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Clustering and 𝑘-Means



[Scott Adams, Dilbert, Jun 13, 1997]



average distance to points in own 
cluster (low is good)

average distance to points in 
neighbouring cluster (high is good)

Clustering Overview

In clustering, the data is divided into naturally occurring
groups. Within each group, the data points are similar; from
group to group, they are dissimilar.

The grouping labels 
are not determined 
ahead of time, so 
clustering is an 
example of 
unsupervised
learning.
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Clustering Overview

Clustering is a relatively intuitive concept for human beings as
our brains do it unconsciously

§ facial recognition
§ searching for patterns, etc.

In general, people are very good at messy data, but computers 
and algorithms have a harder time. 

Part of the difficulty is that there is no agreed-upon definition of 
what constitutes a cluster:

§ “I may not be able to define what it is, but I know one when I see one”



Clustering Overview

Clustering algorithms can be complex and non-intuitive, based 
on varying notions of similarities between observations.

§ in spite of that, the temptation to explain clusters a posteriori is strong

They are also (typically) non-deterministic: 
§ the same algorithm, applied twice (or more) to the same dataset, can 

discover completely different clusters
§ the order in which the data is presented can play a role
§ so can starting configurations



Discussion: What does this (potential) non-repeatability imply 
for validation?



Clustering Requirement

A measure of similarity 𝑤 (or a distance 𝑑) between observations.

Typically, 𝑤 → 1 as 𝑑 → 0, and 𝑤 → 0 as 𝑑 → ∞.

Other metrics also available: Hamming, Jaccard, Pearson, etc.

Euclidean distance 
(as the crow flies)

Manhattan distance 
(you might have to drive)

Cosine distance 
(angle between vectors)

Transform (normalize, center) 
before calculating distance



Applications

Text Documents
§ grouping similar documents according to their topics, based on the

patterns of common and unusual words

Product Recommendations
§ grouping online purchasers based on the products they have viewed,

purchased, liked, or disliked
§ grouping products based on customer reviews

Marketing and Business
§ grouping client profiles based on their demographics and preferences



Applications
Music

§ finding similar albums by grouping the customers who own them

Social Network Analysis
§ recognizing communities within large groups of people

Medical Imaging
§ differentiating between different tissue types in a 3D voxel

Genetic Clustering
§ inferring structures in populations



Other Uses

Dividing a larger group (or area, or category) into smaller
groups, with members of the smaller groups guaranteed to have
similarities of some kind.

§ tasks may then be solved separately for each of the smaller groups
§ this may lead to increased accuracy once the separate results are

aggregated

Creating (new) taxonomies on the fly, as new items are added
to a group of items

§ this would allow for easier product navigation on a website like Netflix, 
for instance.





Clustering Schemes

𝒌-Means
§ classical (and over-used) model
§ assumptions made about the shape of clusters

Hierarchical Clustering
§ easy to interpret, deterministic

Latent Dirichlet Allocation
§ used for topic modeling

Expectation Maximization



Hierarchical Clustering



Clustering Schemes

Balanced Iterative Reducing and Clustering using Hierarchies
§ aka BIRCH

Density-Based Spatial Clustering of Applications with Noise
§ graph-based

Affinity Propagation
§ selects the optimal number of clusters automatically

Spectral Clustering
§ recognizes non-blob clusters



DBSCAN and Spectral Clustering



𝑘-means is well-adapted to numerical data (although it can also 
be used for categorical data), but it has a tendency to force 

clusters of roughly equivalent sizes.



𝑘-Means Algorithm

1.Select the desired number of clusters, say 𝑘
2.Randomly choose 𝑘 instances as initial cluster centres
3.Calculate the distance from each observation to each centre
4.Place each instance in the cluster whose centre it is nearest to
5.Compute the centroid for each cluster
6.Repeat steps 3 – 5 with the new centroids
7.Repeat step 6 until the clusters are stable



[Provost & Fawcett, Data Science for Business]

Cluster Allocation New Cluster Centroids



[Ozden, Lee, Sullivan, Wang, Identification and Clustering of Event Patterns 
From In Vivo Multiphoton Optical Recordings of Neuronal Ensembles]

𝒌-Means Iterative Process



[Provost & Fawcett, Data Science for Business]

Movement of Centroids



[Provost & Fawcett, Data Science for Business]

Movement of Centroids



𝑘-Means Strengths

Easy to implement (without having to actually compute pairwise
distances).

§ extremely common as a consequence
§ elegant and simple

In many contexts, 𝑘-means is a natural way to look at grouping
observations.

Helps provide a basic understanding of the data structure in a
first pass.



𝑘-Means Limitations

Data points can only be assigned to one cluster.
§ this can lead to overfitting
§ robust solution: consider the probability of belonging to each cluster

Underlying clusters are assumed to be blob-shaped
§ 𝑘-means will fail to produce useful clusters if that assumption is not 

met in practice

Clusters are assumed to be separate (discrete)
§ 𝑘-means does not allow for overlapping or hierarchical groupings



Distance Measures (Metrics)

Categorical Variables*
§ Hamming distance
§ Russel/Rao index
§ Jaccard
§ Matching coefficient
§ Dice’s coefficient
§ etc.

No steadfast rule to determine which distance to use in 𝑘-means

Competing schemes are often produced using different metrics.

Numerical Variables
§ Euclidean
§ Manhattan
§ Correlation
§ Cosine
§ Pearson
§ etc.

* may need to be dichotomized



Take-Away: with mixed data, 

Hamming ⟷ Euclidean, Jaccard ⟷ Manhattan.



Clustering Challenges

Automation
relatively intuitive for humans, but hard to automate

Lack of a clear-cut definition
no universal agreement as to what constitutes a cluster

Lack of repeatability
non-deterministic: the same algorithm, applied twice to the same dataset 
can discover completely different clusters

Number of clusters
optimal number of clusters difficult to determine













[A. Ng, K. Soo, Numsense!]

number of clusters

av
er

ag
e 

di
st

an
ce

 to
 c

en
tro

id
s



Clustering Challenges

Cluster description
should clusters be described using representative instances or average 
values?

Model validation
no true clustering information against which to contrast the clustering 
scheme, so how do we determine if it is appropriate? 

Ghost clustering
most methods will find clusters even if there are none in the data

A postiori rationalization
once clusters have been found, it is tempting to try to "explain" them …







Take-Away: clustering looks easy in 2D or 3D spaces… but in 
high-dimensional spaces, almost all pairs are equidistant!



Data science students don’t have to be gardeners, but it helps.
(unknown) 



Example – Iris Dataset

Iris is a genus of plants with showy flowers.

Fisher’s iris dataset contains 150
observations of 5 attributes for specimens
collected by Anderson, mostly from a
Gaspé peninsula’s pasture in the 1930s:

§ petal width
§ petal length
§ sepal width
§ sepal length
§ species

[http://blog.kaggle.com/wp-content/uploads/2015/04/iris_petal_sepal.png] 

http://blog.kaggle.com/wp-content/uploads/2015/04/iris_petal_sepal.png


Example – Iris Dataset

PC1

PC2
Iris Classification



Example – Iris Dataset

PC1

PC2
2 Clusters



Example – Iris Dataset

PC1

PC2
3 Clusters



Example – Iris Dataset

PC1

PC2
4 Clusters



Example – Iris Dataset

PC1

PC2
7 Clusters



Example – Iris Dataset

PC1

PC2
15 Clusters



Clustering Validation

What does it mean for a clustering scheme to be better than 
another? 

What does it mean for a clustering scheme to be valid? 

What does it mean for a single cluster to be good? 

How many clusters are there in the data, really?

Main challenge: what are we comparing the clustering scheme 
against? (versions of this problem plague unsupervised tasks) 



Take-Away: right vs. wrong/good vs. bad is meaningless.

Optimal vs. sub-optimal is the way to go.



