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3.1 — Continuous Random Variables

How do we approach probabilities where there there are uncountably
infinitely many outcomes, such as one might encounter if X represents
the height of an individual in the population, for instance (e.g., the outcomes
reside in a continuous interval on the real line)?

What's the probability that a randomly selected person is 6 feet tall?

In the discrete case, the probability mass function fx(z) = P(X = z) was
the main object of interest. In the continuous case, the analogous role is
played by the probability density function (p.d.f.), still denoted by fx (),
but

fx(z) # P(X = x).
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The (cumulative) distribution function (c.d.f.) of any such random
variable X is still defined by

Fx(z) = P(X <),

viewed as a function of a real variable z; but P(X < x) is not simply
computed by adding a few terms of the form P(X = x;). Note that

lim Fx(x) =0 and lim Fx(x)=1.
T——00 T —>+00
We can describe the distribution of the random variable X via the following
relationship between fx(x) and F'x(x):

d

fx(x) = %FX(@-
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Area Under a Curve

For any a < b, we have
{X <b}={X<a}lU{a< X <},

so that
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Probability Density Functions

The probability density function (p.d.f.) of a continuous random variable
X is an integrable function fx : X(S) — R such that

= fx(z) >0 for all z € X(S) and lim, 4 fx(z) = 0;

. fs fx(x)dr =1,

= for any event A = (a,b) = {X|a < X < b},

P(4) = P((a.b)) = / fx() d:
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= for any z,
Fx(x)=P(X <x) = fx(t)dt;
= for any z,
Px<X)=1-P(X<x)=1—Fx(z)=1- fx () dt;

= for any a, b,

Pla< X <b)=Pa<X<b)=Pla<X<b)=Pla< X <b)
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Examples:

1. Assume that X has the following p.d.f.

/

0 if x <0 2
fx(@)y=<{x/2 f0<z<2 (notethat/f(-r)dw:l)-
0 if £ > 2 ’

\

The corresponding c.d.f. is given by:

FX(x):P(ng):/_x fx(t) dt

0 if x <0
=9 1/2- [Ftdt=1/2-[t?/2]F =2?/4 fO0<z <2
|1 if x> 2
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p.d.f. for X
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2. What is the probability of the event A = {X 0.5 < X < 1.5}7

Solution: we need to evaluate

P(A) = P05 < X < 1.5) = Fx(1.5)— Fx (0.5) = (15)2 - (0?2 — %

3. What is the probability of the event B = { X |X = 1}7

Solution: we need to evaluate
P(B)=P(X=1)=P1<X<1)=Fx(1)— Fx(1)=0.
This is unexpected: even though fx(1) =0.5#0, P(X =1) =0! The

probability that a continuous random variable X take on any particular
single value is nil.
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p.d.f. for X
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4. Assume that, for some A > 0, X has the following p.d.f.:

_ JAexp(=Az) ifx >0 _ o0 B
fX(ﬂU){O £ <0 (is /_Oof(ac)da;—l?)

What is the probability that X > 10.27

Solution: the corresponding c.d.f. is given by:

0 if x <0

Fx(z;)) = P\(X <z) = /_OO fx(t)dt = {Afoxexp(_)\t) dt if x>0

_Ju if 2 < 0
T ) = exp(—ADE = 1 — exp(—Az) if x>0
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Then
Py\(X >10.2) =1-Fx(10.2; A\) = 1—[1—exp(—10.2)\)] = exp(—10.2))

is a function of the distribution parameter X\ itself:

A PA(X > 10.2)
0.002 0.9798
0.02 0.8155
0.2 0.1300
2 1.38 x 1079
20 2.54 x 10789
200 | O (for all intents and purposes)
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p.d.f. for X
& 4
; | \
— [=]
2 5
.\H
8 T
e - T
g | I—
f=}

0 5 10 15
X
c.d.f. for X
<
. — I
(=) //-/7
2 3 "
g
< |
o
(']
o
o4 7
(=)
| I | 1
0 5 10 15

A=0.2, Pyo(X >10.2) ~ 0.1300

Based on course notes by Rafat Kulik 15



MAT 2377 — Probability and Statistics for Engineers Chapter 3 — Continuous Distributions
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A=2 P(X >10.2) ~ 1.38 x 107°
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3.2 — Expectation of a Continuous Random Variable

For a continuous random variable X with p.d.f. fx(z), the expectation of
X is defined as

B[X] = /OO 2 fx(2) dz

— 00

In a similar way to the discrete case, for any function h(X), we have

B = [ " b fx () da.

