MAT 2125 Elementary Real Analysis

Notes

Winter 2021

Theorem 1. (ARCHIMEDEAN PROPERTY) Let $x \in \mathbb{R}$. Then $\exists n_x \in \mathbb{N}^{\times}$ such that $x < n_x$.

Proof. Suppose that there is no such integer. Then $x \ge n \ \forall n \in \mathbb{N}$.

Consequently, x is an upper bound of \mathbb{N}^{\times} . But \mathbb{N}^{\times} is a non-empty subset of \mathbb{R} . Since \mathbb{R} is complete, $\alpha = \sup \mathbb{N}^{\times}$ exists.

By definition of the supremum (the smallest upper bound), $\alpha - 1$ is not an upper bound of \mathbb{N}^{\times} (otherwise α would not be the smallest upper bound, as $\alpha - 1 < \alpha$ would be a smaller upper bound).

Since $\alpha - 1$ is not an upper bound of \mathbb{N}^{\times} , $\exists m \in \mathbb{N}^{\times}$ such that $\alpha - 1 < m$. Using the properties of \mathbb{R} , we must then have $\alpha < m + 1 \in \mathbb{N}^{\times}$; that is, α is not an upper bound of \mathbb{N}^{\times} .

This contradicts the fact that $\alpha = \sup \mathbb{N}^{\times}$, and so, since $\mathbb{N}^{\times} \neq \emptyset$, x cannot be an upper bound of \mathbb{N}^{\times} . Thus $\exists n_x \in \mathbb{N}^{\times}$ such that $x < n_x$.

Theorem 2. (VARIANTS; ARCHIMEDEAN PROPERTY) Let $x, y \in \mathbb{R}^+$. Then $\exists n_1, n_2, n_3 \geq 1$ such that

- 1. $x < n_1 y$;
- 2. $0 < \frac{1}{n_2} < y$, and
- 3. $n_3 1 \le x < n_3$.

Proof.

- 1. Let $z = \frac{x}{y} > 0$. By the Archimedean property, $\exists n_1 \ge 1$ such that $z = \frac{x}{y} < n_1$. Then $x < n_1 y$.
- 2. If x = 1, then part 1 implies $\exists n_2 \ge 1$ such that $0 < 1 < n_2 y$. Then $0 < \frac{1}{n_2} < y$.
- 3. Let $L = \{m \in \mathbb{N}^{\times} : x < m\}$. By the Archimedean property, $L \neq \emptyset$. Indeed, there is at least one $n \ge 1$ such that x < n. By the well-ordering principle, L has a smallest element, say $m = n_3$. Then $n_3 - 1 \notin L$ (otherwise, $n_3 - 1$ would be the least element of L, which it is not) and so $n_3 - 1 \le x < n_3$.

There are other variants, but these are the ones we'll use the most.

Theorem 4. (CAUCHY'S INEQUALITY) If a_1, \ldots, a_n and b_1, \ldots, b_n are real numbers, then

$$\left(\sum a_i b_i\right)^2 \le \left(\sum a_i^2\right) \left(\sum b_i^2\right).$$

(The indices are understood to run from 1 to n in what follows.) Furthermore, if $b_j \neq 0$ for one of $1 \leq j \leq n$, then equality holds if and only if $\exists s \in \mathbb{R}$ such that $a_i = sb_i$ for all i = 1, ..., n.

Proof. For any $t \in \mathbb{R}$,

$$0 \le \sum (a_i + tb_i)^2 = \sum a_i^2 + 2t \sum a_i b_i + t^2 \sum b_i^2.$$

The right-hand side of this inequality is a polynomial of degree 2 in t.

It is always greater than or equal to 0: it has at most 1 real root, i.e. its discriminant

$$\left(2\sum a_i b_i\right)^2 - 4\left(\sum a_i^2\right)\left(\sum b_i^2\right) \le 0,$$

and so

$$\left(\sum a_i b_i\right)^2 \le \left(\sum a_i^2\right) \left(\sum b_i^2\right).$$

If all the b_i are 0, the equality holds trivially, as both the left and right side of the Cauchy inequality are 0.

So suppose $b_i \neq 0$ for at least one of the values j between 1 and n. We have two statements to prove.

