MAT 2125 – Exercises

- 1. Let $a, b \in \mathbb{R}$ and suppose that $a \leq b + \varepsilon$ for all $\varepsilon > 0$. Show that $a \leq b$.
- 2. Let c > 0 be a real number.
 - (a) If c > 1, show that $c^n \ge c$ for all $n \in \mathbb{N}$ and that $c^n > 1$ if n > 1.
 - (b) If 0 < c < 1, show that $c^n \le c$ for all $n \in \mathbb{N}$ and that $c^n < 1$ if n > 1.
- 3. Let c > 0 be a real number.
 - (a) If c > 1 and $m, n \in \mathbb{N}$, show that $c^m > c^n$ if and only if m > n.
 - (b) If 0 < c < 1 and $m, n \in \mathbb{N}$, show that $c^m > c^n$ if and only if m < n.
- 4. Let $S_2 = \{x \in \mathbb{R} \mid x > 0\}$. Does S_2 have lower bounds? Does S_2 have upper bounds? Does inf S_2 exist? Does sup S_2 exist? Prove your statements.
- 5. Let $S_4 = \left\{1 \frac{(-1)^n}{n} \mid n \in \mathbb{N}\right\}$. Find inf S_4 and $\sup S_4$.
- 6. Let $S \subseteq \mathbb{R}$ be non-empty. Show that if $u = \sup S$ exists, then for every number $n \in \mathbb{N}$ the number $u \frac{1}{n}$ is not an upper bound of S, but the number $u + \frac{1}{n}$ is.
- 7. If $S = \left\{ \frac{1}{n} \frac{1}{m} \mid m, n \in \mathbb{N} \right\}$, find inf S and $\sup S$.
- 8. Let X be a non-empty set and let $f: X \to \mathbb{R}$ have bounded range in \mathbb{R} . If $a \in \mathbb{R}$, show that

$$\sup\{a + f(x) : x \in X\} = a + \sup\{f(x) : x \in X\}$$
$$\inf\{a + f(x) : x \in X\} = a + \inf\{f(x) : x \in X\}.$$

9. Let A and B be bounded non-empty subsets of \mathbb{R} , and let

$$A + B = \{a + b \mid a \in A, b \in B\}.$$

Prove that $\sup(A+B) = \sup A + \sup B$ and $\inf(A+B) = \inf A + \inf B$.

10. Let X be a non-empty set and let $f, g: X \to \mathbb{R}$ have bounded range in \mathbb{R} . Show that

$$\sup\{f(x) + g(x) \mid x \in X\} \le \sup\{f(x) \mid x \in X\} + \sup\{g(x) \mid x \in X\}$$
$$\inf\{f(x) \mid x \in X\} + \inf\{g(x) \mid x \in X\} \le \inf\{f(x) + g(x) \mid x \in X\}.$$

11. Let X and Y be non-empty sets and let $h: X \times Y \to \mathbb{R}$ have bounded range in \mathbb{R} . Let $F: X \to \mathbb{R}$ and $G: Y \to \mathbb{R}$ be defined by

$$F(x) = \sup\{h(x,y) \mid y \in Y\} \quad \text{and} \quad G(y) = \sup\{h(x,y) \mid x \in X\}.$$

Show that

$$\sup\{h(x,y) \mid (x,y) \in X \times Y\} = \sup\{F(x) \mid x \in X\} = \sup\{G(y) \mid y \in Y\}.$$

