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10. Let X be a non-empty set and let f, g : X → R have bounded range
in R. Show that

sup{f(x) + g(x) | x ∈ X} ≤ sup{f(x) | x ∈ X}+ sup{g(x) | x ∈ X}
inf{f(x) | x ∈ X}+ inf{g(x) | x ∈ X} ≤ inf{f(x) + g(x) | x ∈ X}.
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Solution. Let f(X) = {f(x) | x ∈ X} and g(X) = {g(x) | x ∈ X}. By
hypothesis, f(X) and g(X) are both bounded and not empty, so they
each have a supremum in R, say u∗ and v∗ respectively.

Since f(x) ≤ u∗ and g(x) ≤ v∗ for all x ∈ X, then f(x)+g(x) ≤ u∗+v∗
for all x ∈ X.

Hence {f(x) + g(x) | x ∈ X} has a supremum in R, as it is a bounded
non-empty subset of R. Let w∗ be that supremum, i.e. the smallest
upper bound of {f(x) + g(x) | x ∈ X}.

Since u∗+ v∗ is also an upper bound of that set, it’s automatically larger
than w∗. Note that we can not in general say more: it is not true, in
general, that w∗ = u∗ + v∗.
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Indeed, take X = [1, 2] and let f and g be defined by

f(x) =
1

x
and g(x) = −1

x
, ∀x ∈ X.

Then f(X) = {1x | x ∈ X}, g(X) = {−1
x | x ∈ X} and u∗ = 1, v∗ = −1

2
and w∗ = 0 (you should show these results!), and w∗ ≤ u∗ + v∗ but
w∗ 6= u∗ + v∗.

(Compare this result with the one from the previous question; what is
the difference?)

The other inequality is tackled in a similar manner. �
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11. Let X and Y be non-empty sets and let h : X × Y → R have bounded
range in R. Let F : X → R and G : Y → R be defined by

F (x) = sup{h(x, y) | y ∈ Y } and G(y) = sup{h(x, y) | x ∈ X}.

Show that

sup{h(x, y) | (x, y) ∈ X × Y } = sup{F (x) | x ∈ X}
= sup{G(y) | y ∈ Y }.
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Proof. Let h(X,Y ) = {h(x, y) | (x, y) ∈ X × Y }. By definition,
h(X,Y ) is bounded and not empty, so it has a supremum in R, and F
and G are well-defined.

Let α = suph(X,Y ). Then α ≥ h(x, y) for all x ∈ X and y ∈ Y . In
particular, if x ∈ X is fixed, α ≥ h(x, y) for all y ∈ Y . But F (x) is the
smallest upper bound of {h(x, y) | y ∈ Y }, so α ≥ F (x).

But x was arbitrary, so α ≥ F (x) for all x ∈ X. Hence α is an upper
bound of {F (x) | x ∈ X}; by completeness, {F (x) | x ∈ X} has a
supremum in R, say β. Then α ≥ β, by definition of the supremum.

Again, fix x ∈ X. Then β ≥ F (x) ≥ h(x, y) for all y ∈ Y . Hence, for
any x ∈ X, β ≥ h(x, y) for all y ∈ Y . As a result, β is an upper bound
of h(X,Y ). Then β ≥ α, by definition of the supremum.

Combining these two results yields α = β (now do the other). �
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12. Show there exists a positive real number u such that u2 = 3.
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Solution. We first show that u is not rational (even though that wasn’t
part of the question, it will be informative).

Suppose the equation r2 = 3 has a positive root r in Q. Let r = p/q
with gcd(p, q) = 1 be that solution. Then p2/q2 = 3, or p2 = 3q2.
Hence p2 is a multiple of 3, and so p is also a multiple of 3.

(Indeed, if p is not a multiple of 3, then neither is p2. Let p = 3k + 1 or
p = 3k + 2. Then p2 = 3(3k2 + 2k) + 1 or p2 = 3(3k2 + 4k + 1) + 1,
neither of which is a multiple of 3.)

Set p = 3m. Then (3m)2 = 3q2, which is the same as 3m2 = q2. Then
q2 is a multiple of 3, and so q is also a multiple of 3.

Consequently, p and q are both divisible by 3, which contradicts the
hypothesis gcd(p, q) = 1. The equation r2 = 3 cannot then have a
solution in Q.
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But we haven’t shown yet that the equation had a solution in R.

Consider the set S = {s ∈ R+ : s2 < 3}, where R+ denotes the set of
positive real numbers.

This set in not empty as 1 ∈ S. Furthermore, S is bounded above by 3.
(Indeed, if t ≥ 3, then t2 ≥ 9 > 3, whence t 6∈ S.)

By completeness of R, x = supS ≥ 1 exists. It will be enough to show
that neither x2 < 3 and x2 > 3 can hold. The only remaining possibility
will be that x =

√
3.

• If x2 < 3, then 2x+1
3−x2 > 0. By the Archimedean property, ∃n > 0 such

that 2x+1
3−x2 < n. By re-arranging the terms, we get

0 <
1

n
(2x+ 1) < 3− x2.
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Then(
x+

1

n

)2

= x2 +
2x

n
+

1

n2
≤ x2 +

2x

n
+

1

n

= x2 +
1

n
(2x+ 1) < x2 + 3− x2 = 3.

Since (x+ 1
n)

2 < 3, x+ 1
n ∈ S. But x < x+ 1

n; x is then not an upper
bound of S, which contradicts the fact that x = supS. Thus x2 6< 3.

• If x2 > 3, then 2x
x2−3

> 0. By the Archimedean property, ∃n > 0 such

that 2x
x2−3

< n. By re-arranging the terms, we get

0 > −2x
n
> 3− x2.
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Then(
x− 1

n

)2

= x2 − 2x

n
+

1

n2
> x2 − 2x

n
> x2 + 3− x2 = 3.

Since (x− 1
n)

2 > 3, x− 1
n is an upper bound of S. But x > x− 1

n; x can
not then be the supremum of S, which is a contradiction. Thus x2 6> 3.

That leaves only one alternative (since we know that x ∈ R): x2 = 3,
whence x = u =

√
3 > 0. �
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