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MAT 2125 – Elementary Real Analysis Notes

Theorem 1. (Archimedean Property) Let x ∈ R. Then ∃nx ∈ N×
such that x < nx.
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Proof. Suppose that there is no such integer. Then x ≥ n ∀n ∈ N.

Consequently, x is an upper bound of N×. But N× is a non-empty subset
of R. Since R is complete, α = supN× exists.

By definition of the supremum (the smallest upper bound), α− 1 is not an
upper bound of N× (otherwise α would not be the smallest upper bound,
as α− 1 < α would be a smaller upper bound).

Since α− 1 is not an upper bound of N×, ∃m ∈ N× such that α− 1 < m.
Using the properties of R, we must then have α < m+ 1 ∈ N×; that is, α
is not an upper bound of N×.

This contradicts the fact that α = supN×, and so, since N× 6= ∅, x cannot
be an upper bound of N×. Thus ∃nx ∈ N× such that x < nx. �
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Theorem 2. (Variants; Archimedean Property) Let x, y ∈ R+.
Then ∃n1, n2, n3 ≥ 1 such that

1. x < n1y;

2. 0 < 1
n2
< y, and

3. n3 − 1 ≤ x < n3.
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Proof.

1. Let z = x
y > 0. By the Archimedean property, ∃n1 ≥ 1 such that

z = x
y < n1. Then x < n1y.

2. If x = 1, then part 1 implies ∃n2 ≥ 1 such that 0 < 1 < n2y. Then
0 < 1

n2
< y.

3. Let L = {m ∈ N× : x < m}. By the Archimedean property, L 6= ∅.
Indeed, there is at least one n ≥ 1 such that x < n. By the well-ordering
principle, L has a smallest element, say m = n3. Then n3 − 1 6∈ L
(otherwise, n3 − 1 would be the least element of L, which it is not) and
so n3 − 1 ≤ x < n3.

There are other variants, but these are the ones we’ll use the most. �
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Theorem 4. (Cauchy’s Inequality) If a1, . . . , an and b1, . . . , bn are
real numbers, then (∑

aibi

)2
≤
(∑

a2i

)(∑
b2i

)
.

(The indices are understood to run from 1 to n in what follows.)
Furthermore, if bj 6= 0 for one of 1 ≤ j ≤ n, then equality holds if
and only if ∃s ∈ R such that ai = sbi for all i = 1, . . . , n.

Proof. For any t ∈ R,

0 ≤
∑

(ai + tbi)
2 =

∑
a2i + 2t

∑
aibi + t2

∑
b2i .

The right-hand side of this inequality is a polynomial of degree 2 in t.
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It is always greater than or equal to 0: it has at most 1 real root, i.e. its
discriminant (

2
∑

aibi

)2
− 4

(∑
a2i

)(∑
b2i

)
≤ 0,

and so (∑
aibi

)2
≤
(∑

a2i

)(∑
b2i

)
.

If all the bi are 0, the equality holds trivially, as both the left and right side
of the Cauchy inequality are 0.

So suppose bi 6= 0 for at least one of the values j between 1 and n. We
have two statements to prove.
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If ai = sbi for all i = 1, . . . , n and s ∈ R is fixed then

(∑
aibi

)2
=
(∑

sb2i

)2
= s2

(∑
b2i

)2
= s2

(∑
b2i

)(∑
b2i

)
=
(∑

s2b2i

)(∑
b2i

)
=
(∑

a2i

)(∑
b2i

)
.

On the other hand, if(∑
aibi

)2
=
(∑

a2i

)(∑
b2i

)
then

4
(∑

aibi

)2
− 4

(∑
a2i

)(∑
b2i

)
= 0.
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But the left-hand side of this expression is the discriminant of the following
polynomial of degree 2 in t:∑

(ai + tbi)
2 =

∑
a2i + 2t

∑
aibi + t2

∑
b2i .

Since the discriminant is 0, the polynomial has a unique root, say t = −s,

∴
∑

(ai − sbi)2 = 0.

