MAT 2125 – Homework 1 – Solutions

(due at midnight on January 25, in Brightspace)

1 Practicing $\mathbb{E}T_{EX}$

- 1. We could re-write the English sentence "For every real number, there exists a bigger real number" as $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : y > x$. Do a similar translation of the English sentence "For every integer, there exists a smaller integer."
- 2. Compute $\int_0^{10} \sin(x) \cos(x) dx$, showing at least two intermediate steps. Using the "align" environment or otherwise, vertically align the "=" sign between steps.

Solution: For both of the following, take a look at the provided .tex source file if you ran into difficulties.

1. We write:

$$\forall x \in \mathbb{N} \, \exists y \in \mathbb{N} : y < x.$$

2. We compute:

$$\int_{0}^{10} \sin(x) \cos(x) dx = \frac{1}{2} \int_{0}^{10} \sin(2x) dx$$
$$= -\frac{1}{4} \cos(2x) \Big|_{0}^{10}$$
$$\approx -\frac{1}{4} (-0.839 - 1)$$
$$\approx 0.460.$$

2 Cardinality

Show that there exists a bijection between \mathbb{Z} and \mathbb{Q} . **Hint:** If you can find a surjection in both directions, then you have shown that a bijection exists. This might be easier.

Proof: Write $\mathbb{Q} = \{\frac{m}{n} : m, n \in \mathbb{Z}, n > 0, \text{GCD}(m, n) = 1\}$, where GCD(m, n) is the greatest common divisor of m, n. Define the map $f : \mathbb{Q} \to \mathbb{Z}$ by $f(\frac{m}{n}) = m$. To see that this is surjective, note that for all $m \in \mathbb{Z}$, $\frac{m}{1} \in \mathbb{Q}$ and $f(\frac{m}{1}) = m$.

Next, we define the map $g : \mathbb{Z} \mapsto \mathbb{Q}$ according to three cases:

- 1. For numbers of the form $2^a 3^b$ with $a, b \in \{0, 1, 2, \ldots\}$, set $g(2^a 3^b) = \frac{a}{b}$.
- 2. For numbers of the form $-2^{a}3^{b}$ with $a, b \in \{0, 1, 2, ...\}$, set $g(-2^{a}3^{b}) = -\frac{a}{b}$.
- 3. For all other numbers n, set g(n) = 0.

We need to check that g is well-defined, and then that it is surjective. To see that it is well-defined, we note that integers have unique prime decompositions, and 2, 3 are prime. This means that every number can have at most one decomposition of the form $\pm 2^a 3^b$, so every number is in at most one case. It is also clear that every number n must be in at least one case. Thus, every number belongs to exactly one case, so it is well-defined.

To check that g is surjective, we consider some $\frac{m}{n} \in \mathbb{Q}$ and again consider three cases:

1. $\frac{m}{n} > 0$: $g(2^m 3^n) = \frac{m}{n}$. 2. $\frac{m}{n} < 0$: $g(-2^m 3^n) = \frac{m}{n}$. 3. $\frac{m}{n} = 0$: $g(5) = \frac{m}{n}$.

3 Calculations with Axioms

1. Using only the field axioms, show that the multiplicative identity is unique. That is, show that if a, b are both multiplicative identities, then in fact a = b.

Proof: Let a, b be two multiplicative identities in a field. Since a is a multiplicative identity,

$$ab = b$$

Since b is a multiplicative identity,

ab = a.

Combining these two equations,

b = ab = a.

This completes the proof.

2. Using only the field axioms, show that $(2x-1)(2x+1) = 4x^2 - 1$. Note: The field axioms don't define 2 or 4 are. Please take these to be shorthands for 2 = 1 + 1 and 4 = 1 + 1 + 1 + 1.

Proof: Each equality is labeled with the field axiom used, as in the course notes:

$$(2x-1)(2x+1) \stackrel{\text{AM1}}{=} 2x(2x+1) + (-1)(2x+1)$$

$$\stackrel{\text{AM1}}{=} (2x)(2x) + (1)2x + (-1)(2x) + (-1)(1)$$

$$\stackrel{\text{AM1}}{=} (2x)(2x) + (1 + (-1))2x + (-1)(1)$$

$$\stackrel{\text{A4}}{=} (2x)(2x) + (-1)(1)$$

$$\stackrel{\text{A3}}{=} (2x)(2x) - 1$$

$$\stackrel{\text{M1}}{=} ((2)(2))(x^2) - 1$$

$$= ((1+1)(1+1))(x^2) - 1$$

$$\stackrel{\text{AM1}}{=} (1(1+1) + 1(1+1))x^2 - 1$$

$$\stackrel{\text{M3}}{=} 4x^2 - 1.$$

This completes the proof.