- 12. Show there exists a positive real number u such that $u^2 = 3$.
- 13. Show there exists a positive real number u such that $u^3 = 2$.
- 14. Let $S \subseteq \mathbb{R}$ and suppose that $s^* = \sup S$ belongs to S. If $u \notin S$, show that $\sup(S \cup \{u\}) = \sup\{s^*, u\}$.
- 15. Show that a non-empty finite set $S \subseteq \mathbb{R}$ contains its supremum.
- 16. If $S \subseteq \mathbb{R}$ is a non-empty bounded set and $I_S = [\inf S, \sup S]$, show that $S \subseteq I_S$. Moreover, if J is any closed bounded interval of \mathbb{R} such that $S \subseteq J$, show that $I_S \subseteq J$.
- 17. Prove that if $K_n = (n, \infty)$ for $n \in \mathbb{N}$, then

$$\bigcap_{n\in\mathbb{N}}K_n=\varnothing.$$

- 18. If S is finite and $s^* \notin S$, show $S \cup \{s^*\}$ is finite.
- 19. The first few terms of a sequence (x_n) are given below. Assuming that the "natural pattern" indicated by these terms persists, give a formula for the nth term x_n .
 - (a) $(5,7,9,11,\ldots);$
 - (b) $(\frac{1}{2}, -\frac{1}{4}, \frac{1}{8}, -\frac{1}{16}, \ldots);$
 - (c) $(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots);$
 - (d) $(1, 4, 9, 16, \ldots)$.
- 20. Use the definition of the limit of a sequence to establish the following limits.

(a)
$$\lim_{n \to \infty} \left(\frac{1}{n^2 + 1} \right) = 0;$$

(b)
$$\lim_{n \to \infty} \left(\frac{2n}{n+1} \right) = 2;$$

(c)
$$\lim_{n\to\infty} \left(\frac{3n+1}{2n+5}\right) = \frac{3}{2}$$
, and

(d)
$$\lim_{n \to \infty} \left(\frac{n^2 - 1}{2n^2 + 3} \right) = \frac{1}{2}$$
.

21. Show that

(a)
$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n+7}} \right) = 0;$$

(b)
$$\lim_{n \to \infty} \left(\frac{2n}{n+2} \right) = 2;$$

(c)
$$\lim_{n\to\infty} \left(\frac{\sqrt{n}}{n+1}\right) = 0$$
, and

(d)
$$\lim_{n \to \infty} \left(\frac{(-1)^n n}{n^2 + 1} \right) = 0.$$

22. Show that
$$\lim_{n\to\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) = 0.$$

23. Find the limit of the following sequences:

(a)
$$\lim_{n \to \infty} \left(\left(2 + \frac{1}{n} \right)^2 \right);$$

(b)
$$\lim_{n\to\infty} \left(\frac{(-1)^n}{n+2}\right);$$

(c)
$$\lim_{n\to\infty} \left(\frac{\sqrt{n}-1}{\sqrt{n}+1}\right)$$
, and

(d)
$$\lim_{n \to \infty} \left(\frac{n+1}{n\sqrt{n}} \right)$$
.

24. Let
$$y_n = \sqrt{n+1} - \sqrt{n}$$
. Show that (y_n) and $(\sqrt{n}y_n)$ converge.

25. Find the limit of the following sequences:

$$\begin{array}{ll} \text{noitemsep} & \lim_{n \to \infty} \frac{\sin(n^2 + 212)}{n}; \\ \text{noiitemsep} & \lim_{n \to \infty} q^n, \text{ if } |q| < 1; \\ \text{noiiitemsep} & \lim_{n \to \infty} \sqrt[n]{n}; \\ \\ \text{noivtemsep} & \lim_{n \to \infty} \frac{n!}{n^n}, \text{ and} \\ \\ \text{novtemsep} & \lim_{n \to \infty} \sqrt[n]{3^n + 5^n}. \end{array}$$

26. Let (x_n) be a sequence of positive real numbers such that

$$\lim_{n \to \infty} x_n^{1/n} = L < 1.$$

Show $\exists r \in (0,1)$ such that $0 < x_n < r^n$ for all sufficiently large $n \in \mathbb{N}$.

Use this result to show that

$$\lim_{n \to \infty} x_n = 0.$$

- 27. Give an example of a convergent (resp. divergent) sequence (x_n) of positive real numbers with $x_n^{1/n} \to 1$.
- 28. Let $x_1 = 1$, $x_{n+1} = \sqrt{2 + x_n}$ for $n \in \mathbb{N}$. Show that (x_n) converges and find the limit.

