MAT 2125 Elementary Real Analysis

Exercises – Solutions – Q2-Q4

Winter 2021

P. Boily, A. Smith (uOttawa)

2. Let c > 0 be a real number.

(a) If c > 1, show that $c^n \ge c$ for all $n \in \mathbb{N}$ and that $c^n > 1$ if n > 1. (b) If 0 < c < 1, show that $c^n \le c$ for all $n \in \mathbb{N}$ and that $c^n < 1$ if n > 1.

- **Proof.** The statement is clearly not true if n = 0: as a result, we must interpret \mathbb{N} to stand for the set $\mathbb{N} = \{1, 2, 3, \ldots\}$, without the 0. Generally, we use whatever "version" of \mathbb{N} is appropriate.
- (a) If c > 1, $\exists x \in \mathbb{R}$ such that x > 0 and c = 1 + x. Let $n \in \mathbb{N}$. First note that $n 1 \ge 0$ and so (n 1)x > 0.

Then, by Bernoulli's Inequality,

$$c^{n} = (1+x)^{n} \ge 1 + nx = 1 + x + (n-1)x \ge 1 + x = c.$$

Furthermore, n-1 > 0 and (n-1)x > 0 if n > 1.

In that case, the last inequality above is strict and so $c^n > c > 1$, which implies $c^n > 1$ by transitivity of >.

P. Boily, A. Smith (uOttawa)

(b) If 0 < c < 1, there exists b > 1 such that $c = \frac{1}{b}$. Indeed, $\frac{1}{c}$ is such that $c \cdot \frac{1}{c} = 1$. As c > 0, then $\frac{1}{c} > 0$ since the product $c \cdot \frac{1}{c} = 1$ is positive.

But
$$c < 1$$
, so that $1 = c \cdot \frac{1}{c} < \frac{1}{c}$.

In particular, if we let $b = \frac{1}{c}$, then b > 1 and so we can apply part (a) of this question to get $b^n \ge b$ for all $n \in \mathbb{N}$ and $b^n > 1$ if n > 1.

Let $n \in \mathbb{N}$. Then $\frac{1}{c^n} = b^n \ge b = \frac{1}{c}$ so that $c \ge c^n$ and $\frac{1}{c^n} = b^n > 1$ so that $1 > c^n$ if n > 1. 3. Let c > 0 be a real number.

(a) If c > 1 and $m, n \in \mathbb{N}$, show that $c^m > c^n$ if and only if m > n. (b) If 0 < c < 1 and $m, n \in \mathbb{N}$, show that $c^m > c^n$ if and only if m < n.

Proof.

(a) It is sufficient to show that if $m \ge n$, then $c^m \ge c^n$. (Why is this the case? Don't let this slip by without understanding.)

If m = n, the result is clear. So we consider m > n.

In this case, $\exists k \geq 1$ such that m = n + k. An easy induction exercise shows that $c^{n+k} = c^n c^k$ for for all integers n and k (from this point on, we will assume and apply freely all the usual techniques of algebra).

In particular, using the previous problem,

$$c^m = c^{n+k} = c^n c^k \ge c^n \cdot c > c^n \cdot 1 = c^n$$

and so $c^m > c^n$.

P. Boily, A. Smith (uOttawa)

(b) This can be shown from part (a) using the technique from the previous question.

4. Let $S_2 = \{x \in \mathbb{R} \mid x > 0\}$. Does S_2 have lower bounds? Does S_2 have upper bounds? Does $\inf S_2$ exist? Does $\sup S_2$ exist? Prove your statements.

Proof.

Does S_2 have lower bounds? Yes.

By definition, any negative real number is a lower bound (so is 0).

Does S_2 have upper bounds? No.

Assume that it does. By the completeness of \mathbb{R} , $\alpha = \sup \mathbb{R}$ exists. In particular, $\alpha \ge n$ for all $n \in \mathbb{N}$, which contradicts the Archimedean Property of \mathbb{R} . Hence S_2 has no upper bound.

Does inf S_2 exist? Yes.

Consider the set $-S_2 = \{x \in \mathbb{R} \mid -x \in S_2\} = \{x \in \mathbb{R} \mid x < 0\}$. By construction, 0 is an upper bound of $-S_2$. Note furthermore that neither S_2 nor $-S_2$ are empty.

By completeness of \mathbb{R} , $\sup(-S_2)$ exists. Right?

One definition of completeness is that any non-empty bounded subset of \mathbb{R} has a supremum. But $-S_2$ is only bounded above, not below. How can we conclude that $\sup(-S_2)$ exists?

That definition is one particular version of the Completeness Property of \mathbb{R} . An **equivalent** way of stating it is: The ordered set F is **complete** if for any $\emptyset \neq S \subset F$, S has a supremum in F whenever S is bounded above and an infimum in F whenever S is bounded below.

But $\sup(-S_2) = -\inf S_2$. Indeed, let $u = \sup(-S_2)$. Then $u \ge -x$ for all $-x \in -S_2$ and if v is another upper bound of $-S_2$ then $u \le v$.

Note that if v is an upper bound of $-S_2$, then $v \ge -x$ for all $-x \in -S_2$, i.e. $-v \le x$ for all $x \in S_2$: as a result, -v is a lower bound of S_2 . Similarly, if -v is a lower bound of S_2 , v is automatically an upper bound of $-S_2$. Then any lower bound of S_2 is of the form -v, where v is an upper bound of $-S_2$.

Then, $-u \leq x$ for all $x \in S_2$ and $-v \leq -u$ whenever -v is a lower bound of S_2 . Hence $-u = \inf S_2$ and so $u = -\inf S_2$.

As $\sup(-S_2) = -\inf S_2$ exists, so does $\inf S_2$.

Does $\sup S_2$ **exist?** No. See second item.