3. Using only the order axioms, usual arithmetic manipulations, and inequalities between concrete numbers, prove the following: If $x \in \mathbb{R}$ satisfies $x < \epsilon$ for all $\epsilon > 0$, then $x \leq 0$. Note: The order axioms in the notes don't give concrete inequalities such as e.g. 1 > 0, but we will show some of these in videos, class or DGD. For the purposes of this question you can take obvious inequalities between *specific integers* as given. That is, you could take 3 > 1 as given, but should justify x < 2x.

Proof: Assume first that x > 0. By O4 (and the fact that $0 < \frac{1}{2} < 1$), this means

$$\left(\frac{1}{2}\right)x > \left(\frac{1}{2}\right) \cdot 0 = 0$$

as well. By O3, since $\frac{x}{2} > 0$,

$$\frac{x}{2} < \frac{x}{2} + \frac{x}{2} = x.$$

Putting together these two sequences of inequalities, we have

$$0 < \frac{x}{2} < x$$

But then we have found some number $\epsilon = \frac{x}{2} > 0$ so that $x > \epsilon$; this contradicts the original assumption. Thus, we conclude that our original assumption x > 0 is false; by O1, we conclude $x \le 0$. 4. Show that there exists some $x \in \mathbb{R}$ satisfying $x^2 + x = 5$. **Hint:** Find an interval [a, b] for which $a^2 + a < 5$ and $b^2 + b > 5$, then try to adjust the proof that $\sqrt{2}$ exists.

Proof: Let's follow the hint. Consider the interval I = [0, 10], define $S = \{x \in I : x^2 + x < 5\}$, and define $A = \sup S$. Note that for $x \in [0, 1]$, $x^2 + x - 5 \le 1^2 + 1 - 5 = -3 < 0$, so $A \ge 1$. Similarly, for $x \in [9, 10]$, $x^2 + x - 5 \ge 9^2 + 9 - 5 > 0$, so $A \le 9$.

Claim: $A^2 + A = 5$. This is shown in two parts: first we show that $A^2 + A \leq 5$, then we show that $A^2 + A \geq 5$.

We show that $A^2 + A \leq 5$ by contradiction. Let's assume $A^2 + A > 5$. Then, by an earlier part of this homework, there exists some $0 < \epsilon < 1$ so that $A^2 + A > 5 + \epsilon$. But then for all $0 < \delta < \frac{\epsilon}{100}$, we have

$$(A - \delta)^2 + (A - \delta) = A^2 - 2A\delta + \delta^2 + A - \delta$$

$$\geq A^2 - (2)(10)(\delta) + A - \delta$$

$$\geq A^2 + A - 21\delta$$

$$> A^2 + A - \epsilon$$

$$> 5.$$

Furthermore, since $A \ge 1$ and $\delta \le 0.01$, we know that $A - \delta \in I$. Thus, in this case $A - \frac{\epsilon}{100} < A$ is also an upper bound on S, contradicting the fact that A is defined to be the least upper bound on S. We conclude that $A^2 + A \le 5$.

Next, we show that $A^2 + A \ge 5$ by contradiction. Let's assume $A^2 + A < 5$. Then, by an earlier part of this homework, there exists some $0 < \epsilon < 1$ so that $A^2 + A < 5 - \epsilon$. But then for all $0 < \delta < \frac{\epsilon}{100}$, we have

$$(A+\delta)^2 + (A+\delta) = A^2 + A + (2A+1+\delta)\delta$$

$$\leq A^2 + A + 22\delta$$

$$< A^2 + A - \epsilon$$

$$> 5$$

Furthermore, since $A \leq 9$ and $\delta \leq 0.01$, we know that $A + \delta \in I$. Thus, in this case $A + \frac{\epsilon}{100} \in S$ and $A + \frac{\epsilon}{100} > A$, contradicting the fact that A is defined to be an upper bound on S. We conclude that $A^2 + A \leq 5$.

Having shown $A^2 + A \le 5$ and $A^2 + A \ge 5$, we conclude that $A^2 + A = 5$.

5. Let $A, B \subset \mathbb{R}$ and define $C = \{x - y : x \in A, y \in B\}$. Prove that $\inf(C) = \inf(A) - \sup(B)$.