If $a_i = sb_i$ for all $i = 1, \ldots, n$ and $s \in \mathbb{R}$ is fixed then

$$\left(\sum a_i b_i\right)^2 = \left(\sum s b_i^2\right)^2 = s^2 \left(\sum b_i^2\right)^2 = s^2 \left(\sum b_i^2\right) \left(\sum b_i^2\right)$$
$$= \left(\sum s^2 b_i^2\right) \left(\sum b_i^2\right) = \left(\sum a_i^2\right) \left(\sum b_i^2\right).$$

On the other hand, if

$$\left(\sum a_i b_i\right)^2 = \left(\sum a_i^2\right) \left(\sum b_i^2\right)$$

then

$$4\left(\sum a_i b_i\right)^2 - 4\left(\sum a_i^2\right)\left(\sum b_i^2\right) = 0.$$

But the left-hand side of this expression is the discriminant of the following polynomial of degree 2 in t:

$$\sum (a_i + tb_i)^2 = \sum a_i^2 + 2t \sum a_i b_i + t^2 \sum b_i^2.$$

Since the discriminant is 0, the polynomial has a unique root, say t = -s,

$$\therefore \sum (a_i - sb_i)^2 = 0.$$

Since $(a_i - sb_i)^2 \ge 0$ for all $i = 1, \ldots, n$, then

$$(a_i - sb_i)^2 = 0$$
 for all $i = 1, ..., n$
 $\therefore a_i - sb_i = 0$ for all $i = 1, ..., n$
 $\therefore a_i = sb_i$ for all $i = 1, ..., n$.

Theorem 5. (TRIANGLE INEQUALITY) If $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}$, then

$$\left(\sum_{i=1}^{n} (a_i + b_i)^2\right)^{1/2} \le \left(\sum_{i=1}^{n} a_i^2\right)^{1/2} + \left(\sum_{i=1}^{n} b_i^2\right)^{1/2}.$$

Furthermore, if $b_j \neq 0$ for one of $1 \leq j \leq n$, then equality holds if and only if $\exists s \in \mathbb{R}$ such that $a_i = sb_i$ for all i = 1, ..., n.

Proof. As

$$\begin{split} \sum (a_i + b_i)^2 &= \sum a_i^2 + 2 \sum a_i b_i + \sum b_i^2 \\ \hline \text{Cauchy Ineq.} &\leq \sum a_i^2 + 2 \left(\sum a_i^2 \right)^{1/2} \left(\sum b_i^2 \right)^{1/2} + \sum b_i^2 \\ &= \left(\left(\sum a_i^2 \right)^{1/2} + \left(\sum b_i^2 \right)^{1/2} \right)^2. \end{split}$$

Taking the square root on both sides yields the desired result.

If all the b_i are 0, the equality holds trivially, as both the left and right side of the Triangle Inequality are $(\sum a_i^2)^{1/2}$.

So suppose $b_i \neq 0$ for at least one of the values j between 1 and n. We have two statements to prove.

If $a_i = sb_i$ for all $i = 1, \ldots, n$ and $s \in \mathbb{R}$ is fixed then

$$\left(\sum (a_i + b_i)^2\right)^{1/2} = \left(\sum (sb_i + b_i)^2\right)^{1/2} = \left(\sum (s+1)^2 b_i^2\right)^{1/2}$$
$$= \left((s+1)^2 \sum b_i^2\right)^{1/2} = (s+1) \left(\sum b_i^2\right)^{1/2}$$

$\quad \text{and} \quad$

$$\left(\sum a_i^2\right)^{1/2} + \left(\sum b_i^2\right)^{1/2} = \left(\sum s^2 b_i^2\right)^{1/2} + \left(\sum b_i^2\right)^{1/2}$$
$$= s \left(\sum b_i^2\right)^{1/2} + \left(\sum b_i^2\right)^{1/2} = (s+1) \left(\sum b_i^2\right)^{1/2}$$

and so equality holds.

On the other hand, if

$$\left(\sum (a_i + b_i)^2\right)^{1/2} = \left(\sum a_i^2\right)^{1/2} + \left(\sum b_i^2\right)^{1/2}$$

then

$$\sum (a_i + b_i)^2 = \left(\left(\sum a_i^2 \right)^{1/2} + \left(\sum b_i^2 \right)^{1/2} \right)^2.$$

Developing both sides of this expression yields

$$\sum a_i^2 + 2\sum a_i b_i + \sum b_i^2 = \sum a_i^2 + 2\left(\sum a_i^2\right)^{1/2} \left(\sum b_i^2\right)^{1/2} + \sum b_i^2,$$

or simply

$$\sum a_i b_i = \left(\sum a_i^2\right)^{1/2} \left(\sum b_i^2\right)^{1/2}.$$

Elevating both sides to the second power yields

$$\left(\sum a_i b_i\right)^2 = \left(\sum a_i^2\right) \left(\sum b_i^2\right).$$

By Theorem 4, $\exists s \in \mathbb{R}$ such that $a_i = sb_i$ for all i = 1, ..., n.

