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3.1 – Continuous Random Variables

How do we approach probabilities where there there are uncountably
infinitely many outcomes, such as one might encounter if X represents
the height of an individual in the population, for instance (e.g., the outcomes
reside in a continuous interval on the real line)?

What’s the probability that a randomly selected person is 6 feet tall?

In the discrete case, the probability mass function fX(x) = P (X = x) was
the main object of interest. In the continuous case, the analogous role is
played by the probability density function (p.d.f.), still denoted by fX(x),
but

fX(x) 6= P (X = x).
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The (cumulative) distribution function (c.d.f.) of any such random
variable X is still defined by

FX(x) = P (X ≤ x) ,

viewed as a function of a real variable x; but P (X ≤ x) is not simply
computed by adding a few terms of the form P (X = xi). Note that

lim
x→−∞

FX(x) = 0 and lim
x→+∞

FX(x) = 1.

We can describe the distribution of the random variable X via the following
relationship between fX(x) and FX(x):

fX(x) =
d

dx
FX(x).
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Area Under a Curve

For any a < b, we have

{X ≤ b} = {X ≤ a} ∪ {a < X ≤ b} ,

so that

P (X ≤ a) + P (a < X ≤ b) = P (X ≤ b)
P (a < X ≤ b) = P (X ≤ b)− P (X ≤ a)

= FX(b)− FX(a) =

∫ b

a

fX(x) dx
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Probability Density Functions

The probability density function (p.d.f.) of a continuous random variable
X is an integrable function fX : X(S)→ R such that

fX(x) > 0 for all x ∈ X(S) and limx→±∞ fX(x) = 0;∫
S fX(x) dx = 1;

for any event A = (a, b) = {X|a < X < b},

P (A) = P ((a, b)) =

∫ b

a

fX(x) dx;
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for any x,

FX(x) = P (X ≤ x) =

∫ x

−∞
fX(t) dt;

for any x,

P (x ≤ X) = 1− P (X ≤ x) = 1− FX(x) = 1−
∫ x

−∞
fX(t) dt;

for any a, b,

P (a < X < b) = P (a ≤ X < b) = P (a < X ≤ b) = P (a ≤ X ≤ b)

= FX(b)− FX(a) =

∫ b

a

f(x) dx.
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Examples:

1. Assume that X has the following p.d.f.

fX(x) =


0 if x < 0

x/2 if 0 ≤ x ≤ 2

0 if x > 2

(note that

∫ 2

0

f(x) dx = 1).

The corresponding c.d.f. is given by:

FX(x) = P (X ≤ x) =

∫ x

−∞
fX(t) dt

=


0 if x < 0

1/2 ·
∫ x
0
t dt = 1/2 · [t2/2]x0 = x2/4 if 0 < x < 2

1 if x ≥ 2
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2. What is the probability of the event A = {X|0.5 < X < 1.5}?

Solution: we need to evaluate

P (A) = P (0.5 < X < 1.5) = FX(1.5)−FX(0.5) =
(1.5)2

4
− (0.5)2

4
=

1

2
.

3. What is the probability of the event B = {X|X = 1}?

Solution: we need to evaluate

P (B) = P (X = 1) = P (1 ≤ X ≤ 1) = FX(1)− FX(1) = 0.

This is unexpected: even though fX(1) = 0.5 6= 0, P (X = 1) = 0! The
probability that a continuous random variable X take on any particular
single value is nil.
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4. Assume that, for some λ > 0, X has the following p.d.f.:

fX(x) =

{
λ exp(−λx) if x ≥ 0

0 if x < 0
(is

∫ ∞
−∞

f(x) dx = 1?)

What is the probability that X > 10.2?