29. Let
$$x_n = \sum_{k=1}^n \frac{1}{k^2}$$
 for all $n \in \mathbb{N}$.

Show that (x_n) is increasing and bounded above.

- 30. Show that $c^{1/n} \to 1$ if 0 < c < 1.
- 31. Let (x_n) be a bounded sequence. For each $n \in \mathbb{N}$, let $s_n = \sup\{x_k : k \ge n\}$. If $S = \inf\{s_n\}$, show that there is a subsequence of (x_n) that converges to S.
- 32. Suppose that $x_n \geq 0$ for all $n \in \mathbb{N}$ and that $((-1)^n x_n)$ converges. Show that (x_n) converges.
- 33. Show that if (x_n) is unbounded, then there exists a subsequence (x_{n_k}) such that $1/x_{n_k} \to 0$.
- 34. If $x_n = \frac{(-1)^n}{n}$, find the convergent subsequence in the proof of the Bolzano-Weierstrass theorem, with $I_1 = [-1, 1]$.
- 35. Show directly that a bounded increasing sequence is Cauchy.
- 36. If 0 < r < 1 and $|x_{n+1} x_n| < r^n$ for all $n \in \mathbb{N}$, show that (x_n) is Cauchy.
- 37. If $x_1 < x_2$ and $x_n = \frac{1}{2}(x_{n-1} + x_{n-2})$ for all $n \in \mathbb{N}$, show that (x_n) is convergent and compute its limit.
- 38. Let $f: \mathbb{R} \to \mathbb{R}$ and let $c \in \mathbb{R}$.

Show that $\lim_{x\to c} f(x) = L$ if and only if $\lim_{x\to 0} f(x+c) = L$.

- 39. Show that, if $\|\cdot\|_1, \|\cdot\|_2$ are norms on \mathbb{R}^d and $c_1, c_2 \in (0, \infty)$, then $c_1 \|\cdot\|_1 + c_2 \|\cdot\|_2$ is a norm.
- 40. Prove that every convergent sequence in \mathbb{R}^d is bounded.
- 41. Recall that an open ball with respect to a norm $\|\cdot\|$ is defined by

$$B_r(x) = \{ y \in \mathbb{R}^n : ||x - y|| < r \},$$

and a set $S \subset \mathbb{R}^n$ is open if for all $x \in S$, there exists r > 0 so that $B_r(x) \subset S$. Show that this definition of an open set does not depend on the norm used to define the open balls.

- 42. Give an open cover of (0,1) with no finite subcover. Also give a sequence in (0,1) without any subsequence that converges to a point in (0,1).
- 43. Say that a set $K \subset \mathbb{R}^d$ is disconnected if there exist sets A, B so that $K = A \cup B$, $A \cap B^c = \emptyset$ and $A^c \cap B = \emptyset$. Otherwise, it is connected. Show that [0,1] is connected while $(0,1) \cap (1,2)$ is disconnected.
- 44. Say that a set $K \subset \mathbb{R}^d$ is *path-connected* if for all $k_1, k_2 \in K$, there exists a continuous function $p \colon [0,1] \to K$ such that $p(0) = k_1$ and $p(1) = k_2$. Let K be a compact, path-connected set and let $f \colon K \to \mathbb{R}$ be continuous on K. Prove that there exist k_{\min} and k_{\max} such that $f(K) = [f(k_{\min}), f(k_{\max})]$.

- 45. Show $\lim_{x\to c} x^3 = c^3$ for any $c \in \mathbb{R}$.
- 46. Use either the $\varepsilon \delta$ definition of the limit or the Sequential Criterion for limits to establish the following limits:

(a)
$$\lim_{x \to 2} \frac{1}{1-x} = -1;$$

(b)
$$\lim_{x \to 1} \frac{x}{1+x} = \frac{1}{2};$$

(c)
$$\lim_{x\to 0} \frac{x^2}{|x|} = 0$$
, and

(d)
$$\lim_{x \to 1} \frac{x^2 - x + 1}{x + 1} = \frac{1}{2}$$

47. Show that the following limits do not exist:

(a)
$$\lim_{x \to 0} \frac{1}{x^2}$$
, with $x > 0$;

(b)
$$\lim_{x\to 0} \frac{1}{\sqrt{x}}$$
, with $x>0$;

(c)
$$\lim_{x\to 0} (x + \operatorname{sgn}(x))$$
, and

(d)
$$\lim_{x \to 0} \sin(1/x^2)$$
, with $x > 0$.