— 00

Note that the expectation need not exist!
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Examples:

1. Find the expected value of X in the example 1, above.

Solution: we need to evaluate

2. What about X?27?

Solution: we have E[X?] = [/ & dz = 2.
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3. Compute the expectation of the random variable X with p.d.f.

fx(e) = ——

= ., —o00 < x < 00.
r(l+a22) ST

Solution: let's verify that fx(z) is indeed a p.d.f.:

/_O; fx(z)dr = %/OO L e = l[amtan@)]gooo _ 1 [g _ —771 1

oo L+ 22 T T

We can also easily see that

1 1 1
e dt = - arctan(a:)—l—§.

Fx(z) = P(X < z) :/_xoofx(t)dt:%/_;
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p.d.f. for X
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In particular, P(X < 3) = Fx(3) = L arctan(3) +

o

~ 0.8976, say.

The expectation of X is

B[X] :/_O:O:Efx(a:)dx: /_O; W(lj—x?) dz.

If this improper integral exists, then it needs to be equal, among other
things, both to

/O T4 +/OO T ge andto lim [ —F g
€T €Z 11m €T.
oo (1 4 2?) o m(l+z%) a—oo |, m(1+ x?)

\ 7

ca ndi‘drate 1 ca nd?cj;te 2

X

It is straightforward to find an antiderivative of prgEY
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Set u =1+ x2. Then du = 2zdx and xdx = %“, and we obtain

T 1 1 1
dr = — du = —1 = —In(1 2).
/77(1—|—x2) TTor [ YYY T o nfu 27 n(l+27%)

The candidate 2 integral reduces to

2\74 2 N2
lim [ln(l;—x )] ~ tim [ln(l + a®) B In(1+ (—a)?) ~ fim 0= 0:
7T _

a— 00 2 2 a— 00

a— o0

while the candidate 1 integral reduces to

[mu; x2)] OOO . [mu; 22)

] =0—(o0)4+00—0=00—00
0

which is undefined. Thus E|X| does not exist (or is undefined).
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Mean and Variance of a Continuous Random Variable

In a similar way to the discrete case, the mean of X is defined to be E[X],
and the variance and standard deviation of X are, as before,

o

ef comp. formula

Var[X] & B [(X — B(X))?] “"E™ By _ B2[x],
SD|X| = y/Var|X].

As in the discrete case, if X,Y are continuous random variables, and
a,b € R,

ElaY + bX] = aE[Y] + DE[X]

Var[a + bX] = b*Var[X]

SD[a + bX] = |b|SD[X]
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3.3 — Normal Distributions

An very important example of continuous distributions is that of the special
probability distribution function

P(2) = \/%6_22/2.

The corresponding cumulative distribution function is denoted by

B(2)=P(Z<2) = /_ () dt .

A random variable Z with this c.d.f. is said to have a standard normal
distribution, and we write Z ~ N (0, 1).
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Standard Normal Random Variables

The expectation and variance of Z ~ N(0,1) are

E[Z] = /_OO z2p(z)dz = /_OO 2 \/1276_%22 dz =0,

Var|Z] = /OO 2 ¢(z)dz=1, SD[Z]=+/Var[Z] =V1=1.
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General Normal Random Variables

leto >0and peR. If Z~N(0,1) and X =+ 0 Z, then

X —p
o

= Z ~N(0,1).

However, the c.d.f. of X is given by

Pk@*;HXSJOZPW+nZ§xy:P(Zgx_“)

0
o

Based on course notes by Rafat Kulik 29




MAT 2377 — Probability and Statistics for Engineers Chapter 3 — Continuous Distributions

The p.d.f. of X is then

- - £0(252) 1o

Any random variable X with this c.d.f./p.d.f. must satisfy

E[X] = pu+oE[Z] = u, Var[X]=o0?Var[Z] =0 = SD[X] =0

and is said to be normal with mean 1 and variance o°, denoted by
X ~N(p,0?).