Theorem 7. (DENSITY OF \mathbb{Q}) Let $x, y \in \mathbb{R}$ such that x < y. Then, $\exists r \in \mathbb{Q}$ such that x < r < y.

Proof. There are three distinct cases.

- 1. If x < 0 < y, then select r = 0.
- 2. If $0 \le x < y$, then y x > 0 and $\frac{1}{y x} > 0$.

By the Archimedean property, $\exists n \geq 1$ such that

$$n > \frac{1}{y - x} > 0.$$

By that same property, $\exists m \geq 1$ such that $m - 1 \leq nx < m$. Since n(y - x) > 1, then ny - 1 > nx and $nx \geq m - 1$.

By transitivity of <, ny - 1 > m - 1, that is ny > m. But m > nx, so ny > m > nx and $y > \frac{m}{n} > x$. Select $r = \frac{m}{n}$.

3. If $x < y \le 0$, then y - x > 0 and $\frac{1}{y-x} > 0$. By the Archimedean property, $\exists n \ge 1$ such that

$$n > \frac{1}{y - x} > 0.$$

Note that -nx > 0. By yet another variant of that property (that we haven't explicitly stated in class, but it's not too much work to show it), $\exists m \ge 0$ such that $m < -nx \le m+1$ or $-m - 1 \le nx < -m$.

Since n(y - x) > 1, then ny - 1 > nx and $nx \ge -m - 1$.

By transitivity of <, ny-1 > -m-1, that is ny > -m. But -m > nx, so ny > -m > nx and $y > -\frac{m}{n} > x$. Select $r = -\frac{m}{n}$. **Theorem 14.** (OPERATIONS ON SEQUENCES AND LIMITS) Let $(x_n), (y_n)$ be convergent sequences, with $x_n \to x$ and $y_n \to y$. Let $c \in \mathbb{R}$. Then

- 1. $|x_n| \rightarrow |x|;$
- 2. $(x_n + y_n) \to (x + y);$
- 3. $x_n y_n \rightarrow xy$ and $cx_n \rightarrow cx$;
- 4. $\frac{x_n}{y_n} \rightarrow \frac{x}{y}$, if $y_n, y \neq 0$ for all n.

Proof. We show each part using the definition of the limit of a sequence.

1. Let $\varepsilon > 0$. As $x_n \to x$, $\exists N'_{\varepsilon}$ such that $|x_n - x| < \varepsilon$ whenever $n > N'_{\varepsilon}$. But $||x_n| - |x|| \le |x_n - x|$, according to theorem 6. Hence, for $\varepsilon > 0$, $\exists N_{\varepsilon} = N'_{\varepsilon}$ such that

$$||x_n| - |x|| \le |x_n - x| < \varepsilon$$

whenever $n > N_{\varepsilon}$, i.e. $|x_n| \to |x|$.

2. Let $\varepsilon > 0$. Then $\frac{\varepsilon}{2} > 0$. As $x_n \to x$ and $y_n \to y$, $\exists N_{\frac{\varepsilon}{2}}^x, N_{\frac{\varepsilon}{2}}^y$ such that

$$|x_n - x| < \frac{\varepsilon}{2}$$
 and $|y_n - y| < \frac{\varepsilon}{2}$ (1)

whenever $n > N_{\frac{\varepsilon}{2}}^x$ and $n > N_{\frac{\varepsilon}{2}}^y$ respectively. Set $N_{\varepsilon} = \max\left\{N_{\frac{\varepsilon}{2}}^x, N_{\frac{\varepsilon}{2}}^y\right\}$.

Then, whenever $n > N_{\varepsilon}$ (so whenever n is strictly larger than $N_{\varepsilon/2}^x$ and $N_{\varepsilon/2}^y$ at the same time),

i.e.
$$(x_n + y_n) \to (x + y)$$
.