48. Let $c \in \mathbb{R}$ and let $f : \mathbb{R} \to \mathbb{R}$ be such that $\lim_{x \to c} (f(x))^2 = L$.

Show that if
$$L = 0$$
, then $\lim_{x \to c} f(x) = 0$.

Show that if $L \neq 0$, then f may not have a limit at c.

49. Let $f: \mathbb{R} \to \mathbb{R}$, let J be a closed interval in \mathbb{R} and let $c \in J$.

If f_2 is the restriction of f to J, show that if f has a limit at c then f_2 has a limit at c. Show the converse is not necessarily true.

50. Determine the following limits and state which theorems are used in each case.

(a)
$$\lim_{x\to 2} \sqrt{\frac{2x+1}{x+3}}$$
, $(x>0)$;

(b)
$$\lim_{x\to 2} \frac{x^2-4}{x-2}$$
, $(x>0)$;

(c)
$$\lim_{x\to 0} \sqrt{\frac{(x+1)^2-1}{x}}$$
, $(x>0)$, and

(d)
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$$
, $(x > 0)$.

51. Give examples of functions f and g such that f and g do not have limits at point c, but both f+g and fg have limits at c.

- 52. Determine whether the following limits exist in \mathbb{R} :
 - (a) $\lim_{x \to 0} \sin\left(\frac{1}{x^2}\right)$, with $x \neq 0$;
 - (b) $\lim_{x\to 0} x \sin\left(\frac{1}{x^2}\right)$, with $x \neq 0$;
 - (c) $\lim_{x\to 0} \operatorname{sgn} \sin\left(\frac{1}{x}\right)$, with $x\neq 0$, and
 - (d) $\lim_{x\to 0} \sqrt{x} \sin\left(\frac{1}{x^2}\right)$, with x>0.
- 53. Let $f: \mathbb{R} \to \mathbb{R}$ be s.t. f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Assume $\lim_{x \to 0} f(x) = L$ exists. Prove that L = 0 and that f has a limit at every point $c \in \mathbb{R}$.
- 54. Let K > 0 and let $f : \mathbb{R} \to \mathbb{R}$ satisfy the condition

$$|f(x) - f(y)| \le K|x - y|$$

for all $x, y \in \mathbb{R}$. Show that f is continuous on \mathbb{R} .

55. Let $f:(0,1)\to\mathbb{R}$ be bounded and s.t. $\lim_{x\to 0}f(x)$ does not exist.

Show that there are two convergent sequences $(x_n), (y_n) \subseteq (0,1)$ with $x_n, y_n \to 0$ and $f(x_n) \to \xi, f(y_n) \to \zeta$, but $\xi \neq \zeta$.

- 56. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} and let $P = \{x \in \mathbb{R} : f(x) > 0\}$. If $c \in P$, show that there exists a neighbourhood $V_{\delta}(c) \subseteq P$.
- 57. Prove that if an additive function is continuous at some point $c \in \mathbb{R}$, it is continuous on \mathbb{R} .
- 58. If f is a continuous additive function on \mathbb{R} , show that f(x) = cx for all $x \in \mathbb{R}$, where c = f(1).
- 59. Let I = [a, b] and $f : I \to \mathbb{R}$ be a continuous function on I s.t. $\forall x \in I$, $\exists y \in I$ s.t. $|f(y)| \leq \frac{1}{2} |f(x)|$. Show $\exists c \in I$ s.t. f(c) = 0.
- 60. Show that every polynomial with odd degree has at least one real root.
- 61. Let $f:[0,1] \to \mathbb{R}$ be continuous and s.t. f(0) = f(1). Show $\exists c \in [0,\frac{1}{2}]$ s.t. $f(c) = f(c + \frac{1}{2})$.
- 62. Show that $f(x) = \frac{1}{x^2}$ is uniformly continuous on $A = [1, \infty)$, but not on $B = (0, \infty)$.
- 63. If f(x) = x and $g(x) = \sin x$, show that f and g are both uniformly continuous on \mathbb{R} but that their product is not uniformly continuous on \mathbb{R} .
- 64. Let $A \subseteq \mathbb{R}$ and suppose that f has the following property:

 $\forall \varepsilon > 0, \ \exists g_{\varepsilon} : A \to \mathbb{R} \text{ s.t. } g_{\varepsilon} \text{ is uniformly continuous on } A \text{ with } |f(x) - g_{\varepsilon}(x)| < \varepsilon \text{ for all } x \in A.$

Show f is uniformly continuous on A.

- 65. Prove that a continuous p-periodic function on \mathbb{R} is bounded and uniformly continuous on \mathbb{R} .
- 66. Use the definition to find the derivative of the function defined by $g(x) = \frac{1}{x}, x \in \mathbb{R}, x \neq 0$.

- 67. Prove that the derivative of an even differentiable function is odd, and vice-versa.
- 68. Let a > b > 0 and $n \in \mathbb{N}$ with $n \ge 2$.

Show that $a^{1/n} - b^{1/n} < (a - b)^{1/n}$.

- 69. Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Show that if $\lim_{x\to a} f'(x) = A$, then f'(a) exists and equals A.
- 70. If x > 0, show $1 + \frac{1}{2}x \frac{1}{8}x^2 \le \sqrt{1+x} \le 1 + \frac{1}{2}x$.
- 71. Show directly that the function defined by $h(x) = x^2$ is Riemann-integrable over $[a, b], b > a \ge 0$. Furthermore show that $\int_a^b h = \frac{b^3 a^3}{3}$.
- 72. Prove that $\int_0^1 g = \frac{1}{2}$ if

$$g(x) = \begin{cases} 1 & x \in (\frac{1}{2}, 1] \\ 0 & x \in [0, \frac{1}{2}] \end{cases}.$$

Is that still true if $g(\frac{1}{2}) = 7$ instead?

73. Let $f:[a,b]\to\mathbb{R}$ be bounded and s.t. $f(x)\geq 0$ for all $x\in[a,b]$.

Show $L(f) \geq 0$.

74. Let $f:[a,b]\to\mathbb{R}$ be increasing on [a,b]. If P_n partitions [a,b] into n equal parts, show that

$$0 \le U(P_n; f) - \int_a^b f \le \frac{f(b) - f(a)}{n} (b - a).$$

75. Let $f:[a,b]\to\mathbb{R}$ be an integrable function and let $\varepsilon>0$.

If P_{ε} is the partition whose existence is asserted by the Riemann Criterion, show that $U(P;f) - L(P;f) < \varepsilon$ for all refinement P of P_{ε} .

76. Let a > 0 and J = [-a, a]. Let $f : J \to \mathbb{R}$ be bounded and let \mathcal{P}^* be the set of all partitions P of J that contain 0 and are symmetric.

Show $L(f) = \sup\{L(P; f) : P \in \mathcal{P}^*\}.$

77. Let J be as in the previous question and let f be integrable on J. If f is even (i.e. f(-x) = f(x) for all x), show that

$$\int_{-a}^{a} f = 2 \int_{0}^{a} f.$$

If f is odd (i.e. f(-x) = -f(x) for all x), show that

$$\int_{-a}^{a} f = 0.$$

78. Give an example of a function $f:[0,1] \to \mathbb{R}$ that is not integrable on [0,1], but s.t. |f| is integrable on [0,1].