Clustering Validation

Optimal clustering scheme:
§ maximal separation between clusters
§ maximal similarity within groups
§ agrees with human eye test
§ useful at achieving its goals

Validation types
§ external (uses additional information)
§ internal (uses only the clustering results)
§ relative (compares across clustering attempts)



Internal Clustering Validation

Davies-Bouldin Index can be used to determine the number of 
clusters in 𝑘-means

𝐷𝐵 =
1
𝑁
&
!"#

$

max%&!
𝑠! + 𝑠%
𝑑(𝑐! , 𝑐%)

,

where 𝑁 is the number of clusters, 𝑐' is the centroid of the 𝑚th cluster, and 𝑠'
is the average distance of the points in the 𝑚th cluster to 𝑐'

Other Methods
§ Sum of Squared Errors
§ Dunn’s Index
§ Silhouette Metric
§ etc.



Example – Iris Dataset (revisited)
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Example – Iris Dataset (revisited)
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Example – Iris Dataset (revisited)
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Example – Iris Dataset (revisited)
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Example – Iris Dataset (revisited)
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Example – Iris Dataset (revisited)

5 
cl

us
te

rs
 (1

 re
pl

ic
at

e)



Take-Away: validating clusters is just as complicated as 
defining clusters. 

We’ll have more to say on the topic.



Hierarchical Clustering
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https://phys.org/news/2015-09-tree-life-million-species.html


Hierarchical Clustering Overview

Hierarchical clustering (HC) clusters a dataset into a hierarchy of
clusters (order relation is set containment).

There are two main strategies:
§Bottom-up	(agglomerative)
initially,	each	observation	starts	in	its	own	separate cluster
clusters	are	merged as	the	hierarchy	is	climbed
after	the	last	merge,	all	observations	are	in	the	same cluster

§Top-down (divisive)
initially,	each	observation	starts	in	the	same cluster
clusters	are	split as	the	hierarchy	is	descended	down
after	the	last	split,	each	observation	ends	in	its	own	separate cluster

Bottom-up HC is significantly faster than Top-down HC (poly. vs. exp.)



a

b

c

d

e

a		b

d		e

c		d		e

a		b		c		d		e

Agglomerative	
(AGNES)

Divisive	
(DIANA)



Hierarchical Clustering Overview

The main question: how to split, or how to merge, clusters?

This requires the notion of a distance between clusters (linkage).
§ in Bottom-up HC, nearest pairs of clusters are merged up the hierarchy
(requires only computing distances between pairs)

§ in Top-down HC, a cluster must be optimally split into sub-clusters down the
hierarchy (much harder, computationally)

Another issue: at what level do we report the clustering scheme?
When do we stop climbing or descending the hierarchy?

Latent class analysismight be a better approach, in general.



Features

Observations

𝐴 𝐵 𝐶
1
2
3

4



[author	unknown]



Back to Knowledge Discovery

More	unsupervised	learning:	
what	underlying	structures	can	
we	discover	in	this	data?

[mtcars dataset]



What	do	you	notice	in	this	
diagram,	structure-wise?

Back to Knowledge Discovery
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In a nutshell, hierarchical systems are ordered sets where
elements and/or subsets are organized in a given relationship to
one another, both among themselves and within the whole.

Relationships vary according to the field domain and type of
system, but in general, we can describe them by the properties
of elements and the laws that govern them (e.g., how they are
shared and/or related). – I.	Meireilles,	Design	for	Information



Visualizing Hierarchy



Button Press Hierarchical Clustering
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What	can	we	say	about	
the	data	structure	if	
presented	with	a	
cluster	dendrogram?

Same	data	clustered	
using	different	
parameter	settings:	
which	one	is	optimal?
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Evaluating the Results
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Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of (x = cutree(hc, k = 4), dist = d)

Average silhouette width :  0.38

n = 32 4  clusters  Cj

j :  nj | avei∈Cj  si

1 :   7  |  0.43

2 :   11  |  0.46

3 :   10  |  0.22

4 :   4  |  0.51



The Silhouette Metric

average	distance	to	points	in	
own	cluster	(low	is	good)

average	distance	to	points	in	
neighbouring cluster	(high	is	good)

silhouette	
metric	

for	a	point
=
average dissimilarity with neighbouring cluster − average dissimilaity with own cluster

maximum dissimilarity value (own or neighbour)
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Hierarchical Clustering Algorithm
Same Cluster, Different Parameters

Same	data	clustered	
using	different	
parameter	settings:	

§ distance	metric
§ linkage	strategy
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Euclidean	Distance	Single	Link Euclidean	Distance	Complete	Link

Euclidean	Distance	Average	Link Manhattan	Distance	Single	Link
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Hierarchical Clustering Algorithm
Parameters: Distance Metric
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Same	data	clustered	using	two	different	distance	metrics	(euclidean,	manhattan)



Hierarchical Clustering Algorithm
Similarity-Dissimilarity

Compare objects Compare variables

Compare	
values

Compare	
groups



Hierarchical Clustering Algorithm
Parameters: Linkage

*
**

*
*

**

*
**

*

*

*

*
**

*
*

**

*
**

*

*

*

*
**

*
*

**

*
**

*

*

*

smallest distance

largest distance

average of all distances 
(a lot of lines!)

*
**

*
*

**

*
**

*

*

*

centroid distance

The	chosen	linkage	algorithm	
affects	which	clusters	are	merged,	
and	the	shape	of	the	resulting	
clusters	(e.g. tighter,	looser)

smallest	
distance

average	of	
all	distances centroid	

distance

largest	
distance



Strengths and Limitations – Linkages 

Single Linkage (smallest distance)
§ can handle non-blob shapes
§ sensitive to noise and outliers
§ produces elongated clusters

Complete Linkage (largest distance)
§ balanced clusters, with similar diameters
§ not overly sensitive to noise
§ tends to split large clusters
§ all clusters tend to have similar diameters



Strengths and Limitations – Linkages 

Average Linkage (average distance)
§ compromise between single and complete linkages
§ not too sensitive to noise and outliers
§ tends to produce blob-shaped clusters

Centroid Linkage (centroid distance)
§ clusters can have a lot of internal variance



[https://dataaspirant.com/2018/01/08/hierarchical-clustering-r/]

Simple	Link Complete	Link

Average	Link Centroid	Link

https://dataaspirant.com/2018/01/08/hierarchical-clustering-r/


Hierarchical Clustering Algorithm
Parameters: Linkage – Example 

smallest	
distance

average	of	
all	distances centroid	

distance

largest	
distance

Cluster A Cluster B
1: (5,5,5)
2: (5,6,5)
3: (4,6,5)
4: (6,5,4)
5: (3,1,1)

6: (10,10,10)
7: (11,10,9)
8: (12,10,11)
9: (10,9,11)
10: (13,13,13)

c: (4.6,4.6,4) c: (11.2,10.4,10.8)

Data

Di
st
an
ce
	m
at
ri
x

Linkage
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Hierarchical Clustering Algorithm
Returning to Our Clustering Results

It	is	often	said:	
choose	the	distance	
metric	that	is	most	
meaningful for	
your	data.

Can	evaluation	
metrics	also	inform	
this	choice?
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Euclidean	Distance	Single	Link Euclidean	Distance	Complete	Link

Euclidean	Distance	Average	Link Manhattan	Distance	Single	Link
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Hierarchical Clustering Algorithm
Silhouette of Clustering Results
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Hierarchical Clustering Notes

HC is deterministic, for a
given choice of metric and
linkage.

Space and time requirements
do make HC unattractive for
medium-to-large datasets.

Various linkage strategies: be
sure to check out Wald’s
method!

[https://www.biostars.org/p/91978/]

https://www.biostars.org/p/91978/


Hierarchical Clustering Notes

Easy to understand and implement, but rarely optimal.

No real strong theoretical or first principle approach to specify the
distance metric and linkage criteria (arbitrary decisions).

Cannot handle missing values or mixed data types.

Dendrograms can only be used to select the number of clusters
when the ultrametric tree inequality holds (rarely does in practice).

Consider using latent class analysis instead.



HC Examples and Case Studies
Clustering Myths

Comparative Mythology
§Studying myths from different cultures to understand
their similarities and possibly shared origins

§Many myths have splintered off and evolved from
common sources

Julien d'Huy (2016): Used a variety of data
mining techniques, including hierarchical
clustering, to trace the evolution of myths.

Collection of myths broken down into common
story elements.

A myth across cultures:
the hunter in the sky

J.d’Huy [2016],	Scientists	Trace	Society’s	Myths	to	Primordial	Origins,	Scientific	American	(Online)



HC Examples and Case Studies 
Clustering Myths

Myths categorized based on presence/ absence
of elements

Myths are clustered based on this categorization.