Since (ai − sbi)2 ≥ 0 for all i = 1, . . . , n, then

(ai − sbi)2 = 0 for all i = 1, . . . , n

∴ ai − sbi = 0 for all i = 1, . . . , n

∴ ai = sbi for all i = 1, . . . , n. �
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Theorem 5. (Triangle Inequality) If a1, . . . , an, b1, . . . , bn ∈ R,
then (∑

(ai + bi)
2
)1/2

≤
(∑

a2i

)1/2
+
(∑

b2i

)1/2
.

Furthermore, if bj 6= 0 for one of 1 ≤ j ≤ n, then equality holds if and only
if ∃s ∈ R such that ai = sbi for all i = 1, . . . , n.

Proof. As∑
(ai + bi)

2 =
∑

a2i + 2
∑

aibi +
∑

b2i

Cauchy Ineq. ≤
∑

a2i + 2
(∑

a2i

)1/2 (∑
b2i

)1/2
+
∑

b2i

=

((∑
a2i

)1/2
+
(∑

b2i

)1/2)2

.
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Taking the square root on both sides yields the desired result.

If all the bi are 0, the equality holds trivially, as both the left and right side

of the Triangle Inequality are
(∑

a2i
)1/2

.

So suppose bi 6= 0 for at least one of the values j between 1 and n. We
have two statements to prove.

If ai = sbi for all i = 1, . . . , n and s ∈ R is fixed then

(∑
(ai + bi)

2
)1/2

=
(∑

(sbi + bi)
2
)1/2

=
(∑

(s+ 1)2b2i

)1/2
=
(
(s+ 1)2

∑
b2i

)1/2
= (s+ 1)

(∑
b2i

)1/2
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and(∑
a2i

)1/2
+
(∑

b2i

)1/2
=
(∑

s2b2i

)1/2
+
(∑

b2i

)1/2
= s

(∑
b2i

)1/2
+
(∑

b2i

)1/2
= (s+ 1)

(∑
b2i

)1/2
and so equality holds.

On the other hand, if(∑
(ai + bi)

2
)1/2

=
(∑

a2i

)1/2
+
(∑

b2i

)1/2
then ∑

(ai + bi)
2 =

((∑
a2i

)1/2
+
(∑

b2i

)1/2)2

.
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Developing both sides of this expression yields

∑
a2i + 2

∑
aibi +

∑
b2i =

∑
a2i + 2

(∑
a2i

)1/2 (∑
b2i

)1/2
+
∑

b2i ,

or simply ∑
aibi =

(∑
a2i

)1/2 (∑
b2i

)1/2
.

Elevating both sides to the second power yields

(∑
aibi

)2
=
(∑

a2i

)(∑
b2i

)
.

By Theorem 4, ∃s ∈ R such that ai = sbi for all i = 1, . . . , n. �
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Theorem 7. (Density of Q) Let x, y ∈ R such that x < y. Then,
∃r ∈ Q such that x < r < y.

Proof. There are three distinct cases.

1. If x < 0 < y, then select r = 0.

2. If 0 ≤ x < y, then y − x > 0 and 1
y−x > 0.

By the Archimedean property, ∃n ≥ 1 such that

n >
1

y − x
> 0.

By that same property, ∃m ≥ 1 such that m − 1 ≤ nx < m. Since
n(y − x) > 1, then ny − 1 > nx and nx ≥ m− 1.
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By transitivity of <, ny − 1 > m− 1, that is ny > m. But m > nx, so
ny > m > nx and y > m

n > x. Select r = m
n .

3. If x < y ≤ 0, then y−x > 0 and 1
y−x > 0. By the Archimedean property,

∃n ≥ 1 such that

n >
1

y − x
> 0.

Note that −nx > 0. By yet another variant of that property (that we
haven’t explicitly stated in class, but it’s not too much work to show it),
∃m ≥ 0 such that m < −nx ≤ m+ 1 or −m− 1 ≤ nx < −m.