3. According to theorem 13, (x_n) and (y_n) are bounded since they are convergent sequences. Then $\exists M_x, M_y \in \mathbb{N}$ such that

$$|x_n| < M_x$$
 and $|y_n| < M_y$

for all n.

Let $\varepsilon > 0$. Then $\frac{\varepsilon}{2M_x}, \frac{\varepsilon}{2M_y} > 0$. As $x_n \to x$ and $y_n \to y$, $\exists N_{\frac{\varepsilon}{2M_y}}^x, N_{\frac{\varepsilon}{2M_x}}^y \in \mathbb{N}$ such that

$$|x_n - x| < \frac{\varepsilon}{2M_y}$$
 and $|y_n - y| < \frac{\varepsilon}{2M_x}$ (2)

whenever $n > N_{\frac{\varepsilon}{2My}}^x$ and $n > N_{\frac{\varepsilon}{2Mx}}^y$ respectively. Moreover, $|y| \le M_y$ (otherwise $\frac{|y| - M_y}{2} > 0$. Then, for $\varepsilon = \frac{|y| - M_y}{2}$, we get

$$|y_n - y| \ge ||y| - |y_n|| \ge |y| - M_y = 2\varepsilon > \varepsilon$$

for all $n \in \mathbb{N}$, which contradicts the definition of $y_n \to y$).

Set
$$N_{\varepsilon} = \max\left\{N_{\frac{\varepsilon}{2M_x}}^x, N_{\frac{\varepsilon}{2M_y}}^y\right\}$$
. Then, whenever $n > N_{\varepsilon}$,
 $|x_n y_n - xy| = |x_n y_n - x_n y + x_n y - xy| = |x_n (y_n - y) + y(x_n - x)|$
 $\leq |x_n||y_n - y| + |y||x_n - x|$
 $< M_x |y_n - y| + M_y |x_n - x|$
 $|by(2)| < M_x \frac{\varepsilon}{2M_x} + M_y \frac{\varepsilon}{2M_y}$
 $= \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$,

i.e. $x_n y_n \to xy$.

Furthermore, if the sequence (y_n) is given by $y_n = c$ for all n, then the preceding result yields $cx_n \to cx$, since $y_n = c \to c$ (You should show this).

4. It is enough to show $\frac{1}{y_n} \rightarrow \frac{1}{y}$ under the hypotheses above; then the result will hold by part 3.

Since $y \neq 0$, $\frac{|y|}{2} > 0$. Hence, as $y_n \to y$, $\exists N_{|y|/2} \in \mathbb{N}$ such that $|y_n - y| < \frac{|y|}{2}$, whenever $n > N_{\frac{|y|}{2}}$. According to theorem 6,

$$|y| - |y_n| < |y - y_n| < \frac{|y|}{2}$$
, and so

$$\frac{|y|}{2} < |y_n| \quad \text{or} \quad \frac{1}{|y_n|} < \frac{2}{|y|}$$
 (3)

whenever $n > N_{|y|/2}$ (these expressions make sense as neither y_n nor y is 0 for all n).

Let
$$\varepsilon > 0$$
. Then $|y|^{2\frac{\varepsilon}{2}} > 0$. As $y_n \to y$, $\exists N_{|y|^{2\frac{\varepsilon}{2}}} \in \mathbb{N}$ such that
 $|y_n - y| < |y|^{2\frac{\varepsilon}{2}}$

whenever $n > N_{|y|^2 \frac{\varepsilon}{2}}$. Set $N_{\varepsilon} = \max\left\{N_{\frac{|y|}{2}}, N_{|y|^2 \frac{\varepsilon}{2}}\right\}$. Then, whenever $n > N_{\varepsilon}$,

$$\begin{split} \left| \frac{1}{y_n} - \frac{1}{y} \right| &= \left| \frac{y - y_n}{y_n y} \right| &= \frac{|y - y_n|}{|y_n y|} \\ & \boxed{\text{by (3)}} &< \frac{2|y - y_n|}{|y|^2} \\ & \boxed{\text{by (4)}} &< \frac{2}{|y|^2} \cdot |y|^2 \frac{\varepsilon}{2} = \varepsilon, \quad \text{i.e. } \frac{1}{y_n} \to = \frac{1}{y}. \end{split}$$

(4)

Theorem 56. (COMPOSITION THEOREM FOR INTEGRALS) Let I = [a, b] and $J = [\alpha, \beta]$, $f : I \to \mathbb{R}$ Riemann-integrable on I, $\varphi : J \to \mathbb{R}$ continuous on J and $f(I) \subseteq J$. Then $\varphi \circ f : I \to \mathbb{R}$ is Riemann-integrable on I.