Result shows myths clustering together – could
this suggest a possible common origin for these
myths?

Remember, clustering is knowledge discovery! A myth across cultures:
the hunter in the sky

J.d’Huy [2016],	Scientists	Trace	Society’s	Myths	to	Primordial	Origins,	Scientific	American	(Online)



HC Examples and Case Studies

Complex building's energy system operation patterns analysis using
bag of words representation with hierarchical clustering

A Comparison of Antioxidant, Antibacterial, and Anticancer Activity
of the Selected Thyme Species by Means of Hierarchical Clustering
and Principal Component Analysis

Use of hierarchical cluster analysis to classify prisons in Ireland into
mutually exclusive drug-use risk categories

Divisive Analysis (DIANA) of hierarchical clustering and GPS data
for level of service criteria of urban streets



Density Based Clustering



Data Point Density

In	density-based	clustering,	the	
density of	observations	
determines	the	clusters.

How	do	we	measure	density?

Area	of	low	density

Area	of	high	density



DBSCAN Algorithm – Parameters 

DBSCAN	uses	2	parameters:
§ a	distance parameter	to	create	!-neighbourhoods,	and
§ the	minimum	number	of	points in	an	!-neighbourhood required	to	
include	the	n’hood in	the	cluster	being	constructed	(including	the	centre)

3	distinct	types	of	points:
§ outliers:	out	of	reach	of	every	other	point
§ non-core	(reachable):	within	reach	of	some	number	of	points	below	the	
min.	threshold

§ core:	within	reach	of	at	least	the	minimum	number	of	other	points



DBSCAN Algorithm – Parameters 

Reachability is not a symmetric relation: no point is reachable from
a non-core point (a non-core point may be reachable, but nothing
can be reached from it).

Two points p and q are density-connected if there is a point o
such that both p and q are reachable from o (but density-
connectedness is symmetric).

All points within a cluster are mutually density-connected. If a point
is density-reachable from any point of the cluster, it is part of the
cluster as well.



minPts =	4
Red =	core
Yellow =	reachable
Blue =	outlier



DBSCAN Algorithm

Given ! > 0 and minPts (as well as a distance metric d):
1. Find the !-neighbours of every point, and identify the core points with more
than minPts neighbours (including the core point).

2. Find the connected components of core points on the neighbor graph,
ignoring all non-core points.

3. Assign each non-core point to a nearby cluster if the cluster is an ! neighbor,
otherwise assign it to noise.

_______________________________________

That’s really all there is to it…



DBSCAN Example – Artificial Dataset
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DBSCAN Example – Artificial Dataset



DBSCAN Example – Artificial Dataset
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https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/


[Adapted	from	https://library.creativecow.net/articles/ussing_jonas/clouds_3dmax.php]

https://library.creativecow.net/articles/ussing_jonas/clouds_3dmax.php


DBSCAN Clustering Challenge

First 20 of 603 data points from
an artificially-constructed dataset.

1 dimensional plot of points from each column.



DBSCAN Clustering Challenge

This looks like something DBSCAN
should be able to handle…
… and better than !-means, too.



DBSCAN Clustering Challenge
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But	it	turns	out	that	
DBSCAN	isn’t	working	
out	so	well	for	this	
dataset…



DBSCAN Clustering Challenge

!-means	appears	to	be	doing	a	
better	job.	

But	is	it	really	detecting	the	clusters	
more	accurately,	or	just	taking	
advantage	of	the	separation	
between	the	two	clusters?	

Is	there	a	way	to	get	DBSCAN	to	
work?



DBSCAN Clustering Challenge

Take	a	closer	look	at	the	axes	on	
this	plot…



DBSCAN Clustering Challenge

Re-plotted,	with	the		axis	adjusted	to	match	the		axis:



DBSCAN Clustering Challenge
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When	data	is	scaled,	position	and	length	of		vectors	are	adjusted	to	
normalize	the	distribution	of	the	data.	This	pleases	DBSCAN!



Comparing Algorithmic Complexity

DBSCAN	can	handle	globular	
clusters	and	non-globular	
clusters	―	why	isn’t	it	being	
used	all	the	time?	
DBSCAN	is	! "log " in	the	best	
case	scenario,	whereas	&-means	
is	! "& (more	or	less)
When	the	number	of	
observations	increases,	DBSCAN	
is	less	efficient	than	k-means	.



DBSCAN Advantages

No need to specify the number of clusters.

Can find arbitrarily shaped clusters.

Can recognize “noisy” points.

Robust to outliers.

Requires only two parameters (minPts and !) which can be set by
domain experts if the data is well understood.



DBSCAN Limitations

DBSCAN's	clustering	kryptonite:	
datasets	where	cluster	density	is	not	
consistent	across	clusters.	
Hard	to	set	parameters	that	consistently	
capture	clusters	while	identifying	
outliers.
Not	entirely	deterministic:	border	
points	that	are	reachable	from	more	
than	one	cluster	can	be	part	of	either	
cluster,	depending	on	the	order.



Parameters Estimation

minPts:
§minPts≥ # features + 1
§ larger values are better for noisy data sets
§minPts ≥ 2 × dim for large datasets or sets with duplicates

ε:
§ if too small, a large prop. of observations is not clustered
§ if too high, majority of observations are in the same cluster
§ in general, small values are preferable

Distance function:
§has a major impact on the results
§ should be selected before ε is chosen



DBSCAN Examples
Detecting Alzheimer’s Disease

Mild cognitive impairments (MCI) are a known
to be a risk for factor for development of
Alzheimer’s Disease

MCI are accompanied by changes in brain
structure

But which changes indicate that people will go
on to develop Alzheimer’s?

FMRI	highlighting	some	
areas	of	the	pre-frontal	
cortex.	

Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease, by C. Plant, S.J. Teipel, A. 
Oswald, C. Böhm, T. Meindl, J. Mourao-Miranda, A.W. Bokde, H. Hampel, M. Ewers.



DBSCAN Examples
Detecting Alzheimer’s Disease

A	number	of	different	data	science	techniques	
applied	to	MRI	data:
§Support Vector Machines
§Bayesian Statistics
§Voting Feature Intervals
§Feature Extraction
§DBSCAN

FMRI	highlighting	some	
areas	of	the	pre-frontal	
cortex.	

Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease, by C. Plant, S.J. Teipel, A. 
Oswald, C. Böhm, T. Meindl, J. Mourao-Miranda, A.W. Bokde, H. Hampel, M. Ewers.



DBSCAN Examples
Detecting Alzheimer’s Disease

DBSCAN	is	used	once	voxels	that	provide	high	
information	about	the	classification	of	the	
image	are	identified	using	entropy	based	
measures	

DBSCAN	then	groups	pixels	with	similar	
spatial	and	information	levels	to	determine	
which	parts	of	the	brain	are	the	most	
important	for	the	diagnosis

FMRI	highlighting	some	
areas	of	the	pre-frontal	
cortex.	

Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease, by C. Plant, S.J. Teipel, A. 
Oswald, C. Böhm, T. Meindl, J. Mourao-Miranda, A.W. Bokde, H. Hampel, M. Ewers.



DBSCAN Examples
Some More Examples

A	novel	approach	for	predicting	the	length	of	hospital	stay	with	DBSCAN	
and	supervised	classification	algorithms

Simulation	of	DNA	damage	clustering	after	proton	irradiation	using	an	
adapted	DBSCAN	algorithm

Where	traffic	meets	DNA:	mobility	mining	using	biological	sequence	
analysis	revisited

Individual	Movements	and	Geographical	Data	Mining.	Clustering	
Algorithms	for	Highlighting	Hotspots	in	Personal	Navigation	Routes



Spectral Clustering



Clustering in General
Spectral Clustering Overview
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Spectral Clustering Overview
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Clustering in General
Spectral Clustering Overview
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Spectral Clustering Overview

! "# "$
%& 0 1
%' 0 0
%( 2 0
%) 2 2
%* 0 2
%+ 3 3

,&

,'
%)

%+

%(

%*

%&

%'

Similarity GraphDataset

-. = 0.
and	???