Since n(y − x) > 1, then ny − 1 > nx and nx ≥ −m− 1.

By transitivity of <, ny−1 > −m−1, that is ny > −m. But −m > nx,
so ny > −m > nx and y > −m

n > x. Select r = −m
n . �
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Theorem 14. (Operations on Sequences and Limits) Let
(xn), (yn) be convergent sequences, with xn → x and yn → y. Let
c ∈ R. Then

1. |xn| → |x|;

2. (xn + yn)→ (x+ y);

3. xnyn → xy and cxn → cx;

4. xn
yn
→ x

y , if yn, y 6= 0 for all n.

Proof. We show each part using the definition of the limit of a sequence.
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1. Let ε > 0. As xn → x, ∃N ′ε such that |xn − x| < ε whenever n > N ′ε.
But ||xn| − |x|| ≤ |xn − x|, according to theorem 6. Hence, for ε > 0,
∃Nε = N ′ε such that

||xn| − |x|| ≤ |xn − x| < ε

whenever n > Nε, i.e. |xn| → |x|.

2. Let ε > 0. Then ε
2 > 0. As xn → x and yn → y, ∃Nx

ε
2
, Ny

ε
2

such that

|xn − x| <
ε

2
and |yn − y| <

ε

2
(1)

whenever n > Nx
ε
2

and n > Ny
ε
2

respectively. Set Nε = max
{
Nx

ε
2
, Ny

ε
2

}
.
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Then, whenever n > Nε (so whenever n is strictly larger than Nx
ε/2 and

Ny
ε/2 at the same time),

|(xn + yn)− (x+ y)| = |(xn − x) + (yn − y)| ≤ |xn − x|+ |yn − y|

by (1) <
ε

2
+
ε

2
= ε,

i.e. (xn + yn)→ (x+ y).

3. According to theorem 13, (xn) and (yn) are bounded since they are
convergent sequences. Then ∃Mx,My ∈ N such that

|xn| < Mx and |yn| < My

for all n.
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Let ε > 0. Then ε
2Mx

, ε
2My

> 0. As xn → x and yn → y, ∃Nx
ε

2My
, Ny

ε
2Mx
∈

N such that

|xn − x| <
ε

2My
and |yn − y| <

ε

2Mx
(2)

whenever n > Nx
ε

2My
and n > Ny

ε
2Mx

respectively. Moreover, |y| ≤ My

(otherwise
|y|−My

2 > 0. Then, for ε =
|y|−My

2 , we get

|yn − y| ≥ ||y| − |yn|| ≥ |y| −My = 2ε > ε

for all n ∈ N, which contradicts the definition of yn → y).

P. Boily (uOttawa) 18



MAT 2125 – Elementary Real Analysis Notes

Set Nε = max

{
Nx

ε
2Mx

, Ny
ε

2My

}
. Then, whenever n > Nε,

|xnyn − xy| = |xnyn − xny + xny − xy| = |xn(yn − y) + y(xn − x)|
≤ |xn||yn − y|+ |y||xn − x|
< Mx|yn − y|+My|xn − x|

by (2) < Mx
ε

2Mx
+My

ε

2My

=
ε

2
+
ε

2
= ε,

i.e. xnyn → xy.

Furthermore, if the sequence (yn) is given by yn = c for all n, then the
preceding result yields cxn → cx, since yn = c→ c (You should show this).
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4. It is enough to show 1
yn
→ 1

y under the hypotheses above; then the result
will hold by part 3.