Every general normal X can be obtained by a linear transformation of the
standard normal 2!
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Table 1. Normal Distribution Function
Lower tail of the standard normal distribution
is tabulated

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.(

0.00 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 £
0.10 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 £
0.20 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.
0.30 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.¢
0.40 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.
0.50 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.%
0.60 | 0.7258 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.%
0.70 | 0.7580 | 0.7612 | 0.7642 | 0.7673 | 0.7703 | 0.7734 | 0.7764 | 0.7793 | 0.7823 | 0.%
0.80 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8079 | 0.8106 | 0.¢
0.90 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.¢

1.00 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.¢
1.10 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.¢
1.20 | 0.8849 | 0.8869 | 0.8888 | 0.8906 | 0.8925 | 0.8943 | 0.8962 | 0.8980 | 0.8997 | 0.¢
1.30 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.¢
1.40 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.¢
1.50 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9430 | 0.¢
1.60 | 0.9452 | 0.9463 | 0.9474 | 0.9485 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.¢
1.70 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.¢
1.80 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9700 | 0.¢
1.90 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.¢

2.00 | 0.9772 | 09778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.¢
2.10 |1 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.¢
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Examples:

1. Assume that Z represents the standard normal random variable. Evaluate
the following probabilities:

a) P(Z <0.5) =0.6915

b) P(Z < —0.3) = 0.3821

¢) P(Z>05)=1—P(Z<05)=1-0.6915 = 0.3085,

d) P(0.1<Z <0.3)=P(Z<0.3)—P(Z <0.1) = 0.6179 — 0.5398 =
0.0781,

e) P(—1.2< Z <0.3)=P(Z <0.3)— P(Z < —1.2) = 0.5028.
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2. Suppose that the waiting time (in minutes) for a coffee at 9am is
normally distributed with mean 5 and standard deviation 0.5. What is
the probability that one such waiting time is at most 6 minutes?

Solution: let X denote the waiting time; then X ~ N (5,0.5%) and the
standardised random variable is a standard normal:

X =5
4 =—-n~N(0,1).
0.9 N0, 1)

The desired probability is

X-5 _6-5 6—5 6—5
P(X<6) =P < —pPlz<—)=0(—=
(X =6) (0.5 —0.5> ( —0.5) (0.5)

= ®(2) = P(Z <2) =~ 0.9772 (reading from the table).
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3. Suppose that bottles of beer are filled in such a way that the actual
volume of the liquid in them (in mL) varies randomly according to a
normal distribution with ¢ = 376.1 and o = 0.4. What is the probability
that the volume in any randomly selected bottle is less than 375mL?

Solution: let X denote the volume of the liquid in the bottle; then

X —376.1
X ~ N(376.1,0.4%) andso Z = 2 ~ N(0,1).

The desired probability is

X —376.1 375 —376.1 1.1
P(X<375):P( <y >:P<Z<—>

= P(Z < —2.75) = ® (—2.75) ~ 0.003.
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4. If Z ~ N(0,1), for which values a, b and ¢ do we have

a) P(Z < a) = 0.95;
b) P(|Z| <b)=P(-b< Z <b) = 0.99;
c) P(|Z| > ¢) = 0.01.

Solution:

a) From the table we see that
P(Z < 1.64) ~0.9495 and P(Z < 1.65) ~ 0.9505.

Clearly we must have 1.64 < a < 1.65; a linear interpolation provides
a decent guess at a =~ 1.645, although this level of precision is usually
not necessary. It is often sufficient to simply present the initial interval
estimate.
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b) Note that
P(~b<Z<b)=P(Z<b) —P(Z< —b)
However the p.d.f. ¢(z) is symmetric about z = 0, which means that
P(Z <—=b)=P(Z>b)=1—P(Z <b),
and so that
P(-b<Z<b)=P(Z<b)—[1-P(Z<b)|=2P(Z<b)—1

In the question, P(—b < Z < b) = 0.99, so that

1 +0.99
QP(Z<b)—1=099 = P(Z<b) = +2 — 0.995:
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Consulting the table we see that
P(Z <2.57)~0.9949 and P(Z < 2.58) ~ 0.9951;

linear interpolation suggests taking b ~ 2.575.
c) Note that {|Z] > ¢} = {|Z| < ¢}°, so we need to find ¢ such that

P(|Z|<ec)=1—-P(|Z]| > ¢c)=0.99.
But this is equivalent to
P(—c<Z<c)=P(—c< Z<¢)=0.99

since |z| <y —y<x <y, and P(Z =c¢) =0 for all ¢. This
problem was solved in the preceding example; take ¢ ~ 2.575.
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3.4 — Exponential Distributions

Assume that cars arrive according to a Poisson process with rate )\, i.e.
the number of cars arriving within a fixed unit time period is a Poisson
random variable with parameter \.