1 = (3, 5,6)

Eigenvalue Problem

8

9

9

8

??????



Clustering in General
Motivation for Spectral Clustering

Spectral	clustering	makes	no	
assumption	on	the	shape	of	a	cluster	
§ compactness vs. connectedness

Spectral clustering can be implemented
efficiently for large datasets
§ computing eigenvalues is numerically
“efficient”
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Clustering in General
Motivation for Spectral Clustering

Spectral	clustering	makes	no	
assumption	on	the	shape	of	a	cluster	
§ compactness vs. connectedness

Spectral clustering can be implemented
efficiently for large datasets
§ computing eigenvalues is numerically
“efficient”



Data Pre-Processing
Similarity Graph

In graph theory, the notation of a similarity graph is ! = ($, &,').
1. Data points ) are vertices * ∈ $.
2. A pair of vertices *,, *- are connected by an edge .,- = 1 if the similarity
weight0,- > 2 for a given threshold 2 ∈ [0,1).

3. The edges .,- form the adjacency matrix &.
4. The weights0,- form the similarity matrix'.
5. The (diagonal) degree matrix 5 provides information about the number of
edges attached to a vertex: 6,, = ∑-89: .,- .

External requirements: threshold 2, similarity measure 0.



Data Pre-Processing
Similarity Graph – Example

With the Gower similarity measure on data with! features

"# $%, $' = 1 −
1
!
+
,-.

/
0%,, − 0',,

range of 8th feature

the similarity matrix of the previous data is

< =

0
5/6
1/2

5/6
0
2/3

1/2
2/3
0

1/2
1/3
2/3

5/6
2/3
1/3

1/6
0
1/3

1/2
5/6
1/6

1/3
2/3
0

2/3
1/3
1/3

0
2/3
2/3

2/3
0
1/3

2/3
1/3
0

For	instance,	"# $C, $D = "CD = "DC = 1 − .
E

FG,HIFJ,H
KH

+
FG,MIFJ,M

KM
.	

But	N. = NE = 3,	so	"CD = "DC = 1 − .
O
2 − 2 + 0 − 2 = E

C
.



Data Pre-Processing
Similarity Graph – Example

§ Let’s	use	a	threshold	value	! = 0.6.
The	adjacency	matrix	is	thus	

& =

0
1
0

1
0
1

0
1
0

0
0
1

1
1
0

0
0
0

0
1
0

0
1
0

1
0
0

0
1
1

1
0
0

1
0
0

§ The similarity graph ( is read
directly from &:

§Now all that is left is to partition the
graph!

§ Incidentally, the degree matrix is

) =

2
0
0

0
3
0

0
0
2

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

3
0
0

0
3
0

0
0
1



Graph Partitions
Graph Cuts

§ A graph cut partitions a graph into two sub-graphs (clusters) !, #.

§ The goal is to partition the graph so that edges within a group have large weights
(so the vertices they join are similar) and edges across groups have small weights
(so the vertices they join are dissimilar).

§We focus on one way to do this: the Normalized Cut.

§ An objective function $(!, #) must be minimized against the set of all possible
partitions (!, #).

§ The partition which minimizes $ gives rise to the first clustering level.

§ The procedure can be repeated as necessary on the cluster sub-graphs.

Other partition schemes: Min Cut, Ratio Cut, Min Max Cut



Graph Partitions
Normalized Cut – Example

Objective function:
!NCut = Cut ', ) 1

Vol(') +
1

Vol())

Advantages:
§Takes into consideration the size of
partitioned groups

§Tends to avoid isolating vertices
§Takes into consideration intra-group variance

Limitations
§Not an easy optimization problem to solve
(NP-hard!!)

Sum of all the weights on edges starting
in one group and ending in the other

Sum	of	all	the	weights	on	
edges	emanating	from	'

Sum	of	all	the	weights	on	
edges	emanating	from	)



Graph Partitions
Normalized Cut – Example

Objective function:
!NCut = Cut ', ) 1

Vol(') +
1

Vol())

Advantages:
§Takes into consideration the size of
partitioned groups

§Tends to avoid isolating vertices
§Takes into consideration intra-group variance

Limitations
§Not an easy optimization problem to solve
(NP-hard!!)

' = 12, 13

) = 14, 15, 16, 17

Cut ', ) = ∑9∈;,<∈=>9< = 3
Vol ' = ∑9∈;,<∈@>9< = 13/3
Vol ) = ∑9∈@,<∈=>9< = 32/3

!NCut ', ) = 0.97



Spectral clustering is a compromise: it solves an easier problem than Normalized
Cut optimization, but with similar solutions.

The Laplacian matrix is a spectral representation of a graph.
§Simple	Laplacian: " = $ − &
§Symmetric	Laplacian: "' = $()/+"$()/+
§Asymmetric	Laplacian	(random	walk):	", = $()"

In the case of two clusters, -NCut is minimized when finding the eigenvector 2 for
the second smallest eigenvalue of "' , leading to the name of the method (special
case of general algorithm, see later).

The clustering is recovered by sending 34 ∈ 6 when 24 > 0, and 34 ∈ 9 otherwise
(or vice-versa).

" is positive semi-definite and its smallest eigenvalue is 0

The Eigenvalue Problem
How Spectral Clustering Got Its Name

Deterministic?

Careful!	There	are	competing	definitions.



Interlude
Eigenvalues and Laplacian Matrices

An eigenvalue ! of a matrix " is a complex number (potentially with no imaginary
part) such that dim ker(" − !+) > 0.

In other words, ! is an eigenvalue of " if there exists (at least) an eigenvector 1⃗ ≠ 0
such "1⃗ = !1⃗.

The Laplacian matrix 4 of a graph is a matrix representation of that graph.

The Laplacian matrix has a bevy of nice properties that ensure that its eigenvalues
behave “as they should”; for instance, the dimension of the eigenspace associated
with the eigenvalue ! = 0 measures the number of connected components in the
graph. A	first	guess	for	#	of	clusters?	



The Eigenvalue Problem
Simple Laplacian – Example 

!

"



The Eigenvalue Problem
Symmetric Laplacian – Example 

!

"



The Eigenvalue Problem
Spectral Clustering –Algorithm 
(version from von Luxburg’s tutorial, with different ! and ")

Algorithm to cluster #$, … , #' into ( clusters:
1. Form similarity matrix).
2. Define the degree matrix !.
3. Construct the Laplacian matrix ".
4. Compute the first ( orthogonal eigenvectors *$,… *+ of the Laplacian " corresponding to

its ( smallest eigenvalues.
5. Construct ,, using *$,… , *+ as columns.
6. Normalize the rows of , so that they each have unit length; call the new matrix -.
7. Cluster the rows of - into ( clusters.
8. Assign the original point #. to cluster / if the 0th row of - was assigned to cluster /.

Other algorithms: un-normalized spectral clustering, Shi and Malik’s algorithm
(see von Luxburg’s tutorial).

Choice	of	similarity	measure

Choice	of	adjacency	threshold

Choice	of	Laplacian

Choice	of	clustering	method

Choice	of	#	of	clusters



Examples and Case Studies
Latent Classes – Time Series

§ 250 times series
§ average absolute gap between
series used as distance !

§ Gaussian	similarity	measure	
" = exp − !(

2*(
§ * = 300
§ adjacency	threshold	- = 0.9
§ 0 = 5 clusters	



Examples and Case Studies
Latent Classes – Time Series

distance	matrix similarity	matrix	!



Examples and Case Studies
Latent Classes – Time Series

adjacency	matrix	! degree	matrix	"



Examples and Case Studies
Latent Classes – Time Series
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Examples and Case Studies
Latent Classes – Time Series



Examples and Case Studies
Signal Processing – Spectral Clustering for Speech Separation

Project: Francis R. Bach and Michael I. Jordan combined prior relevant knowledge
with learning similarity algorithm, to explain spectral clustering.
Goal: apply the algorithm to separate two speakers from a one-microphone blind
source.
Data: Two speakers give speech and their voice signal is collected by a one-
microphone blind source.

Spectrogram	of	speech	(two	simultaneous	
English	speakers).	

The	gray	intensity	is	proportional	to	the	
amplitude	of	the	spectrogram.



