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2.1 – Random Variables and Distributions

Recall that, for any random “experiment,” the set of all possible outcomes
is denoted by S.

A random variable (r.v.) is a function X : S → R, i.e. it is a rule that
associates a (real) number to every outcomes of the experiment.

S is the domain of the r.v. X; X(S) ⊆ R is its range.

A probability distribution function (p.d.f.) is a function f : R→ R which
specifies the probabilities of the values in X(S).

When S is discrete, we say that X is a discrete r.v. and the p.d.f. is called
a probability mass function (p.m.f.).
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Notation for R.V.

We use the following notation throughout:

capital roman letters (X, Y , etc.) to denote r.v.

corresponding lower case roman letters (x, y, etc.) to denote generic
values taken by the r.v.

A discrete r.v. can be used to define events: if X takes values X(S) = {xi},
then we can define events Ai = {s ∈ S : X(s) = xi}.

The p.m.f. of X is f(x) = P ({s ∈ S : X(s) = x}) := P (X = x).

The cumulative distribution function (c.d.f.) of X is F (x) = P (X ≤ x).
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Properties of the P.M.F. and the C.D.F.

If X is a discrete random variable with p.m.f. f(x) and c.d.f. F (x), then

0 < f(x) ≤ 1 for all x ∈ X(S);∑
s∈S f(X(s)) =

∑
x∈X(S) f(x) = 1;

for any event A ⊆ S, P (X ∈ A) =
∑
x∈A f(x);

for any a, b ∈ R,

P (a < X) = 1− P (X ≤ a) = 1− F (a)
P (X < b) = P (X ≤ b)− P (X = b) = F (b)− f(b)
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for any a, b ∈ R,

P (a ≤ X) = 1− P (X < a) = 1− (P (X ≤ a)− P (X = a))

= 1− F (a) + f(a)

We can use these results to compute the probability of a discrete r.v. X
falling in various intervals:

P (a < X ≤ b) = P (X ≤ b)− P (X ≤ a) = F (b)− F (a)
P (a ≤ X ≤ b) = P (a < X ≤ b) + P (X = a) = F (b)− F (a) + f(a)

P (a < X < b) = P (a < X ≤ b)− P (X = b) = F (b)− F (a)− f(b)
P (a ≤ X < b) = P (a ≤ X ≤ b)− P (X = b) = F (b)− F (a) + f(a)− f(b)
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Examples:

1. Flip a fair coin. The outcome space is S = {Head,Tail}. Let X : S → R
be defined by X(Head) = 1 and X(Tail) = 0. Then X is a discrete
random variable (as a convenience, we write X = 1 and X = 0).

If the coin is fair, the p.m.f. of X is f : R→ R, where

f(0) = P (X = 0) = 1/2, f(1) = P (X = 1) = 1/2, f(x) = 0 for all other x.

2. Roll a fair die. The outcome space is S = {1, . . . , 6}. Let X : S → R
be defined by X(i) = i for i = 1, . . . , 6. Then X is a discrete r.v.

If the die is fair, the p.m.f. of X is f : R→ R, where

f(i) = P (X = i) = 1/6, for i = 1, . . . , 6, f(x) = 0 for all other x.

Based on course notes by Rafa l Kulik 7



MAT 2377 – Probability and Statistics for Engineers Chapter 2 – Discrete Distributions

3. For the random variable X from the previous example, the c.d.f. is
F : R→ R, where

F (x) = P (X ≤ x) =


0 if x < 1

i/6 if i ≤ x < i+ 1, for i = 1, . . . , 6

1 if x ≥ 6

4. For the same random variable, we can compute P (3 ≤ X ≤ 5) directly:

P (3 ≤ X ≤ 5) = P (X = 3)+P (X = 4)+P (X = 5) =
1

6
+
1

6
+
1

6
=

1

2
,
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or we can use the c.d.f.

P (3 ≤ X ≤ 5) = F (5)− F (3) + f(3) =
5

6
− 3

6
+

1

6

5. The number of calls received over a specific time period, X, is a discrete
random variable, with potential values 0, 1, 2, . . ..

6. Consider a 5−card poker hand consisting of cards selected at random
from a 52−card deck. Find the probability distribution of X, where X
indicates the number of red cards (♦ and ♥) in the hand.