Over a period of time x, we would expect the number of arrivals NV to
follow a Poisson process with parameter A\x. Let X be the wait time to the
first car arrival. Then

P(X>z)=1—-—P(X <z)=P(N =0) =exp(—Ax).
We say that X follows a exponential distribution Exp(\), and

0 forx <0 0 forx <0
Fx(aﬁ):{ -

l—e M for0<czx and fX(x):{Ae_M” for0 <z
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PDF for Exponential CDF for Exponential
P(X < 0.5) when lambda = 4 P(X < 0.5) when lambda = 4
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If X ~ Exp(4), then P(X < 0.5) = Fx(0.5) = 1 — e~*(0-3) x5 0.865.
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Properties of Exponential Random Variables

p=E[X]=1/X)

0% = Var[X] = 1/)?;

Memory-Less Property:

P X>s+t| X >t)=P(X > s),

Exp(\) is the continuous analogue to the geometric distribution Geo(p).
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Example: the lifetime of a certain type of light bulb has an exponential
distribution with mean 100 hours (i.e. A = 1/100).

1. What is the probability that a light bulb will last at least 100 hours?
Solution: X ~ Exp(1/100), so

P(X >100) =1 — P(X <100) = exp(—100/100) = e~ * ~ 0.3679.

2. Given that a light bulb has already been burning for 100 hours, what is
the probability that it will last at least 100 hours more?

Solution: we are interested in evaluating P(X > 200|X > 100). By the
memory-less property,

P(X > 200|X > 100) = P(X > 200 — 100) = P(X > 100) ~ 0.3679.
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3. The manufacturer wants to guarantee that their light bulbs will last at
least ¢t hours. What should ¢ be in order to ensure that 90% of the light
bulbs will last longer than ¢ hours?

Solution: we need to find ¢ such that P(X > t) = 0.9. In other words,
we are looking for ¢ such that

Y

that is

In0.9=-0.01t = ¢t=-1001n0.9 =~ 10.53605 hours.
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3.5 — Gamma Distributions
Assume that cars arrive according to a Poisson process with rate A. Recall
that if X is the time to the first car arrival, then X ~ Exp()).

If Y is the wait time to the rth arrival, then Y follows a Gamma distribution
with parameters A and r, Y ~ T'(\, ), for which the p.d.f. is

0 for y <0
Ir(y) = (73“{7;_11)!)\7”6_/\9 for 0 <y

Fy(y) cannot be expressed with elementary functions. We also have

p=E]Y]= and o? = Var[Y] = —.

> =
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Examples:

1. Suppose that an average of 30 customers per hour arrive at a shop in
accordance with a Poisson process, that is to say, A = 1/2 customers
arrive on average every minute. What is the probability that the
shopkeeper will wait more than 5 minutes before both of the first two
customers arrive?

Solution: let Y denote the wait time in minutes until the second
customer arrives. Then Y ~ I'(1/2,2) and

0, 2-1 0 ye—Y/2
y 2 —y/2 ye
PY >5) = [ ——(1/2)% ¥/2dy = d
v >3- [ gty = [ X
1 © 7
_ - {_zye—yﬂ - 46—@//2} = Lem5/2 ~ 0.287.
4 5 2
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2. Telephone calls arrive at a switchboard at a mean rate of A = 2 per
minute, according to a Poisson process. Let Y be the waiting time until
the 5th call arrives. What is the p.d.f., the mean, and the variance of Y7

Solution: we have

25y4 ) 5 5

The Gamma distribution can be extended to cases where r > 0 is not an
integer by replacing (r — 1)l by I'(r) = [~ t"te " dt.

The exponential and the x? distributions (we will discuss that one later) are
special cases of I'(\,r): Exp(A) =T'(\, 1) and x3(r) = T'(1/2,7).

Based on course notes by Rafat Kulik 45



MAT 2377 — Probability and Statistics for Engineers Chapter 3 — Continuous Distributions

3.6 — Joint Distributions

Let X, Y be two continuous random variables. The joint probability
distribution function (joint p.d.f.) of X,Y is a function f(x,y) satisfying

1. f(xz,y) >0, for all x, y;

2. [Z [ f(z,y)dzdy =1, and

3. ffA x,y) drdy, where A C R?.

Properties for discrete r.v.: replace integrals by sums, cap f(z,y) < 1.