Examples and Case Studies
Signal Processing – Spectral Clustering for Speech Separation

Method:
§Assume partitions are known in the given sample data.
§Perform spectral clustering on the similarity matrices
§Obtain the same partitions as assumed previously

Algorithm: Similar to NJW.

Challenges:
§Limited to the setting of ideal acoustics and equal-strength mixing of two speakers
§Training examples can be created by mixing previously captured signals
§Spectral clustering needs to be robust to irrelevant features
§Computation challenge of spectral clustering applied to speech separation



The result is an optimized segmenter for spectrograms of speech mixtures.

F.R.	Bach,	M.I.	Jordan,	Learning	Spectral	Clustering,	With	Application	to	Speech	Separation,	Journal	of	Mach.	Learn.	Res.	7

Examples and Case Studies
Signal Processing – Spectral Clustering for Speech Separation

Selected	result:	(Left)	Optimal	segmentation	for	the	spectrogram	of	English	speakers,	where	the	two	speakers	are	“black”	and	“grey”;	this	
segmentation	is	obtained	from	the	known	separated	signals.	(Right)	The	blind	segmentation	obtained	with	our	algorithm.	



Examples and Case Studies
Sensor Detection – A Spectral Clustering Approach to Validating 
Sensors via Their Peers in Distributed Sensor Networks

Project: H. T. Kung and Dario Vlah describe a spectral clustering approach to
identify bad sensors, by using a simple model problem.

Motivation: current status and environment affect sensors performance and
impractical to bring calibrate device to test each sensor

Goal: using peer sensors to detect badly performing sensors

Method: simulation and spectral clustering



Examples and Case Studies
Sensor Detection – A Spectral Clustering Approach to Validating 
Sensors via Their Peers in Distributed Sensor Networks

Model design: sensors are indexed by their antenna orientations
§assume that the matching of a sensor and a target is based on the degree to which their
antenna orientations match

§use of non-principal eigenvector with the principal one, to detect clustering structures

Sensors	and	targets	in	
the	same	region



Examples and Case Studies
Sensor Detection – A Spectral Clustering Approach to Validating 
Sensors via Their Peers in Distributed Sensor Networks

Simulation of large systems on the same model design
§Data: 100 sensors and 10 targets
§Assumption 1: sensors and targets are evenly partitioned into three groups, with antenna
orientations of 0, 45 and 90 degrees

§Assumption 2: some randomly selected sensors are bad sensors in the sense that their
measurements can be off by any amount from -100% to +100%

Results:
§When the number ! of leading eigenvectors used increases, the accuracy performance
improves

§The number of false positives decreases with the number of bad sensors input to the simulator.
§Spectral clustering achieves almost perfect performance in specific circumstances.



Clustering Validation
Is a Clustering Scheme Any Good? 

There is NO optimal validation approach.

Possibilities include:
§ comparing with the optimal clustering (external)
§ comparing with other clustering methods (external)
§ visualizing the clusters (external)
§ Davies-Bouldin, Within-SS (internal)
§ repeated clusterings (internal)

Scenario 1: given data !, true clustering ", algorithm $ produces "’:
§ is &’ “close” to &?

Scenario 2: given data !, true clustering ", algorithm $ produces "’; algorithm $∗
produces "∗, and so forth.
§ are &’, &∗, … , “close” to &? Which one is “closer”?

#	of	clusters
co-clustered	items



Clustering Validation
Is a Clustering Scheme Any Good? 

A distance measurement !(#, #%) between clusterings is needed…

Let # = #(, … , #* be a clustering of a set of + data points ,(, … , ,- .

The quadratic cost is the function defined by
Λ # = −Trace 56 # 7 8 7 5 # ,

where 5 is the matrix representation of #:

:;* = <1 if ,; ∈ #*
0 if ,; ∉ #*

In some sense, the clustering scheme for which Λ(#) is minimized is optimal
against quadratic cost. For	a	given	choice	of	similarity	measure



Clustering Validation



INTRODUCTION
Cluster Validation – Part 1



Clustering
§ In machine learning, clustering is 

defined as grouping objects based 
on their over-all similarity (or 
dissimilarity) to each other

§ Note that each object has multiple 
dimensions, or attributes available 
for comparison

§ It’s tempting to focus on just one or 
two attributes, but that is typically 
not what we are doing in (machine 
learning) clustering!

§ When we cluster, even if we were 
to focus on one particular attribute, 
all of the other attributes would still 
come along for the ride

What is the same about these objects?
What is different?
Do they belong in the same group?
How many groups? How many classes?



Fruit Image Dataset
§ 20 images of fruit
§ Are there right or 

wrong groupings of 
this dataset?

§ Are there multiple 
possible ‘natural’ 
clusterings?

§ Could different 
clusterings be used 
differently?

§ Will some clusterings
be of (objectively) 
higher quality than 
others?



Making Concepts 
Concrete

§ To appreciate 
clustering validation, 
it helps to relate the 
concepts to 
something tangible

§ In what follows, take 
the time to think 
about how the 
presented concepts 
can be related to the 
images from this 
small dataset



KEY CONCEPTS ILLUSTRATED
Clustering Validation – Part 2



Concept vs. Instance
§ We group instances of objects into 

larger categories (clusters, 
classes, types)

§ These larger categories can be 
represented by a concept, 
exemplar, representative or 
definition

§ The concept (exemplar/definition) 
is a generalized representation - it 
captures something about all of 
the instances

§ For a given grouping – can we 
come up with a clear concept 
that captures the ‘essence’ of 
that grouping?

§ If yes, does that make it a good 
clustering?

Exemplar,
Concept, 
Representative

Instances

Definition: “the fleshy, 
usually rounded red, yellow, 
or green edible pome fruit of 
a usually cultivated tree 
(genus Malus) of the rose 
family” Mirriam-Webster



Instance Properties
§ For machine learning purposes, we 

represent properties of object instances 
using vectors

§ Each vector element represents an 
attribute of the object.

§ The value of the vector element 
represents the value of that property (e.g. 
the colour) of that object

§ Vector Properties:
• Length

• (= number of 
dimensions/attributes)

• For each dimension
• Continuous/Discrete
• Numeric/Categorical
• Range/Possible Values

[12, 9.12, round, golden delicious]

Does this vector sufficiently 
describe this object?



Instance-Instance 
Relationships
§ Defined relationships between 

instances
§ Comparison functions between 

instances:
• Take as input vectors or parts of 

vectors
• Might only take certain types of input 

(e.g. numeric)
• Outputs a comparison result

§ Similarity
• Similarity as defined on a single 

dimension? Multiple dimensions?
• Can we come up with functions that 

give us an overall similarity measure, 
across all dimensions?

[3, 10.43, round, macintosh]

[12, 9.12, round, golden delicious]



Distance
§ Distance is a popular strategy for 

defining how similar to objects are to 
each other

§ It is called distance because it is 
calculated in the same manner as 
Euclidean distance

§ Importantly, distance takes into account 
all of the properties of the objects in 
question – it doesn’t just focus on one 
or two

§ Only numeric attributes are allowed as 
input, but it is technically possible to 
convert categorical attributes to 
numeric ones

§ This only works as long as the 
categorical concepts are in some sense 
equidistant from each other, 
conceptually. Consider as an example 
where they are not - [apple, pear, 
vegetable]. How far apart are these apples?



Cluster Properties
§ Number of instances
§ Similarity measures 

across instances within 
cluster
• minimum similarity
• maximum similarity
• average similarity

§ Cluster Representative:
• may be an instance
• may be an amalgamation 

of multiple instances (e.g. 
exemplar)

Which are the most similar? Which are the 
least? Which is the best representative?



Cluster – Instance 
Relationship
§ Comparison of instance to 

cluster
§ Might compare with 

representative instance
§ See also instance instance 

relationships for 
comparison between the 
instance and specific 
instances within the 
cluster:
• instance with cluster instance 

the greatest distance away 
from it

• instance with cluster instance 
that is most similar

Is this instance 
similar to this cluster? 
Does it belong in this 
cluster?



Cluster – Cluster 
Rela;onship
§ Comparison of cluster 

level properties:
• number of instances
• max or min similarity
• cluster representatives



Comparisons Summary
• Comparison of cluster 

level properties
• number of instances
• max or min similarity
• cluster representatives

• Comparison of cluster to 
instance properties
• instance vector to cluster 

representative vector
• Comparison of instance 

to instance properties
• similarity measures

• Comparisons may occur 
both within cluster and 
across clusters



Getting to quality clusters
• Cluster and instance 

comparisons can be combined 
in many different ways.