Since y 6= 0, |y|2 > 0. Hence, as yn → y, ∃N|y|/2 ∈ N such that

|yn − y| < |y|2 , whenever n > N|y|
2

. According to theorem 6,

|y| − |yn| < |y − yn| <
|y|
2
, and so

|y|
2
< |yn| or

1

|yn|
<

2

|y|
(3)

whenever n > N|y|/2 (these expressions make sense as neither yn nor y
is 0 for all n).
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Let ε > 0. Then |y|2ε2 > 0. As yn → y, ∃N|y|2ε2 ∈ N such that

|yn − y| < |y|2
ε

2
(4)

whenever n > N|y|2ε2. Set Nε = max
{
N|y|

2
, N|y|2ε2

}
. Then, whenever

n > Nε,∣∣∣∣ 1yn − 1

y

∣∣∣∣ = ∣∣∣∣y − ynyny

∣∣∣∣ =
|y − yn|
|yny|

by (3) <
2|y − yn|
|y|2

by (4) <
2

|y|2
· |y|2ε

2
= ε, i.e.

1

yn
→=

1

y
. �
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Theorem 56. (Composition Theorem for Integrals)
Let I = [a, b] and J = [α, β], f : I → R Riemann-integrable on I,
ϕ : J → R continuous on J and f(I) ⊆ J . Then ϕ ◦ f : I → R is
Riemann-integrable on I.

Proof. Let ε > 0, K = sup{|ϕ(x)| | x ∈ J} (guaranteed to exist by the
Max/Min theorem) and ε′ = ε

b−a+2K .

Since ϕ is uniformly continuous on J (being continuous on a closed,
bounded interval), ∃δε > 0 s.t.

|x− y|δε, x, y,∈ J =⇒ |ϕ(x)− ϕ(y)| < ε′.

Without loss of generality, pick δε < ε′.
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Since f is Riemann-integrable on I, ∃P = {x0, . . . , xn} a partition of
I = [a, b] s.t.

U(P ; f)− L(P ; f) < δ2ε

(according to Riemann’s criterion).

We show that U(P ;ϕ ◦ f) − L(P ;ϕ ◦ f) < ε, and so that ϕ ◦ f is
Riemann-integrable according ti Riemann’s criterion.

Over [xi−1, xi] for i = 1, . . . , n, set

mi = inf{f(x)}, Mi = sup{f(x)}, m̃i = inf{ϕ(f(x))}, M̃i = sup{ϕ(f(x))}.

With those, set A = {i |Mi −mi < δε}, B = {i |Mi −mi ≥ δε}.
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• If i ∈ A, then

x, y ∈ [xi−1, xi] =⇒ |f(x)− f(y)| ≤Mi −mi < δε,

so |ϕ(f(x))−ϕ(f(y)| < ε′ ∀x, y ∈ [xi−1, xi]. In particular, M̃i−m̃i ≤ ε′.

• If i ∈ B, then

x, y ∈ [xi−1, xi] =⇒ |ϕ(f(x))−ϕ(f(y))| ≤ |ϕ(f(x))|+|ϕ(f(y))| ≤ 2K.

In particular, M̃i − m̃i ≤ 2K, since −K ≤ m̃i ≤ ϕ(z) ≤ M̃i ≤ K for all
z ∈ [xi−1, xi].
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Then

U(P ;ϕ ◦ f)− L(P ;ϕ ◦ f) =
n∑

i=1

(M̃i − m̃i)(xi − xi−1)

=
∑
i∈A

(M̃i − m̃i)(xi − xi−1) +
∑
i∈B

(M̃i − m̃i)(xi − xi−1)

≤ ε′
∑
i∈A

(xi − xi−1) + 2K
∑
i∈B

(xi − xi−1)

≤ ε′(b− a) + 2K
∑
i∈B

(Mi −mi)

δε
(xi − xi−1)

ε′(b− a) + 2K

δε

n∑
i=1

(Mi −mi)(xi − xi−1).
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By earlier work in the proof, we have

n∑
i=1

(Mi −mi)(xi − xi−1) ≤ U(P ; f)− L(P ; f) < δ2ε,

so that

U(P ;ϕ ◦ f)− L(P ;ϕ ◦ f) < ε′(b− a) + 2K

δε
· δ2ε

= ε′(b− a) + 2Kδε < ε′(b− a) + 2Kε′

= ε′(b− a+ 2K) = ε,

which completes the proof. �
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