Solution: the corresponding c.d.f. is given by:

FX(x;λ) = Pλ(X ≤ x) =

∫ x

−∞
fX(t) dt =

{
0 if x < 0

λ
∫ x
0

exp(−λt) dt if x ≥ 0

=

{
0 if x < 0

[− exp(−λt)]x0 = 1− exp(−λx) if x ≥ 0
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Then

Pλ(X > 10.2) = 1−FX(10.2;λ) = 1−[1−exp(−10.2λ)] = exp(−10.2λ)

is a function of the distribution parameter λ itself:

λ Pλ(X > 10.2)
0.002 0.9798
0.02 0.8155
0.2 0.1300
2 1.38× 10−9

20 2.54× 10−89

200 0 (for all intents and purposes)
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λ = 0.2
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λ = 0.2, P0.2(X > 10.2) ≈ 0.1300
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λ = 2, P2(X > 10.2) ≈ 1.38× 10−9
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3.2 – Expectation of a Continuous Random Variable

For a continuous random variable X with p.d.f. fX(x), the expectation of
X is defined as

E[X] =

∫ ∞
−∞

xfX(x) dx .

In a similar way to the discrete case, for any function h(X), we have

E [h(X)] =

∫ ∞
−∞

h(x)fX(x) dx .

Note that the expectation need not exist!
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Examples:

1. Find the expected value of X in the example 1, above.

Solution: we need to evaluate

E[X] =

∫ ∞
−∞

xfX(X) dx =

∫ 2

0

xfX(x) dx =

∫ 2

0

x · x/2 dx

=

∫ 2

0

x2

2
dx =

[
x3

6

]x=2

x=0

=
4

3
.

2. What about X2?

Solution: we have E[X2] =
∫ 2

0
x3

2 dx = 2.
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3. Compute the expectation of the random variable X with p.d.f.

fX(x) =
1

π(1 + x2)
, −∞ < x <∞.

Solution: let’s verify that fX(x) is indeed a p.d.f.:∫ ∞
−∞

fX(x) dx =
1

π

∫ ∞
−∞

1

1 + x2
dx =

1

π
[arctan(x)]∞−∞ =

1

π

[
π

2
− −π

2

]
= 1.

We can also easily see that

FX(x) = P (X ≤ x) =

∫ x

−∞
fX(t) dt =

1

π

∫ x

−∞

1

1 + t2
dt =

1

π
arctan(x)+

1

2
.
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In particular, P (X ≤ 3) = FX(3) = 1
π arctan(3) + 1

2 ≈ 0.8976, say.

The expectation of X is

E[X] =

∫ ∞
−∞

xfX(x) dx =

∫ ∞
−∞

x

π(1 + x2)
dx.

If this improper integral exists, then it needs to be equal, among other
things, both to

∫ 0

−∞

x

π(1 + x2)
dx+

∫ ∞
0

x

π(1 + x2)
dx︸ ︷︷ ︸

candidate 1

and to lim
a→∞

∫ a

−a

x

π(1 + x2)
dx︸ ︷︷ ︸

candidate 2

.

It is straightforward to find an antiderivative of x
π(1+x2)

.
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Set u = 1 + x2. Then du = 2xdx and xdx = du
2 , and we obtain∫

x

π(1 + x2)
dx =

1

2π

∫
u du =

1

2π
ln |u| = 1

2π
ln(1 + x2).

The candidate 2 integral reduces to

lim
a→∞

[
ln(1 + x2)

2π

]a
−a

= lim
a→∞

[
ln(1 + a2)

2π
− ln(1 + (−a)2)

2π

]
= lim
a→∞

0 = 0;

while the candidate 1 integral reduces to[
ln(1 + x2)

2π

]0
−∞

+

[
ln(1 + x2)

2π

]∞
0

= 0− (∞) +∞− 0 =∞−∞

which is undefined. Thus E[X] does not exist (or is undefined).
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Mean and Variance of a Continuous Random Variable

In a similar way to the discrete case, the mean of X is defined to be E[X],
and the variance and standard deviation of X are, as before,

Var[X]
def
= E

[
(X − E(X))2

] comp. formula
= E[X2]− E2[X] ,

SD[X] =
√

Var[X] .

As in the discrete case, if X,Y are continuous random variables, and
a, b ∈ R,

E[aY + bX] = aE[Y ] + bE[X]

Var[a+ bX] = b2Var[X]

SD[a+ bX] = |b|SD[X]
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3.3 – Normal Distributions

An very important example of continuous distributions is that of the special
probability distribution function

φ(z) =
1√
2π
e−z

2/2 .