• These can be used to generate 
a vast number of different 
cluster validation functions

• What do these tell us about the 
quality of a particular clustering:
• relative to some objective criteria 

about good clustering schemes
• relative to another clustering option
• relative to external information (e.g. 

functionality, natural classes)

?



A Quality Clustering? Natural?

What level of quality is this clustering? Are there higher quality clusterings? 
Lower? How would you quantify this? Use some of the introduced concepts?



TYPES OF CLUSTERING VALIDATION
Clustering Validation – Part 3



Clustering Operations
§ Clustering involves two main 

activities
• Creating clusters
• Assessing cluster quality

§ We create functions to carry out 
both of these activities

§ Clustering functions
• Input: Instances (vectors)
• Output: Cluster assignment to each 

instance

§ Assessing cluster quality
• Input: Instances + Cluster 

Assignments (+ similarity matrix, 
usually)

• Output: A numeric value



Clustering Validation Function Components
§ There are a huge number of both of clustering and cluster validation 

functions
§ However, all are built up out of the basic measures relating to instance or 

cluster properties we have already reviewed:
• Instance Properties
• Cluster Properties
• Instance – Instance relationship properties
• Cluster – Instance Relationship Properties
• Cluster – Cluster Relationship Properties



Three types of validation
§ Internal Valida,on: Based only on properties 

available within a single clustering result 
(note that this comprises multiple clusters)

§ Rela,ve Valida,on: Comparison of one 
(entire) clustering result with another

§ External Valida,on: Comparison of a (single) 
clustering result with some external standard



INTERNAL VALIDATION
Clustering Validation – Part 4



Validity vs. Quality
§ Context is very relevant to the 

quality of a given clustering
§ BUT what if we have no context?
§ Is there a way to objectively 

measure cluster quality without 
any specific context?

§ The term ‘validity’ suggests there 
is a correct clustering, and all we 
need to do is see how close we 
are to that

§ Alternatively Lewis, Ackerman 
and de Sa (2012) use the term 
Clustering Quality Measures 
(CQM) instead

*
***

*
*

*

*
**

*

*

*



A (Small?) Sample of Internal CQMs 
§ The Ball-Hall index
§ The Banfeld-Raftery index
§ The C index 
§ The Calinski-Harabasz index
§ The Davies-Bouldin index
§ The Det Ratio index
§ The Dunn index
§ The Baker-Hubert Gamma index
§ The GDI index
§ The Gplus index
§ The KsqDetW index
§ The LogDetRatio index
§ The LogSSRatio index
§ The McClain-Rao index

§ The PBM index
§ The Point-Biserial index
§ The Ratkowsky-Lance index
§ The Ray-Turi index
§ The Scott-Symons index
§ The SD index
§ The SDbw index
§ The Silhouette index
§ The Tau index
§ The TraceW index
§ The TraceWiB index
§ The Wemmert-Ganc ̧arski index
§ The Xie-Beni index 

(These are all defined and available in the clusterCrit package for R )

What are we to make of all these different, supposedly context free measures of 
clustering quality?



Very Broad Goals
§ Within clusters, everything is very similar.
§ Between clusters, there is a lot of 

difference.
§ The problem: there are many ways for 

clusters to deviate from this ideal.
§ In specific clustering cases, how do we 

weigh the good aspects (e.g. high within 
cluster similarity) relative to the bad (e.g. 
low between cluster separation)

§ Thus the large number of CQMs
§ Question: is this trade-off (and the 

resulting CQMs) really context 
independent?

§ Maybe different weightings are more 
relevant in different contexts?



Comparing measures across datasets
Vendramin et al 2010 used a number of benchmark tests to compared a 
large number of intrinsic validation measures
Broad conclusion: variants of Silhouette performed well across tests
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Fig. 10 Mean values (bottom bar) and their differences (cells) for Pearson correlation between relative and external (Jaccard) criteria:
kmax = 25.

by all difference-like criteria and by the original
Dunn’s index as well, with statistical significance.

(3) The different versions of the silhouette criterion pre-
sented comparable results. Then, once the simplified
versions (SSWC and ASSWC) have lower computa-
tional requirements, they may be preferred, especially
when dealing with large data sets.

(4) In general, Dunn12 and Dunn13 outperformed the
original criterion (Dunn11), particularly in those sce-
narios for which kmax = 25.

(5) The point-biserial criterion provided superior results
(with statistical significance) when compared with
all criteria, except gamma in the specific scenario
involving Pearson correlation and kmax = 8.

It is important to remark that differences were observed
between the performances of some criteria when switching
from kmax = 8 to kmax = 25. In particular, expressive drops
in performance were noticed when kmax = 25. This suggests
that the corresponding criteria are not robust to keep work-
ing accurately in the presence of bad quality partitions—in
this case formed by numbers of clusters quite different
from9 k∗. As such, these criteria may not be recommended
for real-world applications involving complicating factors
such as noisy data, overlapping clusters, high dimensional-
ity, among others. This is the case of G(+), gamma, and C-
index, whose performance losses took place with respect to
all correlation measures (Pearson/WGK) and external crite-
ria (Jaccard/ARI) when kmax = 25 (for illustration purposes,

9 It is worth noticing that k∗ = 2, 3, 4, or 5 in the experiments
reported in this section.

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Jaccard

N
or

m
al

iz
ed

 G
(+

)

Fig. 11 Scatter plot of normalized values of G(+) versus Jaccard
for partitions of a typical data set: kmax = 8.

scatter plots of G(+) versus Jaccard for a typical data set
are depicted in Figs. 11 and 12 for kmax = 8 and kmax = 25,
respectively). Curiously, C/

√
k behaved in the opposite

way, giving better results when kmax = 25. A detailed and
careful analysis of such a behavior does not favor the cri-
terion. As observed in Section 2.1.15, C/

√
k may be domi-

nated by the number of clusters, when this quantity is large
enough. More precisely, C/

√
k → 1/

√
k for large val-

ues of k. Such a decreasingly monotonic behavior of this
criterion as a function of k is analogous to the one exhib-
ited by some external criteria when the data set in hand
has a few clusters (small k∗), which is precisely the case
here addressed. This explains the misleading performance
of C/

√
k for kmax = 25 and reinforces the need for a careful

Statistical Analysis and Data Mining DOI:10.1002/sam



Machine Learning vs
Human Learning
• Lewis et al compare 6 common CQMs with human 

evaluation of clustering results
• Main finding: Human clustering evaluation was 

most similar to Silhouette and Calinski-Harabasz
• Maybe internal validation/CQM is saying something 

about clustering across all contexts?
• Maybe easier to identify the clearly bad than all the 

variations of good?
Table 1: Correlation coefficients between human responses and CQMs with k factored out (except for the k column). Text in
bold (excluding k column) if p < .0025 after Bonferroni correction for n = 20 comparisons per subject group and a = .05.

r Ex
pe

rt
Po

si
tiv

e

Ex
pe

rt
N

eg
at

iv
e

N
ov

ic
e

Po
si

tiv
e

N
ov

ic
e

N
eg

at
iv

e

G
am

m
a

Si
lh

ou
et

te

D
un

n

A
vg

W
ith

in

A
vg

B
tw

C
H

W
-I

nt
er

/In
tra

k
Expert Pos 1 -.35 .56 -.19 -.15 .46 .40 -.39 .34 .44 .19 -.43
Expert Neg 1 -.13 .44 .09 -.27 -.12 .44 -.18 -.36 -.30 .32
Novice Pos 1 -.04 -.13 .39 .40 -.20 .23 .30 .04 -.73
Novice Neg 1 .08 -.27 .01 .30 -.07 -.25 -.27 .71

Table 2: A summary of the number of partitions for which a
high degree of agreement was achieved by the raters. If a par-
tition is classified as negative or positive by 80% - 100% of
raters, it would be added to the top row, and similarly for the
60% - 79% bucket. The total possible number of agreed upon
partitions is 57 (19 datasets * 3 possible negative/positive re-
sponses to partitions per dataset).