Proof: We prove the statement in two parts: first we show that $\inf(C) \leq \inf(A) - \sup(B)$, then we show that $\inf(C) \geq \inf(A) - \sup(B)$.

To prove the first part, fix $\epsilon > 0$. Then there exists some $a \in A$ and $b \in B$ so that $a \leq \inf(A) + \frac{\epsilon}{2}$, $b \geq \sup(B) - \frac{\epsilon}{2}$. Thus, $a - b \in C$ and $a - b \leq \inf(A) - \sup(B) + \epsilon$. Thus, $\inf(C) \leq \inf(A) - \sup(B) + \epsilon$. Applying the previous question in the homework, we conclude that $\inf(C) \leq \inf(A) - \sup(B)$.

To prove the second part, consider $c \in C$. Then there exists $a \in A, b \in B$ so that c = a - b. By the definition of the infimum and supremum, $a \ge \inf(A)$ and $b \le \sup(B)$, so $c = a - b \ge \inf(A) - \sup(B)$. We conclude that $\inf(C) \ge \inf(A) - \sup(B)$.

Since we have shown $\inf(C) \leq \inf(A) - \sup(B)$ and $\inf(C) \geq \inf(A) - \sup(B)$, we conclude by the first order axiom $\inf(C) = \inf(A) - \sup(B)$.

6. Consider a set S with $0 \leq \sup(S) = A < \infty$ and $A \notin S$. Show that for all $\epsilon > 0$, $S \cap [A - \epsilon, A]$ is nonempty. Using this fact or otherwise, conclude that in fact $S \cap [A - \epsilon, A]$ is infinite.

Proof: We prove the first claim by contradiction. Assume there exists some $\epsilon > 0$ so that $S \cap [A - \epsilon, A]$ is empty. Since A is an upper bound for S, we also know that $S \cap (A, \infty)$ is empty. Thus, $S \cap [A - \epsilon, \infty)$ is empty. But this means that $A - \epsilon < A$ is an upper bound for s, contradicting the fact that A is the least upper bound for S. We conclude that in fact $S \cap [A - \epsilon, A]$ is not empty.

We also prove the second part by contradiction. Assume there exists some $\epsilon > 0$ so that $S \cap [A - \epsilon, A]$ is empty. Then we can enumerate its elements, $\{b_1, \ldots, b_n\}$. Let $B = \max(b_1, \ldots, b_n)$. Since $A \notin S$, we know that $b_1, \ldots, b_n < A$. Since B is a maximum of finitely many elements, this means that B < A as well. But then $A > A - \frac{A-B}{2} > B$, so $[A - \frac{A-B}{2}, A] \cap S$ is empty. But this is impossible, by the first part of the question. This completes the proof.

4 Induction

Somebody walks up to you with a proof by induction of the statement "For any integer $N \in \mathbb{N}$, all collections of N sheep are the same colour," as follows:

- Notation: Let x_1, x_2, \ldots , be the colours of all sheep in the world, put in some order.
- **Base Case:** Obviously the first sheep is a single colour, x_1 .
- Inductive Case: Assume that the statement is true up to some integer n. By the inductive assumption, the collection of the first n sheep $\{x_1, \ldots, x_n\}$ are one colour (label this "colour 1"), and the collection of the last n sheep $\{x_2, \ldots, x_{n+1}\}$ are also one colour (label this "colour 2" note that we haven't yet shown it is the same colour as the first collection). Since $\{x_2, \ldots, x_n\}$ are in *both* sets, we must have that "colour 1" and "colour 2" are the same, and so $\{x_1, \ldots, x_{n+1}\}$ are all one colour.

Explain why this purported proof fails by identifying and explaining a (significant) false statement. **Note:** we are asking for an *important, actually-false* statement, not *merely* something like a typo or insufficiently-formal justification for an assertion.

Solution: The critical error is in the following part of the argument, in the case n = 1:

"the collection of the first *n* sheep $\{x_1, \ldots, x_n\}$ are one colour, and the collection of the last *n* sheep $\{x_2, \ldots, x_{n+1}\}$ are also one (possibly different) colour. Since $\{x_2, \ldots, x_n\}$ are in *both* sets, both sets must in fact be the same colour, and so $\{x_1, \ldots, x_{n+1}\}$ are all one colour."

Consider the case n = 1. Then the collection $\{x_2, \ldots, x_n\}$ is actually *empty*, and so we can't conclude that the two sets $\{x_1\}, \{x_2\}$ share any sheep, and so we can't conclude that they are the same colour.