The corresponding cumulative distribution function is denoted by

Φ(z) = P (Z ≤ z) =

∫ z

−∞
φ(t) dt .

A random variable Z with this c.d.f. is said to have a standard normal
distribution, and we write Z ∼ N (0, 1).
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Standard Normal Random Variables

The expectation and variance of Z ∼ N (0, 1) are

E[Z] =

∫ ∞
−∞

z φ(z) dz =

∫ ∞
−∞

z
1√
2π
e−

1
2z

2
dz = 0,

Var[Z] =

∫ ∞
−∞

z2 φ(z) dz = 1, SD[Z] =
√

Var[Z] =
√

1 = 1.

Other quantities of interest include:

Φ(0) = P (Z ≤ 0) =
1

2
, Φ(−∞) = 0, Φ(∞) = 1,

Φ(1) = P (Z ≤ 1) = pnorm(1) ≈ 0.8413, etc.
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General Normal Random Variables

Let σ > 0 and µ ∈ R. If Z ∼ N (0, 1) and X = µ+ σZ, then

X − µ
σ

= Z ∼ N (0, 1).

However, the c.d.f. of X is given by

FX(x) = P (X ≤ x) = P (µ+ σZ ≤ x) = P

(
Z ≤ x− µ

σ

)
= Φ

(
x− µ
σ

)
.
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The p.d.f. of X is then

fX(x) =
d

dx
FX(x) =

d

dx
Φ

(
x− µ
σ

)
=

1

σ
φ

(
x− µ
σ

)

Any random variable X with this c.d.f./p.d.f. must satisfy

E[X] = µ+ σE[Z] = µ, Var[X] = σ2Var[Z] = σ2 ⇒ SD[X] = σ

and is said to be normal with mean µ and variance σ2, denoted by
X ∼ N (µ, σ2).

Every general normal X can be obtained by a linear transformation of the
standard normal Z!
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Examples:

1. Assume that Z represents the standard normal random variable. Evaluate
the following probabilities:

a) P (Z ≤ 0.5) = 0.6915
b) P (Z < −0.3) = 0.3821
c) P (Z > 0.5) = 1− P (Z ≤ 0.5) = 1− 0.6915 = 0.3085,
d) P (0.1 < Z < 0.3) = P (Z < 0.3)− P (Z < 0.1) = 0.6179− 0.5398 =

0.0781,
e) P (−1.2 < Z < 0.3) = P (Z < 0.3)− P (Z < −1.2) = 0.5028.
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2. Suppose that the waiting time (in minutes) for a coffee at 9am is
normally distributed with mean 5 and standard deviation 0.5. What is
the probability that one such waiting time is at most 6 minutes?

Solution: let X denote the waiting time; then X ∼ N (5, 0.52) and the
standardised random variable is a standard normal:

Z =
X − 5

0.5
∼ N (0, 1) .

The desired probability is

P (X ≤ 6) = P

(
X − 5

0.5
≤ 6− 5

0.5

)
= P

(
Z ≤ 6− 5

0.5

)
= Φ

(
6− 5

0.5

)
= Φ(2) = P (Z ≤ 2) ≈ 0.9772 (reading from the table).
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3. Suppose that bottles of beer are filled in such a way that the actual
volume of the liquid in them (in mL) varies randomly according to a
normal distribution with µ = 376.1 and σ = 0.4. What is the probability
that the volume in any randomly selected bottle is less than 375mL?

Solution: let X denote the volume of the liquid in the bottle; then

X ∼ N (376.1, 0.42) and so Z =
X − 376.1

0.4
∼ N (0, 1) .

The desired probability is

P (X < 375) = P

(
X − 376.1

0.4
<

375− 376.1

0.4

)
= P

(
Z <

−1.1

0.4

)
= P (Z ≤ −2.75) = Φ (−2.75) ≈ 0.003 .
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4. If Z ∼ N (0, 1), for which values a, b and c do we have

a) P (Z ≤ a) = 0.95;
b) P (|Z| ≤ b) = P (−b ≤ Z ≤ b) = 0.99;
c) P (|Z| ≥ c) = 0.01.

Solution:

a) From the table we see that

P (Z ≤ 1.64) ≈ 0.9495 and P (Z ≤ 1.65) ≈ 0.9505 .