% Majority Experts Novices CQMs
80% - 100% 19 3 1

60% - 79% 20 11 7
Sum >= 60% 39 14 8

and found values ranging from 0.098 to 0.172, which is in
line with the CQM consistency with no measure left out, and
in every case less consistent than the novice subjects. Finally,
we left out both Avg Within and Between, since they measure
quality on intentionally simple and distinct dimensions, and
found a k of 0.110.

In Table 2 we summarize the consistency of experts,
novices and cluster quality measures. It shows how often cer-
tain percentages of raters are able to agree on negative or pos-
itive classifications for particular stimuli. Experts agree over
60% of the time on more samples (39), than do novices (14)
or CQMs (8).

Discussion

Comparing human evaluations with CQMs

Some natural quality measures have low correlation with hu-
man evaluations. Most notably, Gamma has low correlation
with both positive and negative human classifications for both
novices and experts. W-Inter/Intra has low correlation with
the positive classifications of both subject groups. This shows
that a natural mathematical formalization does not suffice to
guarantee that the evaluations of clusterings produced using
the CQM will seem natural to humans.

There are also CQMs that correlate well with human eval-
uations. Of these the most notable are CH and Silhouette.
These two popular measures correlate well with both expert

and novice evaluations, on both the positive and negative clas-
sifications.

Comparing experts with novices

Evaluations of experts and novices have a correlation score
of 0.56, higher than the correlation of any CQM with any of
the two subject groups. This suggests that a cluster evaluation
skill is present in the general population.

On the other hand, we observe some interesting differences
between the two groups of subjects. One of the most no-
table differences between experts and novices is that, while
both groups prefer clusterings with fewer clusters, novices
rely much more heavily on this heuristic.

Experts seem to use more, and more complex strategies
than novices. Positive expert classifications correlate well
with two more measures than positive novice classifications.
No measure considered correlates better with novice classifi-
cations than with expert classifications, and in the great ma-
jority of cases the correlation is higher with expert classifica-
tions.

With a cover of at most six domain elements on any input
dataset (see Definition 5 below), Dunn’s measure is (accord-
ing to this measure of complexity) the simplest measure that
we explore. While positive expert evaluations correlate well
with five distinct measures, Dunn’s measure is one of three
measures that correlate well with novice evaluations. This
further illustrates that novices rely on fewer simpler strate-
gies, which indicates that expert evaluations may be more so-
phisticated and reliable.

Consistency

Given the difficulty of knowing whether humans or CQMs do
a reasonable job of evaluating clustering quality, one might
hope that at least they are consistent across individuals (or
measures). Consistency indicates that some repeatable pro-
cess is at work and that its repeatability is minimally affected
by changes in input. Of course CQMs are perfectly consistent
on a within measure basis—given the same partition they will
always report the same quality–and one is tempted to suggest
that between measure consistency is an unfair point of com-
parison; aren’t all the measures using quite different evalu-
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uation problem. Regarding consistency, we find that even
novices are more consistent in their evaluations than our set
of CQMs.

Clustering quality measures

In this section we introduce the formal machinery describing
the CQMs selected for our study.

Let X be a finite domain set. A distance function is a sym-
metric function d : X ⇥X ! R+, such that d(x,x) = 0 for all
x 2 X . A k-clustering C = {C1,C2, . . . ,Ck} of dataset X is a
partition of X into k disjoint subsets (so, [iCi = X). A clus-
tering of X is a k-clustering of X for some 1  k  |X |. Let
|C| denote the number of clusters in clustering C. For x,y 2 X
and clustering C of X , we write x ⇠C y if x and y belong to the
same cluster in C and x 6⇠C y, otherwise. Finally, a CQM is a
function that maps clusterings to real numbers.

Gamma: This measure was proposed as a CQM by (Baker
& Hubert, 1975) and it is the best performing measure in
(Milligan, 1981). Let d+ denote the number of times that a
pair of points that was clustered together has distance smaller
than two points that belong to different cluster, whereas d�

denotes the opposite result.
Formally, let d+(C) = |{{x,y,x0,y0} | x ⇠C y,x0 6⇠C

y0,d(x,y)  d(x0,y0)}|, and d�(C) = |{{x,y,x0,y0} | x ⇠C
y,x0 6⇠C y0,d(x,y) � d(x0,y0)}|. The Gamma measure of C is
d+(C)�d�(C)
d+(C)+d�(C) .

Silhouette: The Silhouette measure was defined
by (Rousseeuw, 1987). Silhouette is the default clus-
tering quality measure in MATLAB.

Let dist(x,Ci) = avgy2Cid(x,y). The silhouette of
a point x with respect to clustering C is S(x,C) =

min j 6=i dist(x,Cj)�dist(x,Ci)
max(min j 6=i dist(x,Cj),dist(x,Ci))

where x 2 Ci. The silhouette of a
clustering C is sumx2X S(x,C).

Dunn’s Index: Dunn’s Index (Dunn, 1974) compares the
maximum within-cluster distance to the minimum between-
cluster distances. Dunn’s Index of C is

minx 6⇠Cy d(x,y)
maxx⇠Cy d(x,y) .

Average Between and Average Within: The Average Be-
tween and Average Within measures evaluate the between-
cluster separation and within-cluster homogeneity, respec-
tively. The average between of C is avgx 6⇠Cyd(x,y). The av-
erage within of C is avgx⇠Cyd(x,y).

Calinski-Harabasz: The Calinski-Harabasz measure
(Caliński & Harabasz, 1974) makes use of cluster centers.
Let ci =

1
|Ci| Âx2Ci x denote the center-of-mass of cluster Ci,

and x̄ the center-of-mass of X . Let B(C) = ÂCi |Ci||ci � x̄|2
and W (C) = ÂCi Âx2Ci |x� ci|2. The Calinski-Harabasz of C
is n�k

k�1 ·
B(C)
W (C) .

Weighted inter-intra: The weighted inter-intra measure
is proposed by (Strehl, 2002). It compares the homogeneity
of the data to its separation. Let intra(Ci) = avgx,y2Ci d(x,y)
and inter(Ci,Cj) = avgx2Ci,y2Cj d(x,y). The Weighted inter-

intra of a clustering C is (1� 2k
n ) · (1�

Âi
1

n�|Ci|
Â j 6=i inter(Ci,Cj)

Âi
2

|Ci|�1 intra(Ci)
),

where n is the number of points in the dataset.

Methods

We ran two groups of human subjects and a group of clus-
tering quality measures on a partition evaluation task. Our
human subjects were divided into a novice group with little
or no knowledge of clustering methods and an expert group
with detailed knowledge of clustering methods.

Figure 1: All stimuli. Datasets are in rows; partitions are in
columns.

Human subjects and stimuli

Twelve human subjects were recruited for this project as the
novice group, 9 female and 3 male, with an average age of
20.3 years. The novice subjects have no previous exposure to
clustering. The expert group consists of 5 people and includes
the authors of this paper. All experts have studied clustering
in an academic setting, and 4 have done research on the sub-
ject.
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Silhouette Index: Algorithm

A strong internal validation metric that incorporates a number of measures.

average distance to points in 
neighbouring cluster (high is good)

average distance to points in 
own cluster (low is good)

 = (average dissimiliarity with neighbouring cluster - average dissimilarity with own cluster) 

maximum dissimilarity value (own or neighbour)

silhouette metric 
for a point



Silhouette Metric Sample Results (I)

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of pam(x = ndf, k = 5)

Average silhouette width :  0.2

n = 65 5  clusters  Cj

j :  nj | avei∈Cj  s

1 :   3  |  0.32

2 :   28  |  0.19

3 :   13  |  0.17

4 :   16  |  0.11

5 :   5  |  0.51



Dunn’s Index: Algorithm
§ Within a cluster, the size of the 

cluster (e.g. greatest distance 
between points)

§ Between two clusters, the 
distance between the clusters 
(e.g. minimum distance 
between points)

§ Ratio: The minimum 
intercluster distance across all 
pairs of clusters / maximum 
intracluster distance across all 
clusters

§ A number of possible ways to 
define inter cluster distance 
and cluster size.

Comparison with Silhouette Index: In a 
sense, a simpler measure. More of a 
whole cluster measure, rather than a point 
by point measure. Evaluates based on 
extremes (max and min).



