
MAT 2125: FIELD AND ORDER NOTES

1. Overview

I think that a few people are a bit concerned about some of the following:

(1) Do I really need to use these axioms in every line of every calculation
for the rest of the course?

(2) There are lots of “obvious” facts that I can’t find in the course notes.
What should I do?

(3) The course notes don’t prove that 1 > 0. Where do I find this particular
proof?

(4) Some of these arguments are weird. How was I supposed to come up
with these tricks?

(5) What am I supposed to be able to do with the axiom stuff?

To give quick responses in order,

(1) No. After the first short while, we’re just going to use obvious facts
about the algebraic and order structure of Q without discussion. We’ll
also use the fact that Q is sitting inside of R

(2) There will not be any point in the course where you need to cite “obvi-
ous” facts about fields or orders that are missing from the course notes.
To provide some context: it turns out to be a huge amount of work
to build up the details of R from nothing, and we’re not going to do
all that work in this course. We’ll still pay a lot of attention to things
that aren’t in Q, such as

√
2.

(3) This proof, and many other “obvious” facts about the order structure
of fields, are contained in the next section of this document. Note:
this is still far from a comprehensive list. I don’t prove many “obvious”
facts about fields (e.g. that (mn)−1 = m−1n−1). As I say above, we’re
mostly going to skip this.

(4) The short answer is, you’re not. There are several places, such as
Equality (2.2), where you have to write down some identity that is not
really suggested by the question. This is genuinely hard, and we’re not
going to focus on that sort of thing in this course. See the last section
for a very quick discussion of what we are going to focus on.

(5) The short version is: you’re supposed to be able to do the homework
questions, and a small number of minor variants. You’re also supposed
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to be aware that this axiomatic stuff is underpinning our later calcula-
tions, even if we don’t exhaustively document every manipulation that
we perform.

The rest of the document mostly contains proofs. I want to emphasize that
you are not expected to read these carefully and/or memorize them - I’m
sending them only because some people have requested them.

You could use them as practice problems with solutions, if you’re looking
for practice problems. I broke up long arguments into many pieces so that all
of them are somewhat accessible, though obviously some are longer/trickier
than others. I’ll note that I didn’t always go for the most efficient proof - in a
few places I took a detour to prove something that seemed interesting, and in
one place I took a detour to avoid a homework problem.

2. Proving “Obvious” Inequalities for Q

We develop a collection of “obvious” inequalities for an ordered field from
just the order axioms. I try to use “lemma” to indicate intermediate results
that are unlikely to be used directly.

In this section, I denote by F an ordered field that is assumed to have at
least one nonzero element. Throughout, I use the notational shorthands from
the video. For example,“2” is shorthand for “1 + 1” and 2

5
is shorthand for

2× 5−1.

Theorem 2.1. For all x ∈ F , 0x = 0.

Proof. We have

0x
A3
= (0 + 0)x
AM1
= 0x + 0x.

Thus, by A4, 0 = 0x. �

Theorem 2.2. For all x ∈ F , (−a) = (−1)(a).

Proof. We have

0
Thm. 2.1

= 0x
A4
= (−1 + 1)x
AM
= (−1)x + (1)x
M3
= (−1)x + x.

�
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Theorem 2.3. We have (−1)2 = 1.

Proof. Write

0
Thm. 2.1

= 02

A4
= (1− 1)2

AM1
= (1)(1) + (1)(−1) + (−1)(1) + (−1)2

M3
= 1− 1− 1 + (−1)2

A4
= −1 + (−1)2.

Rearranging gives the desired equality. �

Theorem 1. For all x ∈ R, x2 ≥ 0.

Proof. We consider two cases: x ≥ 0 and x < 0.

(1) If x ≥ 0, then

x2 = (x)(x) (2.1)
O4

≥ (0)(x)

Thm. 2.1
= 0.

(2) If x < 0, then

x2 M3
= (1)x2

Thm. 2.3
= (−1)2x2

M1
= ((−1)(x))((−1)(x))

Thm. 2.2
= (−x)2

Ineq. (2.1)

≥ 0.

Thus we have the desired inequality in both cases. �

Lemma 2.4. We have 1 > 0.

Proof. By O1, it is enough to rule out the possibility that 1 = 0 and the
possibility that 1 < 0.

• Ruling out 1 = 0: Assume otherwise, so that 1 = 0. Let x ∈ F be a
nonzero element of F . Then

x
M3
= 1x
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Assumption
= 0x

Thm. 2.1
= 0.

But this contradicts the fact that x 6= 0. Having derived a contradic-
tion, we conclude that the assumption 1 = 0 must be false.
• Ruling out 1 < 0: We have

1
M3
= 12

Thm. 1

≥ 0.

Having ruled out both of these possibilities, we conclude that 1 > 0. �

Lemma 2.5. For all n ∈ N, n > 0.