Property 3 implies that P(A) is the volume of the solid over the region A
in the zy plane bounded by the surface z = f(x,y).
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Examples:

1. Roll a pair of unbiased dice. For each of the 36 possible outcomes, let
X denote the smaller roll, and Y the larger roll.

a) How many outcomes correspond to the event A = {(X =2,Y = 3)}7
Solution: the rolls (3,2) and (2, 3) both give rise to event A.

b) What is P(A)?
Solution: there are 36 possible outcomes, so P(A) = = ~ 0.0556.

c) What is the joint p.m.f. of X, Y7
Solution: there is only one outcome (X = a,Y = a) that gives rise
to {X =Y =a}. For every other event {X = Y}, two outcomes do
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the trick: (X,Y) and (Y, X). The joint p.m.f. is thus

1/36 1<z=y<6
flx,y) = /
2/36 1<z <y<6

The first property is automatically satisfied, as is the third (by
construction). There are only 6 outcomes for which X =Y, all
the remaining outcomes (of which there are 15) have X < Y. Thus,

6 6

1 2

r=1y=x
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y
11/36 6 1 ®2/36 ©2/36 ©2/36 ©2/36 2/36 1/36
9/36 5 ¢ ©2/36 2/36 ©2/36 2/36 e1/36
7/36 4 1 ®2/36 2/36 ©2/36 ©1/36
5/36 3t ®2/36 *2/36 1/36
3/36 2 ¢ ®2/36 ©1/36
1736 1 1 ® 1/36

1 2 3 4 5 o
1136 936 736 536 336 1/36
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d) Compute P(X =a) and P(Y =b), fora,b=1,...,6.
Solution: for every a = 1,...,6, the event {X = a} corresponds to
the following union of events:

{X=a,Y=0a}tU{X=0aY=a+1}U---U{X =a,Y =6}.

These events are mutually exclusive, so that

6 6

1 2
P(X:a):ZP({X:a,Y:y}):%+ 3 =
Yy=a y=a-+1
1 2(6—a)
= =1,...,6.
36 36 0 T o

Similarly, we get P(Y = b) = % + 2({35;6), b=1,...,6. These

marginal probabilities can be found in the margins of the p.m.f.
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e) Compute P(X =3|Y > 3) and P(Y < 3|X > 4).
Solution: the notation suggests how to compute these conditional
probabilities:

P(X=3NY > 3)
P(Y > 3)

P(X =3|Y >3) =

The region corresponding to P(Y > 3) = 2L is shaded in red (see next
slide); the region corresponding to P(X = 3) == is shaded in blue.

The region corresponding to P(X =3NY > 3) = % is the intersection
of the blue and the red regions, so

6/36 6
27/36 27

P(X =3|Y > 3) = ~ 0.2222.
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11/36

9/36

7/36

5/36

3/36

1/36

® 2/36

® 2/36

®2/36 *1/36

® 1/36

1 2 3 4 5 6
1136 936 7136 5536 3536 136
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f)

Since P(Y <3NX >4)=0, P(Y <3|X >4) =0.

Are X and Y independent?
Solution: why don't we simply use the multiplicative rule to compute
P(X=3NnY >3)=P(X =3)P(Y > 3)?

Well, we don't yet know if X and Y are independent, that is,
we don't know if

P X=zY=y) =PX=2)P(Y =y) for all allowable z,y.

Asitis, P(X =1,Y =1) =&, but P(X = 1)P(Y =1) = &L . L,

so X and Y are dependent (this is often the case when the domain
of the joint p.d.f./p.m.f. is not rectangular).
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2. There are 8 similar chips in a bowl: three marked (0,0), two marked
(1,0), two marked (0,1) and one marked (1,1). A player selects a chip
at random and is given the sum of the two coordinates in dollars.

a) What is the joint probability mass function of X3, and X57?
Solution: let X; and X5 represent the coordinates; we have

3—1'1—332

f(ajlva) — ] )

L1, Lo = O, 1.

a) What is the expected pay-off for this game?
Solution: the pay-off is simply X7 + X5. The expected pay-off is thus

1 0
3 2 2 1
E[X; + Xo] = ) Z(x1+x2)f(a;1,x2):o-§+1-§+1-§+2-§:0.75.

r1=0xz9=1
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3. Let X and Y have joint p.d.f.

flr,y) =2, 0<y<zx<l.

a) What is the support of f(x,y)?
Solution: the support is the set S = {(z,y) : 0 <y <z < 1}, a
triangle in the xy plane bounded by the z—axis, the line y = 1, and
the line y = x. The support is the blue triangle shown below.