Solution: in all there are
(
52
5

)
ways to select a 5−card poker hand from

a 52−card deck.

By construction, X can take on values x = 0, 1, 2, 3, 4, 5.
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If X = 0, then none of the 5 cards in the hands are ♦ or ♥, and all of
the 5 cards in the hands are ♠ or ♣.

There are thus
(
26
0

)
·
(
26
5

)
5−card hands that only contain black cards,

and

P (X = 0) =

(
26
0

)
·
(
26
5

)(
52
5

) .

In general, if X = x, x = 0, 1, 2, 3, 4, 5, there are
(
26
x

)
ways of having x

♦ or ♥ in the hand, and
(

26
5−x
)

ways of having 5 − x ♠ and ♣ in the
hand, so that

f(x) = P (X = x) =

(
26
x

)
·
(

26
5−x
)(

52
5

) , x = 0, 1, 2, 3, 4, 5; f(x) = 0 otherwise.
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7. Find the c.d.f. F (x) of a discrete random variable X with p.m.f. f(x)
defined by f(x) = 0.1x if x = 1, 2, 3, 4 and f(x) = 0 otherwise.

Solution: f(x) is indeed a p.m.f. because 0 < f(x) ≤ 1 for all x and

4∑
x=1

0.1x = 0.1(1 + 2 + 3 + 4) = 0.1
4(5)

2
= 1.

We have

F (x) =



0 if x < 1

0.1 if 1 ≤ x < 2

0.3 if 2 ≤ x < 3

0.6 if 3 ≤ x < 4

1 if x ≥ 4
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2.2 – Expectation of a Discrete R.V.

The expectation of a discrete random variable X is defined as

E[X] =
∑
x

x · P (X = x) =
∑
x

xf(x) ,

where the sum extends over all values of x taken by X.

The definition can be extended to a general function of X:

E[u(X)] =
∑
x

u(x)P (X = x) =
∑
x

u(x)f(x).

As an important example, E[X2] =
∑
x x

2P (X = x) =
∑
x x

2f(x).
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Examples:

1. What is the expectation on the roll Z of fair 6−sided die?

Solution: E[Z] =

6∑
z=1

z · P (Z = z) =
1

6

6∑
z=1

z =
1

6
· 6(7)

2
= 3.5.

2. For each 1$ bet in a gambling game, a player can win 3$ with probability
1
3 and lose 1$ with probability 2

3. Let X be the net gain/loss from the
game. Find the expected value of the game.

Solution: X can take on the value 2$ (for a win) and −2$ for a loss
(outcome − bet). The expected value of X is thus

E[X] = 2 · 1
3
+ (−2) · 2

3
= −2

3
.
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3. If Z is the number showing on a roll of a fair 6−sided die, find E[Z2]
and E[(Z − 3.5)2].

Solution:

E[Z2] =
∑
z

z2P (Z = z) =
1

6

6∑
z=1

z2 =
1

6
(12 + · · ·+ 62) =

91

6

E[(Z − 3.5)2] =

6∑
z=1

(z − 3.5)2P (Z = z) =
1

6

6∑
z=1

(z − 3.5)2

=
(1− 3.5)2 + · · ·+ (6− 3.5)2

6
=

35

12
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Mean and Variance of a Discrete R.V.

We can interpret the expectation as the average or the mean of X, which
we often denote by µ = µX.

For instance, in the example of the fair die, µZ = E[Z] = 3.5.

Note that in the final example, we could have written

E[(Z − 3.5)2] = E[(Z − E[Z])2].

This is an important quantity associated to a random variable X, its
variance Var[X].
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The variance of a discrete random variable X is the expected squared
difference from the mean:

Var(X) = E[(X − µX)2] =
∑
x

(x− µX)2P (X = x)

=
∑
x

(
x2 − 2xµX + µ2

X

)
f(x)

=
∑
x

x2f(x)− 2µX
∑
x

xf(x) + µ2
X

∑
x

f(x)

= E[X2]− 2µXµX + µ2
X · 1 = E[X2]− µ2

X.

