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5. Let Sy = {1~ 2% |n e N}. Find inf Sy and sup S
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Solution. The first few elements of S, are
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This gives us the idea that S4 is bounded above by 2 and below by %
To show that this is indeed the case, note that (—1)™ only takes on the
values —1 and 1, whatever the integer n.

Technically, this also has to be shown. One proceeds by induction.

The base case is clear: when n =1, (—=1)! = -1 € {1, —-1}.

Now, on to the induction step: suppose (—1)¥ € {1, —1}.
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Then
(DM = (=D)*(-1)
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Hence (—1)**1 e {1,—1}.
By induction, (—1)" € {—1,1} for all n € N.

Thus —1 < (=1)" < 1 for all n > 1. (In practice, we need only
show it once and refer to the result if we need it in the future.)

For any n > 2, we then have —n < -1 < (—1)" and § > 1 > (—1)",
that is

—n < (—1)" < g
A quick check shows the inequalities also hold for n = 1.
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Then, forn > 1,

—1<(_1) -
- n 2
(—1)" 1

1> — >

- n - 2

2>1—(_1) >1.

- n - 2

Hence 2 > s > % for all s € Sy, i.e. 2 is an upper bound and % is a lower
bound of Sy.
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By completeness of R, S; possesses a supremum and an infimum in R.
If u = supSy < 2, there is a contradiction as u # s for all s € Sy (it
“misses” the element 2 in Sy).

Thus, sup Sy > 2. But 2 is already an upper bound so sup Sy < 2.
Consequently sup Sy = 2. Similarly, inf S, = % |
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6. Let S C R be non-empty. Show that if u = sup S exists, then for every

number n € N the number u —% Is not an upper bound of S, but the

number u + % IS.
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Proof. Let n > 1. Then % >0 and u < u + % Since s < u for all
sesS, s<u —|—% for all s € S by transitivity of <. Consequently, u —I—%
Is an upper bound of S.

Furthermore, wu —% < u. Since wu is the least upper bound, u —%
cannot be an upper bound (as it would then be lesser upper bound than
u, a contradiction). This completes the proof. Or does it?

We haven't used the hypothesis S # &. Where does it fit?

The definition of an upper bound implies that every real number is
an upper bound of the empty set. Indeed, if v € R, then v > s for all
s € @ automatically as there is no s € &.

The proof rests on the fact that u = sup S. But sup & does not exist as
we just discussed. OK. Now it's the end for real. |
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7. If S = {%—% | m,nEN}, find inf S and sup S.
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Solution. The set S = {— — = ] n,m € N} is bounded above by 1 and
below by —1 since

1 1 1 1 1 1

—<1<14— and —<1<1l4+— = -1 <———<L1, VmneN
n m m n n o m

Note that .S is not empty as 0 = %

By completeness of R, S thus has a supremum and an infimum.

By definition, s* = sup S < 1. Suppose that s* < 1. Then de > 0 such
that s* =1 — . Furthermore,

1 1
—— —<1—¢, Vm,neN.
n o m
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In particular, if n =1, then

1
1——<1—¢, VmeN.
m

. 1 . 1 .
Equivalently, e < -~ for all integers m so that = is an upper bound for N.

This contradicts the Archimedean Property of R. Hence s* £ 1 and so
s* =1.

To prove that inf S = —1, proceed along the same lines. |
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8. Let X be a non-empty set and let f : X — R have bounded range in R.
If a € R, show that

sup{a + f(z) :x € X} =a+sup{f(z):x € X}
inf{la+ f(z) :x € X} =a+inf{f(z) :x € X}.
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Proof. Let f(X) = {f(z) | x € X}. By hypothesis, f(X) is bounded
and not empty and so has a supremum in R, say u*.

We need to show sup{a + f(z);x € X} = a + u*.

To do so, first note that a+u* is an upper bound of sup{a+f(z) | z € X}
since u* > f(x) for all x € X; as a result a +u* > a + f(x) for all
xc X.

(By completeness of R, this means that sup{a + f(z) | x € X} does
indeed have a supremum.)

Next, we need to show that a + u* is the smallest upper bound of
{a+ f(x) |z e X}

Suppose v is another upper bound of {a + f(x) | + € X}. Then
v > a+ f(x) for all x € X; in particular, v — a is an upper bound of

f(X).
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By hypothesis, v — a > u*, hence v > a + u*. Consequently, a + u* is
the least upper bound of {a + f(x) | z € X}, i.e.

sup{a + f(z) |z € X} =a+u".

The proof for the other equality proceeds in a similar manner. |
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