- 79. Let $f:[a,b]\to\mathbb{R}$ be integrable on [a,b]. Show |f| is integrable on [a,b] directly (without using a result seen in class).
- 80. If f is integrable on [a, b] and

$$0 \le m \le f(x) \le M$$

for all $x \in [a, b]$, show that

$$m \leq \left[\frac{1}{b-a} \int_a^b f^2\right]^{1/2} \leq M.$$

81. If f is continuous on [a, b] and $f(x) \ge 0$ for all $x \in [a, b]$, show there exists $c \in [a, b]$ s.t.

$$f(c) = \left[\frac{1}{b-a} \int_a^b f^2\right]^{1/2}.$$

- 82. If f is continuous on [a,b] and f(x) > 0 for all $x \in [a,b]$, show that $\frac{1}{f}$ is integrable on [a,b].
- 83. Let f be continuous on [a,b]. Define $H:[a,b]\to\mathbb{R}$ by

$$H(x) = \int_{x}^{b} f$$
 for all $x \in [a, b]$.

Find H'(x) for all $x \in [a, b]$.

84. Suppose $f:[0,\infty)\to\mathbb{R}$ is continuous and $f(x)\neq 0$ for all x>0. If

$$(f(x))^2 = 2 \int_0^x f$$
 for all $x > 0$,

show that f(x) = x for all $x \ge 0$.

85. Let $f, g : [a, b] \to \mathbb{R}$ be continuous and s.t.

$$\int_{a}^{b} f = \int_{a}^{b} g.$$

Show that there exists $c \in [a, b]$ s.t. f(c) = g(c).

86. Let $f:[0,3]\to\mathbb{R}$ be defined by

$$f(x) = \begin{cases} x & x \in [0, 1) \\ 1 & x \in [1, 2) \\ x & x \in [2, 3] \end{cases}$$

Find $F:[0,3]\to\mathbb{R}$, where

$$F(x) = \int_0^x f.$$

8

Where is F differentiable? What is F' there?

- 87. If $f:[0,1]\to\mathbb{R}$ is continuous and $\int_0^x f=\int_x^1 f$ for all $x\in[0,1]$, show that $f\equiv 0$.
- 88. Show that $\lim_{n\to\infty} \frac{nx}{1+n^2x^2} = 0$ for all $x \in \mathbb{R}$.

- 89. Show that if $f_n(x) = x + \frac{1}{n}$ and f(x) = x for all $x \in \mathbb{R}$, $n \in \mathbb{N}$, then $f_n \rightrightarrows f$ on \mathbb{R} but $f_n^2 \not \rightrightarrows g$ on \mathbb{R} for any function g.
- 90. Let $f_n(x) = \frac{1}{(1+x)^n}$ for $x \in [0,1]$. Denote by f the pointwise limit of f_n on [0,1]. Does $f_n \Rightarrow f$ on [0,1]?
- 91. Let (f_n) be the sequence of functions defined by $f_n(x) = \frac{x^n}{n}$, for $x \in [0,1]$ and $n \in \mathbb{N}$.

Show that (f_n) converges uniformly to a differentiable function $f:[0,1]\to\mathbb{R}$, and that the sequence (f'_n) converges pointwise to a function $g:[0,1]\to\mathbb{R}$, but that $g(1)\neq f'(1)$.

- 92. Show that $\lim_{n\to\infty} \int_1^2 e^{-nx^2} dx = 0$.
- 93. Find the values of p for which the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges.
- 94. Find the values of x for which the following series converge:
 - (a) $\sum_{n=1}^{\infty} (nx)^n;$
 - (b) $\sum_{n=1}^{\infty} x^n;$
 - (c) $\sum_{n=1}^{\infty} \frac{x^n}{n};$
 - (d) $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$, and
 - (e) $\sum_{n=1}^{\infty} \frac{x^n}{n!}.$
- 95.
- 96. Series question placeholder
- 97. Series question placeholder
- 98. Series question placeholder
- 99. Series question placeholder
- 100. Series question placeholder