This is also sometimes written as Var[X] = E[X2]− E2[X].
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Standard Deviation

The standard deviation of a discrete random variable X is defined directly
from the variance:

SD[X] =
√
Var[X] .

The mean gives some idea as to where the bulk of a distribution is located
⇒ measure of centrality (more on this later).

The variance and standard deviation provide information about the spread;
distributions with higher variance/SD are more spread out about the
average.
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Examples: let X and Y be random variables with the following p.d.f.:

x P (X = x) y P (Y = y)
−2 1/5 −4 1/5
−1 1/5 −2 1/5
0 1/5 0 1/5
1 1/5 2 1/5
2 1/5 4 1/5

Compute the expected values and compare the variances.

Solution: We have E[X] = E[Y ] = 0 and 2 = Var[X] < Var[Y ] = 8,
meaning that we would expect both distributions to be centered at 0, but
Y should be more spread-out than X.
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Properties of Expectations

For all a ∈ R:

E[aX] = aE[X];

E[X + a] = E[X] + a;

E[X + Y ] = E[X] + E[Y ];

In general, E[XY ] 6= E[X]E[Y ];

Var[aX] = a2Var[X], SD[aX] = |a|SD[X];

Var[X + a] = Var[X], SD[X + a] = SD[X].
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2.3 – Binomial Distribution

Recall the number of unordered samples of size r from a set of size n is:

nCr =

(
n

r

)
=

n!

(n− r)!r!
.

2!× 4! = (1× 2)× (1× 2× 3× 4) = 48, but (2× 4)! = 8! = 40320.(
5
1

)
= 5!

1!×4! =
1×2×3×4×5
1×(1×2×3×4) =

5
1 = 5; In general:

(
n
1

)
= n. Also

(
n
0

)
= 1(

6
2

)
= 6!

2!×4! =
4!×5×6
2!×4! = 5×6

2 = 15(
27
22

)
= 27!

22!×5! =
22!×23×24×25×26×27

5!×22! = 23×24×25×26×27
120
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Binomial Experiments

A Bernoulli trial is a random experiment with two possible outcomes,
“success” and “failure”. Let p denote the probability of a success.

A binomial experiment consists of n repeated independent Bernoulli trials,
each with the same probability of success, p.

Examples:

female/male births;

satisfactory/defective items on a production line;

sampling with replacement with two types of item, etc.
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Probability Mass Function

In a binomial experiment of n independent events, each with probability of
success p, the number of successes X is a discrete random variable that
follows a binomial distribution with parameters (n, p):

f(x) = P (X = x) =

(
n

x

)
px(1− p)n−x , for x = 0, 1, 2, . . . , n.

This is often abbreviated to “X ∼ B(n, p)”.

If X ∼ B(1, p) then P (X = 0) = 1− p, P (X = 1) = p, and so

E[X] = (1− p) · 0 + p · 1 = p .
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Expectation and Variance for B(n, p)

If X ∼ B(n, p), then P (X = x) is as on the previous slide and it can be
shown that

E[X] =

n∑
x=0

xP (X = x) = np,

and

Var[X] = E
[
(X − np)2

]
=

n∑
x=0

(x− np)2P (X = x) = np(1− p) .

Later we will see an easier way to derive these by interpreting X as a sum
of other discrete random variables.
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Examples:

1. Suppose that each water sample taken in some well-defined region has a
10% probability of being polluted.

If 12 samples are selected independently, then it is reasonable to model
the number X of polluted samples as B(12, 0.1). Find

a) E[X] and Var[X];
b) P (X = 3);
c) P (X ≤ 3).

Solution:

a) If X ∼ B(n, p) then E[X] = np and Var[X] = np(1− p), so

E[X] = 12× 0.1 = 1.2; Var[X] = 12× 0.1× 0.9 = 1.08 .
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b) By definition, P (X = 3) =
(
12
3

)
(0.1)3(0.9)9 ≈ 0.0852.

c) By definition,

P (X ≤ 3) = P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) = · · ·

However, for X ∼ B(12, 0.1), P (X ≤ 3) is tabulated on p.430 of text
(Table A.1), and is ≈ 0.9744.

The table can also be used to compute

P (X = 3) = P (X ≤ 3)− P (X ≤ 2) = 0.9744− 0.8891 ≈ 0.0853.