Proof. We prove this by induction. The base case is Lemma 2.4. To prove the
inductive step, fix n ∈ N and assume n > 0; we must show that n + 1 > 0.

Since n > 0, we have by O3 that n + 1 > 0 + 1. We continue:

n + 1 > 0 + 1
A3
= 1
Lemma 2.4

> 0.

This completes the proof. �

Lemma 2.6. Consider a, b ∈ F . We have ab = 0 if and only if at least one
of a, b are equal to 0.

Proof. One direction is easy: if either a, b are equal to 0, then ab = 0 by
Theorem 2.1.

We prove the other direction by contradiction. Assume there exist a, b 6= 0
with ab = 0. We then calculate

0
Thm. 2.1

= 0b−1

Assumption
= (ab)b−1

M4
= a1
M3
= a.

But this contradicts the assumption that a 6= 0. �

Theorem 2.7. For all m,n ∈ N, m
n
> 0.
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Proof. We can write
m

n
M3
= (m)(n)(n−1)2. (2.2)

We note that (n−1)2 > 0 by Lemma 1 (which says it is nonnegative), Lemma
2.6 (which rules out the possibility that it is 0), and O1. We note that m,n > 0
by Lemma 2.5. Thus, all three elements of the product in Equation (2.2) are
strictly greater than 0. By 04, the product must also be strictly greater than
0. �

Lemma 2.8. If a > 0, then −a < 0. Similarly, if a < 0, then −a > 0.

Proof. We have −a = (−1)(a) by Lemma 2.2, and so −a 6= 0 by Lemma 2.6.
We now proceed by contradiction. Assume −a ≥ 0. Since we just showed
−a 6= 0, this would imply −a > 0. But then by O3,

a +−a > 0 + 0
A3
= 0.

But applying A4 to the left-hand side of this inequality, we have

0 = a +−a > 0,

which is a contradiction.
The proof of the second part is essentially identical. �

Theorem 2.9. Fix a, b, c ∈ F with a < b and c < 0. Then ac > bc.

Proof. We prove this by contradiction: assume ac ≤ bc for some a < b and
c < 0. We first check that ac = bc is impossible. We have c 6= 0, and so
ac = bc would imply

a
M4
= acc−1

Assumption
= bcc−1

M4
= b,

contradicting the assumption that a < b.
So we now have that ac < bc. By Lemma 2.8, −c > 0. Thus, by O4,

a(−c) < b(−c).
Adding this to ac < bc and applying O3, we have

ac + a(−c) < bc + b(−c).
Applying AM1 and then A4, we have ac+ a(−c) = a(c− c) = 0, and similarly
bc + b(−c) = 0. Thus, we have

0 < 0,
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which is clearly a contradiction.
�

3. Tricks and This Course

I think that lots of the proofs in the last section “feel bad” because they are
quite ad-hoc. Where did Equation (2.2) come from? Who would ever think
to rewrite 0 as (1− 1)2, like in the proof of Theorem 2.3?

I feel the same way. These sorts of out-of-nowhere arguments will be much
less common in the rest of the course. Instead, there will be a fairly small
collection of techniques that get used over and over again. Since I’m writing
this near the start of the course, we haven’t seen many of these yet, and
we haven’t seen any repeated. I’ll write a few pointers for now, but we’ll
discuss this much more in class once we’ve accumulated a few examples for
each technique.

The first “major” technique is the telescoping sum identity: if you have a
sequence x1, x2, . . . , xn, then

xn − x1 =
n−1∑
i=1

(xi+1 − xi). (3.1)

By the triangle inequality, this gives:

|xn − x1| ≤
n−1∑
i=1

|xi+1 − xi|.

At first glance this seems a bit dopey: if you only see xn and x1, where do
x2, . . . , xn−1 come from?

The short answer is that, at least in this class, they’re normally things that
are basically in the question. The first time this telescoping sum idea appears
is in the proof of Proposition 2.5 of the lecture notes.

The closest thing we’ve seen to a recurring technique is the idea that strict
inequalities always come with a bit of wiggle room. For example, see the
following proof:

Lemma 3.1. Let S = {x ∈ R : x < 1}. Then sup(S) = 1.

Proof. First, we note that 1 is an upper bound on S: if x ∈ S, then x < 1 by
definition.

Next, we need to show that 1 is the least upper bound. We do this by
contradiction. Assume there exists some x < 1 that is also an upper bound.
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Then, as shown in Lemma 1.2 of the course notes,

x <
x + 1

2
< 1.

But this means that x+1
2
∈ S, so x is not an upper bound on S.

We’ve shown that 1 is an upper bound on S, and we’ve shown that there
doesn’t exist a strictly smaller upper bound. This completes the proof. �

At some point in the argument, we got to assume that x < 1. We then
notice that there’s some wiggle room: since x < 1, there must be a bunch of
things in between x and 1. The same idea gets used in many places, and is
especially powerful in combination with Question 3.3 of HW1.
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