RELATIVE VALIDATION
Clustering Validation – Part 5



More is beOer?
§ Getting a single 

validation measure for a 
single clustering is not 
that useful – could the 
results be better? Is this 
the best we can hope 
for?

§ How about comparing 
results across runs or 
parameter settings?

§ Main emphasis with 
relative validation is how
to compare results of 
individual runs.
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Correlation Measures
§ Look at correlation between clustering assignments
§ Rand, Jaccard, Gamma
§ Perfect correlation gives maximum value of the measure

Two very similar 
clustering results
(but notice they vary 
in the number of 
clusters)



Rand’s Index
§ SS- the number of pairs of items 

belonging to the same cluster in both 
clusterings (C1 = 1 and C2 = 1) 

§ SD- the number of pairs together in 
one clustering but not the other 
(C1 = 1 and C2 = 0)

§ DS- the number of pairs not together 
in one clustering but  together in the 
other (C1 = 0 and C2 = 1)

§ DD- the number of pairs not together 
in either cluster (C1 = 0 and C2 = 0)

§ Note that SS and DD are good, and 
DS, SD are bad. 

§ Rand Index is the ratio of SS + DD 
to the total number of pairs. If Rand 
Index = 1, the clustering perfectly 
matches the gold standard.

Clustering 1 (C1) Clustering 2 (C2)

(SS + DD)/(SS + DD+ SD + DS)

(4 + 9)/(4 + 9 + 0 + 2) = 0.87



Stability
§ Some options:

• multiple datasets sampled 
from same source

• different columns used to 
generate clusters (i.e. 
drop a different column 
each time)

§ Similarity of results is 
measured

§ If results are not stable 
across clustering 
schemes, further 
investigation required



EXTERNAL VALIDATION
Clustering Validation – Part 6



Back to Context
§ Brings in outside information to 

evaluate the clusters
§ Outside information is typically the 

‘correct’ class
§ How is this different from 

classification then?
§ Often used to build confidence in the 

overall approach, based on 
preliminary or sample results

Natural Groupings

Clustering Results



Example Metric: Purity
§ For this metric each 

cluster is assigned to the 
class which is most 
frequent in the cluster

§ To calculate the purity: 
number of correctly 
assigned points / 
number of points in the 
cluster

§ Some other options: 
precision, recall

Assuming we are interested in shape…

purity = 66%

purity = 71%

SQUARE CLUSTER

CIRCLE CLUSTER



Types of External 
Validation
§ Amigó et al (2009) provide a number of 

constraints for external validation 
measures

§ They suggest external evaluation 
strategies can be based on:
• set matching
• counting pairs
• entropy measures
• edit distance

§ Similar to strategies used to evaluate 
classification

§ They recommend using a particular 
version (Bcubed) of precision and recall 
for external validation, as these best 
take into consideration the 4 constraints

This constraint is illustrated in Figure 1; it is a very basic restriction which
states that the clusters must be homogeneous, i.e. they should not mix items
belonging to di↵erent categories.

Figure 1: Constraint 1: Cluster Homogeneity

2.2 Constraint 2: Cluster Completeness

The counterpart to the first constraint is that items belonging to the same
category should be grouped in the same cluster1. In other words, di↵erent
clusters should contain items from di↵erent categories. We can model this notion
with the following formal constraint: Let D1 be a distribution such that two
clusters C1, C2 only contain items belonging to the same category L. Let D2

be an identical distribution, except for the fact that C1 and C2 are merged
into a single cluster. Then D2 is a better distribution: Q(D1) < Q(D2). This
restriction is illustrated in Figure 2.

Constraints 1 and 2 are the most basic restrictions that any evaluation metric
must hold and refer to the basic goals of a clustering system: keeping items from
the same category together, and keeping items from di↵erent categories apart.
In the next section we will see that, surprisingly, some of the most popular
metrics fail to satisfy these constraints.

Figure 2: Constraint 2: cluster completeness

1
As in [Rosenberg and Hirschberg, 2007], we use the term “Completeness” to avoid “Com-

pactness”, which in the clustering literature is used as an internal property of clusters which

refers to minimizing the distance between the items of a cluster.
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2.3 Constraint 3: Rag Bag

An additional intuition on the clustering task is that introducing disorder into a
disordered cluster is less harmful than introducing disorder into a clean cluster.
Indeed, for many practical situations it is useful to have a “rag bag” of items
which cannot be grouped with other items (think of “miscellaneous”, “other”,
“unclassified” categories); it is then assumed that such a set contains items of
diverse genre. Of course, in any case a perfect clustering system should identify
that these items cannot be grouped and belong to di↵erent categories. But
when comparing sub-optimal solutions, the intuition is that it is preferable to
have clean sets plus a “rag bag” than having sets with a dominant category plus
additional noise.

The boundary condition, which makes our third restriction, can be stated as
follows: Let Cclean be a cluster with n items belonging to the same category.
Let Cnoisy be a cluster merging n items from unary categories (there exists just
one sample for each category). Let D1 be a distribution with a new item from
a new category merged with the highly clean cluster Cclean, and D2 another
distribution with this new item merged with the highly noisy cluster Cnoisy.
Then Q(D1) < Q(D2) (see Figure 3). In the next section we will see that this
constraint is almost unanimously validated by our human judges via examples.

Figure 3: Constraint 3: Rag Bag

2.4 Constraint 4: Clusters size vs. quantity

A small error in a big cluster should be preferable to a large number of small er-
rors in small clusters. This property is partially related with the fourth property
in [Meila, 2003], called in [Rosenberg and Hirschberg, 2007] as n-invariance. We
state a boundary condition related to this notion saying that separating one item
from its class of n > 2 members is preferable to fragmenting n binary categories
(see Figure 4).

Formally, let us consider a distribution D containing a cluster Cl with n + 1
items belonging to the same category L, and n additional clusters C1 . . . Cn,
each of them containing two items from the same category L1 . . . Ln. If D1 is a
new distribution similar to D where each Ci is split in two unary clusters, and
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D2 is a distribution similar to D, where Cl is split in one cluster of size n and
one cluster of size 1, then Q(D1) < Q(D2).

Figure 4: Clusters Size vs. Quantity

3 Testing the Formal Constraints

We now want to test whether our formal constraints reflect common intuitions
on the quality of a clustering. For this, we have performed an experiment
in which we presented pairs of alternative clustering options to eight human
assessors, and they were asked to select the best option in each pair. Every
pair was designed to match one of the constraints, so that each assessor’s choice
confirms or contradicts the constraint.

We have used the EFE 1994-1995 CLEF corpus [Gonzalo and Peters, 2005]
to generate the test set. This corpus consists of news-wire documents in Spanish,
along with a set of topics and relevance judgments for each of the topics. We have
randomly selected six queries and ten relevant documents per query, and then
we have used the documents for each query as a category. Note (Figure 9) that
each piece of news is manually tagged with a rather specific keyword description,
which makes the clustering task easier to the assessors. Titles for the selected
topics were “UN forces in Bosnia”, “Invasion of Haiti”, “War in Chechnya”,
“Uprising in Chiapas”, “Operation Turquoise in Ruanda” and “Negotiations in
Middle East”.

For each formal constraint, we have implemented an algorithm which ran-
domly generates pairs of two distributions which are instances of D1 and D2:

• Cluster Homogeneity(See figure 5)
(1) We generate three clusters C1, C2 and C3 containing titles from a
topic L13 (the subscript 13 indicating that there are items from this topic
in clusters C1 and C3), and from another topic L2 (which has items in C2)
such that |C1|+ |C2| < |C3|. (2) We generate a cluster C4 containing news
titles from several random topics, such that most of them correspond
to one single topic L

0 di↵erent from L13 and L2.(3) Then we build the
following distributions:

6



CONCLUDING THOUGHTS
Clustering Validation – Part 7



Try and Try Again
§ A large amount of diversity in 

clustering validation 
techniques

§ Be aware of the types of 
validation, and variations 
within types

§ Seek agreement across 
techniques, ok to compare

§ There are many ways for a 
clustering to be ‘ok’ – you 
need to decide what is 
important and what can be 
ignored

§ A lot depends on context
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