Note the rounding error.
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Table of c.d.f. F (x) = P (X ≤ x) for X ∼ B(12, p), p = 0.1, . . . , 0.9.
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2. An airline sells 101 tickets for a flight with 100 seats. Each passenger
with a ticket is known to have a p = 0.97 probability of showing up for
their flight. What is the probability of 101 passengers showing up (and
the airline being caught overbooking)? Make appropriate assumptions.
What if the airline sells 125 tickets?

Solution: let X be the number of passengers that show up. We want
to compute P (X > 100).

If all passengers show up independently of one another (no families or
late bus?), we can model X ∼ B(101, 0.97) and

P (X > 100) = P (X = 101) =

(
101

101

)
(0.97)101(0.03)0 ≈ 0.046
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If the airline sells n = 125 tickets, we can model X ∼ B(125, 0.97) and

P (X > 100) = 1− P (X ≤ 100) = 1−
100∑
x=0

(
125

x

)
(0.97)x(0.03)125−x.

This is harder to compute directly, but is very nearly 1 (try it in R).
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2.4 – Geometric Distribution

Consider a sequence of Bernoulli trials, with probability p of success at each
step.

Let the geometric random variable X denote the number of steps before
the first success occurs. The probability distribution is given by

f(x) = P (X = x) = (1− p)x−1p, x = 1, . . .

We will write X ∼ Geo(p). For this random variable, we have

E[X] =
1

p
and Var[X] =

1− p
p2

.
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Examples:

A fair 6−sided die is thrown until it shows a 6. What is the probability
that 5 throws are required?

Solution: If 5 throws are required, we have to compute P (X = 5),
where X is geometric Geo(1/6):

P (X = 5) = (1− p)5−1p = (5/6)4(1/6) ≈ 0.0804.

In the example above, how many throws would you expect to need?

Solution: E[X] = 1
1/6 = 6.
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2.5 – Negative Binomial Distribution

Consider a sequence of Bernoulli trials, with probability p of success at each
step.

Let the negative binomial random variable X denote the number of steps
before the rth success occurs. The probability distribution is given by

f(x) = P (X = x) =

(
x− 1

r − 1

)
(1− p)x−rpr, x = r, . . .

We will write X ∼ NegBin(p, r). For this random variable, we have

E[X] =
r

p
and Var[X] =

r(1− p)
p2

.
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Examples:

A fair 6−sided die is thrown until it three 6’s are rolled. What is the
probability that 5 throws are required?

Solution: If 5 throws are required, we have to compute P (X = 5),
where X is geometric NegBin(1/6, 3):

P (X = 5) =

(
5− 1

3− 1

)
(1− p)5−3p3 =

(
4

2

)
(5/6)2(1/6)3 ≈ 0.0193.

In the example above, how many throws would you expect to need?

Solution: E[X] = 3
1/6 = 18.
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2.6 – Poisson Distribution

We count the number of “changes” that occur in a continuous interval of
time or space (such as # of defects on a production line over a 1 hr period,
# of customers that arrive at a teller over a 15 min interval, etc.).

We have a Poisson process with rate λ, denoted by P(λ), if:

a) the number of changes occurring in non-overlapping intervals are
independent;

b) the probability of exactly one change in a short interval of length h is
approximately λh, and

c) The probability of 2+ changes in a sufficiently short interval is
essentially 0.
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Assume that an experiment satisfies the above properties. Let X be the
number of changes in a unit interval (this could be 1 day, or 15 minutes,
or 10 years, etc.).

What is P (X = x), for x = 0, 1, . . .?

Partition the unit interval into n disjoint sub-intervals of length 1/n.

1. By condition b), the probability of one change occurring in one of the
sub-intervals is approximately λ/n.

2. By condition c), the probability of 2+ changes is ≈ 0.

3. By condition a), we have a sequence of n Bernoulli trials with probability
p = λ/n.
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Therefore,

f(x) = P (X = x) ≈ n!

x!(n− x)!

(
λ

n

)x(
1− λ

n

)n−x
=
λx

x!
· n!