19
0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1
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b) What is P(0< X <0.5,0<Y <0.5)7
Solution: we need to evaluate the integral over the shaded area:

PO<X<050<Y<05=P0<X<050<Y<X)

0.5 0.5
/ / Qdyda;—/ 2y],—y dx
0

:/ 2¢ dx = 1/4.
0

c) What are the marginal probabilities P(X = x) and P(Y = y)?
Solution: we get

o) Yy=x
P(XZZE):/ f(:v,y)dy:/ 2dy = [2y],—p =2z, 0<z<1
— 00 y=0
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and

=1
/ flx,y)d / 2dx
r=y
= [2z],

T,=2-2, 0<y<L

d) Compute E[X], E[Y], and E[Y?]
Solution: we have

//:cfxydA //Qxdyda:—/ 20y]V=" da
:/0 2x° da = Ex‘g]O:g;
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1 1 1
:// yf(z,y) dA:/ / 2ydwdy:/ 2zy];—, dy
S 0 Jy 0
9 1

/(2y—2y)dy— [y ——y] Zé;

E[Y?] = // v2f(z,y) dA = //Qy d:cdy—/ [ngﬁ]jj;dy

/O(2y—2y)dy— [By —59102%

e) Are X and Y independent?
Solution: they are not independent as the support of the joint p.d.f.
is not rectangular.
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3.7 — Normal Approximation of the Binomial Distribution

If X ~ B(n,p) then we may interpret X as a sum of independent and
identically distributed random variables

X=L+I+---+ 1, whereeach I; ~ B(1,p).

Thus, according to the Central Limit Theorem (more on this later), for
large n, we have

X — np apgox N(O 1)
vnp(l = p)

pprox

i.e. for large n if X “7 B(n, p) then X X% N(np, np(1 — p)).
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Normal Approximation with Continuity Correction

Let X ~ B(n,p). Recall that E[X] = np and Var|X| = np(1 — p).

If n is large, we may approximate X by a normal random variable in the
following way:

—np+0.5
_HX<@—PQRm+0@—P<Z chmil’ dux >

\/np 1—»p

and

\/np 1 —

HXZx%—HX>xQ®—P< x_m’05>
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Example: suppose X ~ B(36,0.5). Provide a normal approximation to the
probability P(X < 12). Note: For n = 36 the binomial probabilities are
not available in the textbook tables.

Solution: since E[X| =36 x 0.5 = 18 and Var[X] =36 x 0.5 x 0.5 =9,

X —18 12—-18+0.5
P(X§12):P( < 3* )

norm.approx’n table

~  ®(—1.83) ~ 0.033.

Compare this to the R value of pbinom(12,36,0.5) = 0.0326.
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Computing Binomial Probabilities

We thus have at least 3 ways to compute (or approximate) binomial
probabilities:

= Use the exact formula: if X ~ B(n,p) then for each z = 0,1,...,n,
P(X =1)= (Z)p"”(l —p)" %

= Use tables: if n <15 and p is one of 0.1, 0.2,. . ., 0.9, then the CDF is
in the textbook (must express desired probability in terms of CDF, i.e.
in form P(X < x) first), i.e.
P(X <3)=P(X <2); P(X
P(X>7)=1-P(X <7); P(X >

N=P(X<7)—P(X<6);
5)=1— P(X <4) etc.
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= Use normal approximation: the suggested “rule of thumb " in the
binomial case is: if np and n(l — p) are both > 5, the normal
approximation X ~ N (np,np(1 — p))

P(X <2) ~ (m—|—05—np>

\/npl—

—_ 05—
PX>a)~1-0 (2 P
\/npl—

fort = 0,1,...,n should provide a decent approximation.
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Appendix — Summary

X Example f(x) Domain E[X] Var[X]

: - +b (b—a)?
Uniform Select a point — a<xz<b o Lin_

at random from

la, b]
oD
Normal Meas. errors: eXp(_(:\_/% /207)  _oo <z < 00 L o2

children heights;
breaking
strengths,

etc.
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Summary
X Example f(x) Domain E[X] Var[X]
Exponential Waiting time to Ae 0<z <o % /\—12
first arrival in a
Poisson process
with rate A
Gamma Waiting time to %Are_)‘x 0<z< o0 T Vi

rth arrival in a
Poisson process
with rate A\
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