Clearly we must have 1.64 < a < 1.65; a linear interpolation provides
a decent guess at a ≈ 1.645, although this level of precision is usually
not necessary. It is often sufficient to simply present the initial interval
estimate.
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b) Note that

P (−b ≤ Z ≤ b) = P (Z ≤ b)− P (Z < −b)

However the p.d.f. φ(z) is symmetric about z = 0, which means that

P (Z < −b) = P (Z > b) = 1− P (Z ≤ b),

and so that

P (−b ≤ Z ≤ b) = P (Z ≤ b)− [1− P (Z ≤ b)] = 2P (Z ≤ b)− 1

In the question, P (−b ≤ Z ≤ b) = 0.99, so that

2P (Z ≤ b)− 1 = 0.99 ⇒ P (Z ≤ b) =
1 + 0.99

2
= 0.995 ;
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Consulting the table we see that

P (Z ≤ 2.57) ≈ 0.9949 and P (Z ≤ 2.58) ≈ 0.9951;

linear interpolation suggests taking b ≈ 2.575.
c) Note that {|Z| ≥ c} = {|Z| < c}c, so we need to find c such that

P (|Z| < c) = 1− P (|Z| ≥ c) = 0.99.

But this is equivalent to

P (−c < Z < c) = P (−c ≤ Z ≤ c) = 0.99

since |x| < y ⇔ −y < x < y, and P (Z = c) = 0 for all c. This
problem was solved in the preceding example; take c ≈ 2.575.
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3.4 – Exponential Distributions

Assume that cars arrive according to a Poisson process with rate λ, i.e.
the number of cars arriving within a fixed unit time period is a Poisson
random variable with parameter λ.

Over a period of time x, we would expect the number of arrivals N to
follow a Poisson process with parameter λx. Let X be the wait time to the
first car arrival. Then

P (X > x) = 1− P (X ≤ x) = P (N = 0) = exp(−λx).

We say that X follows a exponential distribution Exp(λ), and

FX(x) =

{
0 for x < 0
1− e−λx for 0 ≤ x and fX(x) =

{
0 for x ≤ 0
λe−λx for 0 ≤ x
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If X ∼ Exp(4), then P (X < 0.5) = FX(0.5) = 1− e−4(0.5) ≈ 0.865.
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Properties of Exponential Random Variables

µ = E[X] = 1/λ;

σ2 = Var[X] = 1/λ2;

Memory-Less Property:

P (X > s+ t | X > t) = P (X > s),

Exp(λ) is the continuous analogue to the geometric distribution Geo(p).
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Example: the lifetime of a certain type of light bulb has an exponential
distribution with mean 100 hours (i.e. λ = 1/100).

1. What is the probability that a light bulb will last at least 100 hours?

Solution: X ∼ Exp(1/100), so

P (X > 100) = 1− P (X ≤ 100) = exp(−100/100) = e−1 ≈ 0.3679.

2. Given that a light bulb has already been burning for 100 hours, what is
the probability that it will last at least 100 hours more?

Solution: we are interested in evaluating P (X > 200|X > 100). By the
memory-less property,

P (X > 200|X > 100) = P (X > 200− 100) = P (X > 100) ≈ 0.3679.
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3. The manufacturer wants to guarantee that their light bulbs will last at
least t hours. What should t be in order to ensure that 90% of the light
bulbs will last longer than t hours?

Solution: we need to find t such that P (X > t) = 0.9. In other words,
we are looking for t such that

0.9 = P (X > t) = 1− P (X ≤ t) = 1− FX(t) = e−0.01t,

that is

ln 0.9 = −0.01t =⇒ t = −100 ln 0.9 ≈ 10.53605 hours.
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3.5 – Gamma Distributions

Assume that cars arrive according to a Poisson process with rate λ. Recall
that if X is the time to the first car arrival, then X ∼ Exp(λ).

