MAT 2125 - Some Numbered Results (and Corollaries)

Theorem 1 (ARCHIMEDEAN PROPERTY) Let $x \in \mathbb{R}$. Then $\exists n_x \in \mathbb{N}^{\times}$ such that $x < n_x$.

Theorem 2 (ARCHIMEDEAN PROPERTY; VARIANTS) Let $x, y \in \mathbb{R}^+$. Then $\exists n_1, n_2, n_3 \in \mathbb{N}^{\times}$ such that

1. $x < n_1 y;$ 2. $0 < \frac{1}{n_2} < y, and$ 3. $n_3 - 1 \le x < n_3.$

Theorem 3 (BERNOULLI'S INEQUALITY) Let $x \ge -1$. Then $(1+x)^n \ge 1 + nx$, $\forall n \in \mathbb{N}$.

Theorem 4 (CAUCHY'S INEQUALITY) If a_1, \ldots, a_n and b_1, \ldots, b_n are real numbers, then

$$\left(\sum a_i b_i\right)^2 \leq \left(\sum a_i^2\right) \left(\sum b_i^2\right).$$

(The indices are understood to run from 1 to n in what follows.) Furthermore, if $b_j \neq 0$ for one of $1 \leq j \leq n$, then equality holds if and only if $\exists s \in \mathbb{R}$ such that $a_i = sb_i$ for all i = 1, ..., n.

Theorem 5 (TRIANGLE INEQUALITY) If $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}$, then

$$\left(\sum (a_i + b_i)^2\right)^{1/2} \le \left(\sum a_i^2\right)^{1/2} + \left(\sum b_i^2\right)^{1/2}$$

Furthermore, if $b_j \neq 0$ for one of $1 \leq j \leq n$, then equality holds if and only if $\exists s \in \mathbb{R}$ such that $a_i = sb_i$ for all i = 1, ..., n.

Theorem 6 (PROPERTIES OF THE ABSOLUTE VALUE) If $x, y \in \mathbb{R}$ and $\varepsilon > 0$, then

$$\begin{array}{ll} 1. \ |x| = \sqrt{x^2} \\ 2. \ -|x| \le x \le |x| \\ 3. \ |xy| = |x||y| \\ 4. \ |x+y| \le |x|+|y| \\ 5. \ |x-y| \le |x|+|y| \\ 6. \ ||x|-|y|| \le |x-y| \\ 7. \ |x-y| < \varepsilon \Longleftrightarrow y - \varepsilon < x < y + \varepsilon \end{array}$$

Theorem 7 (DENSITY OF \mathbb{Q} , $\mathbb{R} \setminus \mathbb{Q}$) Let $x, y \in \mathbb{R}$ such that x < y. Then, $\exists r \in \mathbb{Q}, z \notin \mathbb{Q}$ such that x < r < y and x < z < y.

Theorem 12 (UNIQUE LIMIT)

A convergent sequence of real numbers $(x_n)_{n \in \mathbb{N}}$ has exactly one limit.

Theorem 13 Any convergent sequence of real numbers $(x_n)_{n \in \mathbb{N}}$ is bounded.

Theorem 14 (OPERATIONS ON SEQUENCES AND LIMITS)

Let $(x_n), (y_n)$ be convergent sequences, with $x_n \to x$ and $y_n \to y$. Let $c \in \mathbb{R}$. Then

- 1. $|x_n| \rightarrow |x|;$
- 2. $(x_n + y_n) \to (x + y);$
- 3. $x_n y_n \rightarrow xy$ and $cx_n \rightarrow cx$;
- 4. $\frac{x_n}{y_n} \to \frac{x}{y}$, if $y_n, y \neq 0$ for all n.

Theorem 15 (COMPARISON THEOREM FOR SEQUENCES)

Let $(x_n), (y_n)$ be convergent sequences of real numbers with $x_n \to x, y_n \to y$, and $x_n \leq y_n \forall n \in \mathbb{N}$. Then $x \leq y$.

Theorem 16 (SQUEEZE THEOREM FOR SEQUENCES)

Let $(x_n), (y_n), (z_n) \subseteq \mathbb{R}$ be such that $x_n, z_n \to \alpha$ and $x_n \leq y_n \leq z_n, \forall n \in \mathbb{N}$. Then $y_n \to \alpha$.

Theorem 17 Let $x_n \to x$. If $x_n \ge 0 \ \forall n \in \mathbb{N}$, then $\sqrt{x_n} \to \sqrt{x}$.

Theorem 32 If $f : [a, b] \to \mathbb{R}$ is continuous on [a, b], then f is bounded on [a, b].

Theorem 33 (MAX/MIN THEOREM)

If $f : [a, b] \to \mathbb{R}$ is continuous, then f reaches a global maximum and a global minimum of [a, b].

