering assignments
» Rand, Jaccard, Gamma
» Perfect correlation gives maximum value of the measure

P1 P2 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6

P1 1 P1 1 o
Two very similar

P2 0 1 P2 0 1 clustering results
(but notice they vary

o] k) "] 3 o in the number of
clusters)

P4 1 0 1 1 P4 1 0 1 1

P5 0 1 0 0 1 P5 0 1 0 0 1

P6 0 0 0 0 0 1 P6 0 1 0 0 1 1




Rand’s Index

SS- the number of pairs of items
belonging to the same cluster in both
clusterings (C1L=1and C2=1)

SD- the number of pairs together in
one clustering but not the other
(Cl=1and C2=0)

DS- the number of pairs not together

in one clustering but together in the
other (C1=0and C2=1)

DD- the number of pairs not together
in either cluster (C1 =0 and C2 = 0)
Note that SS and DD are good, and
DS, SD are bad.

Rand Index is the ratio of SS + DD
to the total number of pairs. If Rand
Index = 1, the clustering perfectly
matches the gold standard.

Clustering 1 (C1)

Clustering 2 (C2)

P1

P2

P3

P4

P5

P6

P1

P2

P3

P4

P5

P6

P1

1

Pl

P2

0

P2

P3

P3

P4

P4

P5

P5

P6

P6

(SS + DD)/(SS + DD+ SD + DS)

(4+9)/(4+9+0+2)=0.87



Stability

= Some options:

* multiple datasets sampled
from same source

+ different columns used to
generate clusters (i.e.
drop a different column
each time)

= Similarity of results is

measured

= |f results are not stable
across clustering
schemes, further
Investigation required

Sample 2 clustering

Sample 3 clustering



EXTERNAL VALIDATION



Back to Context

Brings in outside information to
evaluate the clusters

Outside information is typically the
‘correct’ class

How is this different from
classification then?

Often used to build confidence in the

overall approach, based on
preliminary or sample results
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Example Metric: Purity

For this metric each
cluster is assigned to the
class which is most
frequent in the cluster

To calculate the purity:
number of correctly

assigned points /
number of points in the
cluster

Some other options:
precision, recall

Assuming we are interested in shape...

SQUARE CLUSTER

CIRCLE CLUSTER

purity = 66%

purity = 71%




Types of External
Validation

= Amigo et al (2009) provide a number of
constraints for external validation
measures

= They suggest external evaluation
strategies can be based on:
+ set matching
+ counting pairs
* entropy measures
+ edit distance
= Similar to strategies used to evaluate
classification

» They recommend using a particular
version (Bcubed) of precision and recall
for external validation, as these best
take into consideration the 4 constraints

Figure 4: Clusters Size vs. Quantity



CONCLUDING THOUGHTS



Try and Try Again

= A large amount of diversity in
clustering validation
techniques

= Be aware of the types of
validation, and variations
within types

= Seek agreement across
techniques, ok to compare

= There are many ways for a
clustering to be ‘ok’ — you
need to decide what is
important and what can be
ignored

= A lot depends on context
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