If Y is the wait time to the rth arrival, then Y follows a Gamma distribution
with parameters λ and r, Y ∼ Γ(λ, r), for which the p.d.f. is

fY (y) =

{
0 for y < 0
yr−1

(r−1)!λ
re−λy for 0 ≤ y

FY (y) cannot be expressed with elementary functions. We also have

µ = E[Y ] =
r

λ
and σ2 = Var[Y ] =

r

λ2
.
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Examples:

1. Suppose that an average of 30 customers per hour arrive at a shop in
accordance with a Poisson process, that is to say, λ = 1/2 customers
arrive on average every minute. What is the probability that the
shopkeeper will wait more than 5 minutes before both of the first two
customers arrive?

Solution: let Y denote the wait time in minutes until the second
customer arrives. Then Y ∼ Γ(1/2, 2) and

P (Y > 5) =

∫ ∞
5

y2−1

(2− 1)!
(1/2)2e−y/2 dy =

∫ ∞
5

ye−y/2

4
dy

=
1

4

[
−2ye−y/2 − 4e−y/2

]∞
5

=
7

2
e−5/2 ≈ 0.287.

Based on course notes by Rafa l Kulik 44



MAT 2377 – Probability and Statistics for Engineers Chapter 3 – Continuous Distributions

2. Telephone calls arrive at a switchboard at a mean rate of λ = 2 per
minute, according to a Poisson process. Let Y be the waiting time until
the 5th call arrives. What is the p.d.f., the mean, and the variance of Y ?

Solution: we have

fY (y) =
25y4

4!
e−2y, for 0 ≤ y <∞, E[Y ] =

5

2
, Var[Y ] =

5

4
.

The Gamma distribution can be extended to cases where r > 0 is not an
integer by replacing (r − 1)! by Γ(r) =

∫∞
0
tr−1e−t dt.

The exponential and the χ2 distributions (we will discuss that one later) are
special cases of Γ(λ, r): Exp(λ) = Γ(λ, 1) and χ2(r) = Γ(1/2, r).
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3.6 – Joint Distributions

Let X, Y be two continuous random variables. The joint probability
distribution function (joint p.d.f.) of X,Y is a function f(x, y) satisfying

1. f(x, y) ≥ 0, for all x, y;

2.
∫∞
−∞

∫∞
−∞ f(x, y) dxdy = 1, and

3. P (A) =
∫∫
A
f(x, y) dxdy, where A ⊆ R2.

Properties for discrete r.v.: replace integrals by sums, cap f(x, y) ≤ 1.

Property 3 implies that P (A) is the volume of the solid over the region A
in the xy plane bounded by the surface z = f(x, y).
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Examples:

1. Roll a pair of unbiased dice. For each of the 36 possible outcomes, let
X denote the smaller roll, and Y the larger roll.

a) How many outcomes correspond to the event A = {(X = 2, Y = 3)}?
Solution: the rolls (3, 2) and (2, 3) both give rise to event A.

b) What is P (A)?
Solution: there are 36 possible outcomes, so P (A) = 2

36 ≈ 0.0556.

c) What is the joint p.m.f. of X,Y ?
Solution: there is only one outcome (X = a, Y = a) that gives rise
to {X = Y = a}. For every other event {X 6= Y }, two outcomes do
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the trick: (X,Y ) and (Y,X). The joint p.m.f. is thus

f(x, y) =

{
1/36 1 ≤ x = y ≤ 6

2/36 1 ≤ x < y ≤ 6

The first property is automatically satisfied, as is the third (by
construction). There are only 6 outcomes for which X = Y , all
the remaining outcomes (of which there are 15) have X < Y . Thus,

6∑
x=1

6∑
y=x

f(x, y) = 6 · 1

36
+ 15 · 2

36
= 1.
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d) Compute P (X = a) and P (Y = b), for a, b = 1, . . . , 6.
Solution: for every a = 1, . . . , 6, the event {X = a} corresponds to
the following union of events:

{X = a, Y = a} ∪ {X = a, Y = a+ 1} ∪ · · · ∪ {X = a, Y = 6}.

These events are mutually exclusive, so that

P (X = a) =

6∑
y=a

P ({X = a, Y = y}) =
1

36
+

6∑
y=a+1

2

36

=
1

36
+

2(6− a)

36
, a = 1, . . . , 6.

