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5. Let S4 =
{
1− (−1)n

n | n ∈ N
}

. Find inf S4 and supS4.
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Solution. The first few elements of S4 are

2,
1

2
,
4

3
,
3

4
,
6

5
,
5

6
, · · · .

This gives us the idea that S4 is bounded above by 2 and below by 1
2.

To show that this is indeed the case, note that (−1)n only takes on the
values −1 and 1, whatever the integer n.

Technically, this also has to be shown. One proceeds by induction.

The base case is clear: when n = 1, (−1)1 = −1 ∈ {1,−1}.

Now, on to the induction step: suppose (−1)k ∈ {1,−1}.
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Then

(−1)k+1 = (−1)k(−1) =

{
1(−1) = −1
(−1)(−1) = 1

.

Hence (−1)k+1 ∈ {1,−1}.

By induction, (−1)n ∈ {−1, 1} for all n ∈ N.

Thus −1 ≤ (−1)n ≤ 1 for all n ≥ 1. (In practice, we need only
show it once and refer to the result if we need it in the future.)

For any n ≥ 2, we then have −n ≤ −1 ≤ (−1)n and n
2 ≥ 1 ≥ (−1)n,

that is
−n ≤ (−1)n ≤ n

2
.

A quick check shows the inequalities also hold for n = 1.
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Then, for n ≥ 1,

−n ≤ (−1)n ≤ n

2

∴ −1 ≤ (−1)n

n
≤ 1

2

∴ 1 ≥ −(−1)
n

n
≥ −1

2

∴ 2 ≥ 1− (−1)n

n
≥ 1

2
.

Hence 2 ≥ s ≥ 1
2 for all s ∈ S4, i.e. 2 is an upper bound and 1

2 is a lower
bound of S4.
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By completeness of R, S4 possesses a supremum and an infimum in R.
If u = supS4 < 2, there is a contradiction as u 6≥ s for all s ∈ S4 (it
“misses” the element 2 in S4).

Thus, supS4 ≥ 2. But 2 is already an upper bound so supS4 ≤ 2.
Consequently supS4 = 2. Similarly, inf S4 =

1
2. �
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6. Let S ⊆ R be non-empty. Show that if u = supS exists, then for every
number n ∈ N the number u − 1

n is not an upper bound of S, but the
number u+ 1

n is.

P. Boily (uOttawa) 6



MAT 2125 – Elementary Real Analysis Exercises – Solutions – Q5-Q8

Proof. Let n ≥ 1. Then 1
n > 0 and u < u + 1

n. Since s ≤ u for all
s ∈ S, s < u+ 1

n for all s ∈ S by transitivity of <. Consequently, u+ 1
n

is an upper bound of S.

Furthermore, u − 1
n < u. Since u is the least upper bound, u − 1

n
cannot be an upper bound (as it would then be lesser upper bound than
u, a contradiction). This completes the proof. Or does it?

We haven’t used the hypothesis S 6= ∅. Where does it fit?

The definition of an upper bound implies that every real number is
an upper bound of the empty set. Indeed, if v ∈ R, then v ≥ s for all
s ∈ ∅ automatically as there is no s ∈ ∅.

The proof rests on the fact that u = supS. But sup∅ does not exist as
we just discussed. OK. Now it’s the end for real. �
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7. If S =
{
1
n −

1
m | m,n ∈ N

}
, find inf S and supS.

P. Boily (uOttawa) 8



MAT 2125 – Elementary Real Analysis Exercises – Solutions – Q5-Q8

Solution. The set S =
{
1
n −

1
m | n,m ∈ N

}
is bounded above by 1 and

below by −1 since

1

n
≤ 1 ≤ 1+

1

m
and

1

m
≤ 1 ≤ 1+

1

n
=⇒ −1 ≤ 1

n
− 1

m
≤ 1, ∀m,n ∈ N.

Note that S is not empty as 0 = 1
2 −

1
2 is in S, say.

By completeness of R, S thus has a supremum and an infimum.

By definition, s∗ = supS ≤ 1. Suppose that s∗ < 1. Then ∃ε > 0 such
that s∗ = 1− ε. Furthermore,

1

n
− 1

m
≤ 1− ε, ∀m,n ∈ N.
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In particular, if n = 1, then

1− 1

m
≤ 1− ε, ∀m ∈ N.

Equivalently, ε ≤ 1
m for all integers m so that 1

ε is an upper bound for N.

This contradicts the Archimedean Property of R. Hence s∗ ≮ 1 and so
s∗ = 1.

To prove that inf S = −1, proceed along the same lines. �
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8. Let X be a non-empty set and let f : X → R have bounded range in R.
If a ∈ R, show that

sup{a+ f(x) : x ∈ X} = a+ sup{f(x) : x ∈ X}
inf{a+ f(x) : x ∈ X} = a+ inf{f(x) : x ∈ X}.
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Proof. Let f(X) = {f(x) | x ∈ X}. By hypothesis, f(X) is bounded
and not empty and so has a supremum in R, say u∗.

We need to show sup{a+ f(x);x ∈ X} = a+ u∗.

To do so, first note that a+u∗ is an upper bound of sup{a+f(x) | x ∈ X}
since u∗ ≥ f(x) for all x ∈ X; as a result a + u∗ ≥ a + f(x) for all
x ∈ X.

(By completeness of R, this means that sup{a + f(x) | x ∈ X} does
indeed have a supremum.)

Next, we need to show that a + u∗ is the smallest upper bound of
{a+ f(x) | x ∈ X}.

Suppose v is another upper bound of {a + f(x) | x ∈ X}. Then
v ≥ a + f(x) for all x ∈ X; in particular, v − a is an upper bound of
f(X).
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By hypothesis, v − a ≥ u∗, hence v ≥ a + u∗. Consequently, a + u∗ is
the least upper bound of {a+ f(x) | x ∈ X}, i.e.

sup{a+ f(x) | x ∈ X} = a+ u∗.

The proof for the other equality proceeds in a similar manner. �
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