Theorem 34 Let $f : [a,b] \to \mathbb{R}$ be continuous. If $\exists \alpha, \beta \in [a,b]$ such that $f(\alpha)f(\beta) < 0$, then $\exists \gamma \in (a,b)$ such that $f(\gamma) = 0$.

Theorem 35 (INTERMEDIATE VALUE THEOREM)

Let $f : [a,b] \to \mathbb{R}$ be continuous. If $\exists \alpha < \beta \in [a,b]$ such that $f(\alpha) < k < f(\beta)$ or $f(\alpha) > k > f(\beta)$, then $\exists \gamma \in (a,b)$ such that $f(\gamma) = k$.

Theorem 36 If $f : [a, b] \to \mathbb{R}$ is continuous, then f([a, b]) is a closed and bounded interval.

Theorem 37 If $f : A \to \mathbb{R}$ is uniformly continuous on A, then f is continuous on A.

Theorem 38 Let $f : [a,b] \to \mathbb{R}$. Then f is uniformly continuous on [a,b] if and only if f is continuous on [a,b].

Theorem 51 Let I = [a, b] and f be bounded on I. Then the lower integral and upper integral of f on I satisfy $L(f) \leq U(f)$.

Theorem 52 (RIEMANN'S CRITERION)

Let I = [a, b] and $f : I \to \mathbb{R}$ be a bounded function. Then f is Riemann-integrable if and only if $\forall \varepsilon > 0, \exists P_{\varepsilon} \text{ a partition of } I \text{ such that the lower sum and the upper sum of } f \text{ corresponding to } P_{\varepsilon} \text{ satisfy } U(P_{\varepsilon}; f) - L(P_{\varepsilon}; f) < \varepsilon.$

Theorem 53 Let I = [a, b] and $f : I \to \mathbb{R}$ be a monotone function on I. Then f is Riemann-integrable on I.

Theorem 54 Let I = [a, b] and $f : I \to \mathbb{R}$ be continuous on I. Then f is Riemann-integrable on I.

Theorem 55 (PROPERTIES OF THE RIEMANN INTEGRAL) Let I = [a, b] and $f, g: I \to \mathbb{R}$ be Riemann-integrable on I. Then

- 1. f + g is Riemann-integrable on I, with $\int_a^b (f + g) = \int_a^b f + \int_a^b g;$
- 2. if $k \in \mathbb{R}$, $k \cdot f$ is Riemann-integrable on I, with $\int_a^b k \cdot f = k \int_a^b f$;
- 3. if $f(x) \leq g(x) \ \forall x \in I$, then $\int_a^b f \leq \int_a^b g$, and
- 4. if $|f(x)| \le K \ \forall x \in I$, then $\left| \int_a^b f \right| \le K(b-a)$.

Theorem 56 (Additivity the Riemann Integral)

Let I = [a, b], $c \in (a, b)$, and $f : I \to \mathbb{R}$ be bounded on I. Then f is Riemann-integrable on I if and only if it is Riemann-integrable on $I_1 = [a, c]$ and on $I_2 = [c, b]$. When that is the case, $\int_a^b f = \int_a^c f + \int_c^b f$.

Theorem 57 (Composition Theorem for Integrals)

Let I = [a, b] and $J = [\alpha, \beta]$, $f : I \to \mathbb{R}$ Riemann-integrable on I, $\varphi : J \to \mathbb{R}$ continuous on J and $f(I) \subseteq J$. Then $\varphi \circ f : I \to \mathbb{R}$ is Riemann-integrable on I.

Theorem 58 Let I = [a, b] and $f, g : I \to \mathbb{R}$ be Riemann-integrable on I. Then fg and |f| are Riemann-integrable on I, and $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b} |f|$.

Theorem 73 (CAUCHY'S CRITERION FOR SERIES OF FUNCTIONS)

Let I = [a, b] and $f_n : I \to \mathbb{R}$, $\forall n \in \mathbb{N}$. Then $\sum_{n=1}^{\infty} f_n \rightrightarrows f$ on I if and only if $\forall \varepsilon > 0$, $\exists N_{\varepsilon} \in \mathbb{N}$ (independent of x) such that $\left| \sum_{i=n+1}^{m} \right| < \varepsilon$ whenever $m > n > N_{\varepsilon} \ \forall x \in I$.

Theorem 74 (WEIERSTRASS'S M-TEST)

Let I = [a, b], $f_n : I \to \mathbb{R}$, and $M_n > 0 \ \forall n \in \mathbb{N}$. If $|f_n(x)| \le M_n \ \forall x \in I$, $\forall n \in \mathbb{N}$, and if $\sum_{n=1}^{\infty} M_n$ converges, then $\sum_{n=1}^{\infty} f_n$ converges uniformly on I.