Similarly, we get P (Y = b) = 1
36 + 2(b−6)

36 , b = 1, . . . , 6. These
marginal probabilities can be found in the margins of the p.m.f.
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e) Compute P (X = 3|Y > 3) and P (Y ≤ 3|X ≥ 4).
Solution: the notation suggests how to compute these conditional
probabilities:

P (X = 3|Y > 3) =
P (X = 3 ∩ Y > 3)

P (Y > 3)

The region corresponding to P (Y > 3) = 27
36 is shaded in red (see next

slide); the region corresponding to P (X = 3) = 7
36 is shaded in blue.

The region corresponding to P (X = 3∩Y > 3) = 6
36 is the intersection

of the blue and the red regions, so

P (X = 3|Y > 3) =
6/36

27/36
=

6

27
≈ 0.2222.
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Since P (Y ≤ 3 ∩X ≥ 4) = 0, P (Y ≤ 3|X ≥ 4) = 0.

f) Are X and Y independent?
Solution: why don’t we simply use the multiplicative rule to compute
P (X = 3 ∩ Y > 3) = P (X = 3)P (Y > 3)?

Well, we don’t yet know if X and Y are independent, that is,
we don’t know if

P (X = x, Y = y) = P (X = x)P (Y = y) for all allowable x, y.

As it is, P (X = 1, Y = 1) = 1
36, but P (X = 1)P (Y = 1) = 11

36 ·
1
36,

so X and Y are dependent (this is often the case when the domain
of the joint p.d.f./p.m.f. is not rectangular).
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2. There are 8 similar chips in a bowl: three marked (0, 0), two marked
(1, 0), two marked (0, 1) and one marked (1, 1). A player selects a chip
at random and is given the sum of the two coordinates in dollars.

a) What is the joint probability mass function of X1, and X2?
Solution: let X1 and X2 represent the coordinates; we have

f(x1, x2) =
3− x1 − x2

8
, x1, x2 = 0, 1.

a) What is the expected pay-off for this game?
Solution: the pay-off is simply X1 +X2. The expected pay-off is thus

E[X1 +X2] =

1∑
x1=0

0∑
x2=1

(x1 + x2)f(x1, x2) = 0 ·
3

8
+ 1 ·

2

8
+ 1 ·

2

8
+ 2 ·

1

8
= 0.75.
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3. Let X and Y have joint p.d.f.

f(x, y) = 2, 0 ≤ y ≤ x ≤ 1.

a) What is the support of f(x, y)?
Solution: the support is the set S = {(x, y) : 0 ≤ y ≤ x ≤ 1}, a
triangle in the xy plane bounded by the x−axis, the line y = 1, and
the line y = x. The support is the blue triangle shown below.
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b) What is P (0 ≤ X ≤ 0.5, 0 ≤ Y ≤ 0.5)?
Solution: we need to evaluate the integral over the shaded area:

P (0 ≤ X ≤ 0.5, 0 ≤ Y ≤ 0.5) = P (0 ≤ X ≤ 0.5, 0 ≤ Y ≤ X)

=

∫ 0.5

0

∫ x

0

2 dydx =

∫ 0.5

0

[2y]
y=x
y=0 dx

=

∫ 0.5

0

2x dx = 1/4.

c) What are the marginal probabilities P (X = x) and P (Y = y)?
Solution: we get

P (X = x) =

∫ ∞
−∞

f(x, y) dy =

∫ y=x

y=0

2 dy = [2y]
y=x
y=0 = 2x, 0 ≤ x ≤ 1
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and

P (Y = y) =

∫ ∞
−∞

f(x, y) dx =

∫ x=1

x=y

2 dx

= [2x]
x=1
x=y = 2− 2y, 0 ≤ y ≤ 1.

d) Compute E[X], E[Y ], and E[Y 2]
Solution: we have

E[X] =

∫∫
S

xf(x, y) dA =

∫ 1

0

∫ x

0

2x dydx =

∫ 1

0

[2xy]
y=x
y=0 dx

=

∫ 1

0

2x2 dx =

[
2

3
x3
]1
0

=
2

3
;
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E[Y ] =

∫∫
S

yf(x, y) dA =

∫ 1

0

∫ 1

y

2y dxdy =

∫ 1

0

[2xy]
x=1
x=y dy

=

∫ 1

0

(2y − 2y2) dy =

[
y2 − 2

3
y3
]1
0

=
1

3
;

