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2. Let c > 0 be a real number.

(a) If c > 1, show that cn ≥ c for all n ∈ N and that cn > 1 if n > 1.
(b) If 0 < c < 1, show that cn ≤ c for all n ∈ N and that cn < 1 if n > 1.
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Proof. The statement is clearly not true if n = 0: as a result, we
must interpret N to stand for the set N = {1, 2, 3, . . .}, without the 0.
Generally, we use whatever “version” of N is appropriate.

(a) If c > 1, ∃x ∈ R such that x > 0 and c = 1 + x. Let n ∈ N. First
note that n− 1 ≥ 0 and so (n− 1)x > 0.

Then, by Bernoulli’s Inequality,

cn = (1 + x)n ≥ 1 + nx = 1 + x+ (n− 1)x ≥ 1 + x = c.

Furthermore, n− 1 > 0 and (n− 1)x > 0 if n > 1.

In that case, the last inequality above is strict and so cn > c > 1,
which implies cn > 1 by transitivity of >.
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(b) If 0 < c < 1, there exists b > 1 such that c = 1
b. Indeed, 1

c is such that
c · 1c = 1. As c > 0, then 1

c > 0 since the product c · 1c = 1 is positive.

But c < 1, so that 1 = c · 1c <
1
c.

In particular, if we let b = 1
c, then b > 1 and so we can apply

part (a) of this question to get bn ≥ b for all n ∈ N and bn > 1 if
n > 1.

Let n ∈ N. Then
1

cn
= bn ≥ b = 1

c
so that c ≥ cn and

1

cn
= bn > 1

so that 1 > cn if n > 1. �
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3. Let c > 0 be a real number.

(a) If c > 1 and m,n ∈ N, show that cm > cn if and only if m > n.
(b) If 0 < c < 1 and m,n ∈ N, show that cm > cn if and only if m < n.
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Proof.

(a) It is sufficient to show that if m ≥ n, then cm ≥ cn. (Why is this the
case? Don’t let this slip by without understanding.)

If m = n, the result is clear. So we consider m > n.

In this case, ∃k ≥ 1 such that m = n + k. An easy induction exercise
shows that cn+k = cnck for for all integers n and k (from this point on,
we will assume and apply freely all the usual techniques of algebra).

In particular, using the previous problem,

cm = cn+k = cnck ≥ cn · c > cn · 1 = cn

and so cm > cn.
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(b) This can be shown from part (a) using the technique from the previous
question. �
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4. Let S2 = {x ∈ R | x > 0}. Does S2 have lower bounds? Does S2

have upper bounds? Does inf S2 exist? Does supS2 exist? Prove your
statements.
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Proof.

Does S2 have lower bounds? Yes.
By definition, any negative real number is a lower bound (so is 0).

Does S2 have upper bounds? No.
Assume that it does. By the completeness of R, α = supR exists.
In particular, α ≥ n for all n ∈ N, which contradicts the Archimedean
Property of R. Hence S2 has no upper bound.

Does inf S2 exist? Yes.
Consider the set −S2 = {x ∈ R | −x ∈ S2} = {x ∈ R | x < 0}. By
construction, 0 is an upper bound of −S2. Note furthermore that neither
S2 nor −S2 are empty.

By completeness of R, sup(−S2) exists. Right?
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One definition of completeness is that any non-empty bounded subset of
R has a supremum. But −S2 is only bounded above, not below. How
can we conclude that sup(−S2) exists?

That definition is one particular version of the Completeness Property
of R. An equivalent way of stating it is: The ordered set F is
complete if for any ∅ 6= S ⊂ F , S has a supremum in F whenever
S is bounded above and an infimum in F whenever S is bounded below.

But sup(−S2) = − inf S2. Indeed, let u = sup(−S2). Then u ≥ −x for
all −x ∈ −S2 and if v is another upper bound of −S2 then u ≤ v.

Note that if v is an upper bound of −S2, then v ≥ −x for all −x ∈ −S2,
i.e. −v ≤ x for all x ∈ S2: as a result, −v is a lower bound of S2.
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Similarly, if −v is a lower bound of S2, v is automatically an upper bound
of −S2. Then any lower bound of S2 is of the form −v, where v is an
upper bound of −S2.

Then, −u ≤ x for all x ∈ S2 and −v ≤ −u whenever −v is a lower
bound of S2. Hence −u = inf S2 and so u = − inf S2.

As sup(−S2) = − inf S2 exists, so does inf S2.

Does supS2 exist? No.
See second item. �
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