(n− x)!
· 1
nx︸ ︷︷ ︸

term 1

·
(
1− λ

n

)n
︸ ︷︷ ︸

term 2

·
(
1− λ

n

)−x
︸ ︷︷ ︸

term 3

.

Letting n→∞, we get

P (X = x) = lim
n→∞

λx

x!
· n!

(n− x)!
· 1
nx︸ ︷︷ ︸

term 1

·
(
1− λ

n

)n
︸ ︷︷ ︸

term 2

·
(
1− λ

n

)−x
︸ ︷︷ ︸

term 3

=
λx

x!
· 1 · exp(−λ) · 1 =

λxe−λ

x!
, x = 0, 1, . . .
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Let X ∼ P(λ). Then it can be shown that

E[X] = λ and Var[X] = λ,

that is, the mean and the variance of a Poisson random variable are identical!

Examples:

1. A traffic flow is typically modeled by a Poisson distribution. It is known
that the traffic flowing through an intersection is 6 cars/minute, on
average. What is the probability of no cars entering the intersection in a
30 second period?

Solution: 6 cars/min = 3 cars/30 sec. Thus λ = 3, and we need to
compute

P (X = 0) =
30e−3

3!
=
e−3

6
≈ 0.0498.
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2. A hospital needs to schedule night shifts in the maternity ward.

It is known that there are 3000 deliveries per year; if these happened
randomly round the clock (is this a reasonable assumption?), we would
expect 1000 deliveries between the hours of midnight and 8.00 a.m., a
time when much of the staff is off-duty.

It is thus important to ensure that the night shift is sufficiently staffed
to allow the maternity ward to cope with the workload on any particular
night, or at least, on a high proportion of nights.

The average number of deliveries per night is λ = 1000/365.25 ≈ 2.74.
If the daily number X of night deliveries follows a Poisson process P(λ),
we can compute the probability of delivering x = 0, 1, 2, . . . babies on
each night.
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Some of the probabilities are:

P (X = x) λx · exp(−λ)/x!
P (X = 0) 2.740 · exp(−2.74)/0! = 0.065
P (X = 1) 2.741 · exp(−2.74)/1! = 0.177
P (X = 2) 2.742 · exp(−2.74)/2! = 0.242
... ...

3. If the maternity ward wants to prepare for the greatest possible traffic
on 80% of the nights, how many deliveries should be expected?

Solution: we seek an x for which P (X ≤ x − 1) ≤ 0.80 ≤ P (X ≤ x):
since ppois(3,2.74)=.705 and ppois(4,2.74)=.857, if they prepare
for 4 deliveries a night, they will be ready for the worst on at least 80%
of the nights (closer to 85.7%, actually). Note that this is different than
asking how many deliveries are expected nightly (namely, E[X] = 2.74).
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4. On how many nights in the year would 5 or more deliveries be expected?

Solution: we need to evaluate

365.25 · P (X ≥ 5) = 365.25(1− P (X ≤ 4))

= 365.25 ∗ (1− ppois(4, 2.74)) ≈ 52.27.

5. Over the course of one year, what is the greatest number of deliveries
expected on any night?

Solution: look for largest value of x for which 365.25 · P (X = x) ≥ 1.
> nights=c() # initializing vector

> for(j in 0:10){nights[j+1]=365.25*dpois(j,2.74)}; # p.m.f.

> max(which(nights>1))-1 # identify largest index ⇒ x = 8.
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Appendix – Summary

X Description P (X = x) Domain E[X] Var[X]

Uniform
(Discrete)

Equally

likely

outcomes

1
b−a+1 a, . . . , b a+b

2
(b−a+2)(b−a)

12

Binomial Number of

successes in

n trials

(n
x

)
px(1− p)n−x 0, . . . , n np np(1− p)

Poisson Number of

arrivals in a

fixed period

of time

λx exp(−λ)
x! 0, 1, . . . λ λ
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Summary

X Description P (X = x) Domain E[X] Var[X]

Geometric Number of

trials until

1st success

(1− p)x−1p 1, 2, . . . 1
p

1−p
p2

Negative
Binomial

Number

of trials

until kth

successes

(x−1
k−1

)
(1− p)x−kpk k, k+1, ... k

p
k(1−p)
p2
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