E[Y 2] =

∫∫
S

y2f(x, y) dA =

∫ 1

0

∫ 1

y

2y2 dxdy =

∫ 1

0

[
2xy2

]x=1

x=y
dy

=

∫ 1

0

(2y − 2y3) dy =

[
2

3
y3 − 1

2
y4
]1
0

=
1

6

e) Are X and Y independent?
Solution: they are not independent as the support of the joint p.d.f.
is not rectangular.
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3.7 – Normal Approximation of the Binomial Distribution

If X ∼ B(n, p) then we may interpret X as a sum of independent and
identically distributed random variables

X = I1 + I2 + · · ·+ In where each Ii ∼ B(1, p) .

Thus, according to the Central Limit Theorem (more on this later), for
large n, we have

X − np√
np(1− p)

approx∼ N (0, 1) ,

i.e. for large n if X
exact∼ B(n, p) then X

approx∼ N (np, np(1− p)).
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Normal Approximation with Continuity Correction

Let X ∼ B(n, p). Recall that E[X] = np and Var[X] = np(1− p).

If n is large, we may approximate X by a normal random variable in the
following way:

P (X ≤ x) = P (X < x+ 0.5) = P

(
Z <

x− np+ 0.5√
np(1− p)

)

and

P (X ≥ x) = P (X > x− 0.5) = P

(
Z >

x− np− 0.5√
np(1− p)

)
.
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Example: suppose X ∼ B(36, 0.5). Provide a normal approximation to the
probability P (X ≤ 12). Note: For n = 36 the binomial probabilities are
not available in the textbook tables.

Solution: since E[X] = 36× 0.5 = 18 and Var[X] = 36× 0.5× 0.5 = 9,

P (X ≤ 12) = P

(
X − 18

3
≤ 12− 18 + 0.5

3

)
norm.approx’n
≈ Φ(−1.83)

table
≈ 0.033 .

Compare this to the R value of pbinom(12, 36, 0.5) = 0.0326.
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Computing Binomial Probabilities

We thus have at least 3 ways to compute (or approximate) binomial
probabilities:

Use the exact formula: if X ∼ B(n, p) then for each x = 0, 1, . . . , n,
P (X = x) =

(
n
x

)
px(1− p)n−x;

Use tables: if n ≤ 15 and p is one of 0.1, 0.2,. . . , 0.9, then the CDF is
in the textbook (must express desired probability in terms of CDF, i.e.
in form P (X ≤ x) first), i.e.

P (X < 3) = P (X ≤ 2); P (X = 7) = P (X ≤ 7)− P (X ≤ 6) ;

P (X > 7) = 1− P (X ≤ 7); P (X ≥ 5) = 1− P (X ≤ 4) etc.
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Use normal approximation: the suggested “rule of thumb ” in the
binomial case is: if np and n(1 − p) are both ≥ 5, the normal
approximation X ∼ N (np, np(1− p))

P (X ≤ x) ≈ Φ

(
x+ 0.5− np√
np(1− p)

)

P (X ≥ x) ≈ 1− Φ

(
x− 0.5− np√
np(1− p)

)

for x = 0, 1, . . . , n should provide a decent approximation.
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Appendix – Summary

X Example f(x) Domain E[X] Var[X]

Uniform Select a point

at random from

[a, b]

1
b−a a ≤ x ≤ b a+b

2
(b−a)2

12

Normal Meas. errors;

children heights;

breaking

strengths,

etc.

exp(−(x−µ)2/2σ2)
σ
√
2π

−∞ < x <∞ µ σ2
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Summary

X Example f(x) Domain E[X] Var[X]

Exponential Waiting time to

first arrival in a

Poisson process

with rate λ

λe−λx 0 ≤ x <∞ 1
λ

1
λ2

Gamma Waiting time to

rth arrival in a

Poisson process

with rate λ

xr−1
(r−1)!λ

re−λx 0 ≤ x <∞ r
λ

r
λ2
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