Proof. Let $\varepsilon > 0$, $K = \sup\{|\varphi(x)| \mid x \in J\}$ (guaranteed to exist by the Max/Min theorem) and $\varepsilon' = \frac{\varepsilon}{b-a+2K}$.

Since φ is uniformly continuous on J (being continuous on a closed, bounded interval), $\exists \delta_{\varepsilon} > 0$ s.t.

$$|x-y|\delta_{\varepsilon}, x, y, \in J \implies |\varphi(x)-\varphi(y)| < \varepsilon'.$$

Without loss of generality, pick $\delta_{\varepsilon} < \varepsilon'$.

Since f is Riemann-integrable on $I, \ \exists P = \{x_0, \ldots, x_n\}$ a partition of I = [a, b] s.t.

$$U(P;f) - L(P;f) < \delta_{\varepsilon}^2$$

(according to Riemann's criterion).

We show that $U(P; \varphi \circ f) - L(P; \varphi \circ f) < \varepsilon$, and so that $\varphi \circ f$ is Riemann-integrable according to Riemann's criterion.

Over $[x_{i-1}, x_i]$ for $i = 1, \ldots, n$, set

 $m_i = \inf\{f(x)\}, \ M_i = \sup\{f(x)\}, \ \tilde{m}_i = \inf\{\varphi(f(x))\}, \ \tilde{M}_i = \sup\{\varphi(f(x))\}.$

With those, set $A = \{i \mid M_i - m_i < \delta_{\varepsilon}\}, B = \{i \mid M_i - m_i \ge \delta_{\varepsilon}\}.$

• If $i \in A$, then

$$x, y \in [x_{i-1}, x_i] \implies |f(x) - f(y)| \le M_i - m_i < \delta_{\varepsilon},$$

so $|\varphi(f(x)) - \varphi(f(y))| < \varepsilon' \, \forall x, y \in [x_{i-1}, x_i].$ In particular, $\tilde{M}_i - \tilde{m}_i \le \varepsilon'.$

• If $i \in B$, then

$$x, y \in [x_{i-1}, x_i] \implies |\varphi(f(x)) - \varphi(f(y))| \le |\varphi(f(x))| + |\varphi(f(y))| \le 2K.$$

In particular, $\tilde{M}_i - \tilde{m}_i \le 2K$, since $-K \le \tilde{m}_i \le \varphi(z) \le \tilde{M}_i \le K$ for all

In particular, $M_i - m_i \le 2K$, since $-K \le m_i \le \varphi(z) \le M_i \le K$ for all $z \in [x_{i-1}, x_i]$.

Then

$$U(P; \varphi \circ f) - L(P; \varphi \circ f) = \sum_{i=1}^{n} (\tilde{M}_{i} - \tilde{m}_{i})(x_{i} - x_{i-1})$$

$$= \sum_{i \in A} (\tilde{M}_{i} - \tilde{m}_{i})(x_{i} - x_{i-1}) + \sum_{i \in B} (\tilde{M}_{i} - \tilde{m}_{i})(x_{i} - x_{i-1})$$

$$\leq \varepsilon' \sum_{i \in A} (x_{i} - x_{i-1}) + 2K \sum_{i \in B} (x_{i} - x_{i-1})$$

$$\leq \varepsilon'(b - a) + 2K \sum_{i \in B} \frac{(M_{i} - m_{i})}{\delta_{\varepsilon}} (x_{i} - x_{i-1})$$

$$\varepsilon'(b - a) + \frac{2K}{\delta_{\varepsilon}} \sum_{i=1}^{n} (M_{i} - m_{i})(x_{i} - x_{i-1}).$$

By earlier work in the proof, we have

$$\sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1}) \le U(P; f) - L(P; f) < \delta_{\varepsilon}^2,$$

so that

$$U(P; \varphi \circ f) - L(P; \varphi \circ f) < \varepsilon'(b-a) + \frac{2K}{\delta_{\varepsilon}} \cdot \delta_{\varepsilon}^{2}$$
$$= \varepsilon'(b-a) + 2K\delta_{\varepsilon} < \varepsilon'(b-a) + 2K\varepsilon'$$
$$= \varepsilon'(b-a+2K) = \varepsilon,$$

which completes the proof.

Notes