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Scenario – Motivation

Consider the following data, consisting of n = 20 paired measurements
(xi, yi) of hydrocarbon levels (x) and pure oxygen levels (y) in fuels:

x: 0.99 1.02 1.15 1.29 1.46 1.36 0.87 1.23 1.55 1.40

y: 90.01 89.05 91.43 93.74 96.73 94.45 87.59 91.77 99.42 93.65

x: 1.19 1.15 0.98 1.01 1.11 1.20 1.26 1.32 1.43 0.95

y: 93.54 92.52 90.56 89.54 89.85 90.39 93.25 93.41 94.98 87.33

Goals:

measure the strength of association between x and y

describe the relationship between x and y

Based on course notes by Rafa l Kulik 3



MAT 2377 – Probability and Statistics for Engineers Chapter 7 – Linear Regression and Correlation

A graphical display provides an initial description of the relationship.

It seems that points lie around a hidden line!
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7.1 – Coefficient of Correlation

For paired data (xi, yi), i = 1, . . . , n, the sample correlation coefficient
of x and y is

ρXY =

∑
(xi − x)(yi − y)√∑

(xi − x)2
∑

(yi − y)2
=

Sxy√
Sxx Syy

.

The coefficient ρXY is defined only if Sxx 6= 0 and Syy 6= 0, i.e. neither xi
nor yi are constant. The variables x and y are uncorrelated if ρXY = 0 (or
very small, in practice), and correlated if ρXY 6= 0 (or |ρXY | is “large”, in
practice).

Example: for the data on the previous slide, we have Sxy ≈ 10.18,
Sxx ≈ 0.68, Syy ≈ 173.38, and ρXY ≈ 10.18√

0.68·173.38 ≈ 0.94.
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Properties of ρXY

ρXY is unaffected by changes of scale or origin. Adding constants to x
does not change x − x and multiplying x and y by constants changes
both the numerator and denominator equally;

ρXY is symmetric in x and y (i.e. ρXY = ρY X) and −1 ≤ ρXY ≤ 1; if
ρXY = ±1, then the observations (xi, yi) all lie on a straight line with a
positive (negative) slope;

the sign of ρXY reflects the trend of the points;

a high correlation coefficient value |ρXY | does not necessarily imply a
causal relationship between the two variables;
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note that x and y can have a very strong non-linear relationship without
ρXY reflecting it (−0.12 on the left, 0.93 on the right).
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Computing ρXY with R

> x=c(0.99, 1.02, 1.15, 1.29, 1.46, 1.36, 0.87, 1.23, 1.55, 1.40,

1.19, 1.15, 0.98, 1.01, 1.11, 1.20, 1.26, 1.32, 1.43, 0.95)

> y=c(90.01, 89.05, 91.43, 93.74, 96.73, 94.45, 87.59, 91.77, 99.42, 93.65,

93.54, 92.52, 90.56, 89.54, 89.85, 90.39, 93.25, 93.41, 94.98, 87.33)

> plot(x,y) # will produce the scatterplot on slide 3

> cor(x,y)

0.9367154

> Sxy=sum((x-mean(x))*(y-mean(y)))

> Sxx=sum((x-mean(x))^2)

> Syy=sum((y-mean(y))^2)

> rho=Sxy/(sqrt(Sxx*Syy))

> rho

0.9367154
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7.2 – Simple Linear Regression

Regression analysis can be used to describe the relationship between a
predictor variable (or regressor) X and a response variable Y . Assume
that they are related through the model

Y = β0 + β1X + ε,

where ε is a random error and β0, β1 are the regression coefficients.

It is assumed that E[ε] = 0, and that the error’s variance σ2
ε = σ2 is

constant. Then the model can be re-written as

E[Y |X] = β0 + β1X.
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Suppose that we have observations (xi, yi), i = 1, . . . , n so that

yi = β0 + β1xi + εi, i = 1, . . . , n.

The aim is to find estimators b0, b1 of the unknown parameters β0, β1, in
order to obtain the estimated (fitted) regression line

ŷi = b0 + b1xi

The residual or error in predicting yi using ŷi is thus

ei = yi − ŷi = yi − b0 − b1xi, i = 1, . . . , n.

How do we find the estimators? How do we determine if the fitted line is a
good model for the data?
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fitted line: ŷ = 74.28 + 14.95x
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residuals: ei = yi − ŷi
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Consider the Sum of Squared Errors (SSE):

SSE =

n∑
i=1

e2i =

n∑
i=1

(yi − b0 − b1xi)2.

(It can be shown that SSE/σ2 ∼ χ2(n− 2), but that’s outside the scope of
this course). The optimal values of b0 and b1 are those that minimize the
SSE. As such, solving

0 =
dSSE

db0
= −2

∑
(yi − b0 − b1xi) = −2n(y − b0 − b1x)

0 =
dSSE

db1
= −2

∑
(yi − b0 − b1xi)xi = −2

(∑
xiyi − nb0x− b1

∑
x2i
)

yields the least squares estimators b0, b1 or β0, β1, respectively.
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From dSSE
db0

= 0, we get

y − b0 − b1x = 0 ⇒ b0 = y − b1x.

For the second coefficient, note that

Sxy =
∑

(xi − x)(yi − y) =
∑
xiyi − nxy

Sxx =
∑

(xi − x)2 =
∑
x2i − nx2,

which can be re-written as

∑
xiyi = Sxy + nxy∑
x2i = Sxx + nx2.
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From dSSE
db1

= 0, we get∑
xiyi − nb0x− b1

∑
x2i = 0

(Sxy + nxy)− nb0x− b1(Sxx + nx2) = 0

Sxy + nxy − n(y − b1x)x− b1Sxx − nb1x2 = 0

Sxy + nxy − nxy + nb1x
2 − b1Sxx − nb1x2 = 0

Sxy − b1Sxx = 0

b1 =
Sxy
Sxx

.

The estimators are also linear combinations of the observed responses yi:

b1 =
Sxy
Sxx

=

n∑
i=1

uiyi, b0 = y − b1x =

n∑
i=1

viyi.
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Example: for the fuels data, we’ve already found that

Sxy ≈ 10.18, Sxx ≈ 0.68, and Syy = 173.38.

Thus, b1 =
10.18
0.68 = 14.95. Since

n = 20, x = 1.20, and y = 92.16,

we also have b0 = 92.16− 20(1.20) = 74.28.

Consequently, the fitted regression line is

ŷ = 74.28 + 14.95x.
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fitted line: ŷ = 74.28 + 14.95x
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Estimating σ2

Recall that the variance of the error term is σ2
ε = σ2. To estimate σ2 we

use

SSE =

n∑
i=1

e2i =

n∑
i=1

(yi − ŷi)2.

The question is: which denominator should we use?

For a population, we would use n. For a sample, we would use n− 1. For
the regression error, the unbiased estimator of σ2 is in fact

σ̂2 = MSE =
SSE

n− 2
=
Syy − b1Sxy

n− 2
,

where the SSE has n− 2 degrees of freedom, because 2 parameters had
to be estimated in order to obtain ŷi: b0 and b1.
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Example: what is the estimated variance of the noise in the linear model
for the fuels data?

Solution: since Sxy ≈ 10.18, Syy = 173.38, b1 = 14.95, and n = 20, we
have

σ̂2 =
173.38− 14.95(10.18)

20− 2
≈ 1.18.

The following code shows how to plot the line of best fit, obtain the
estimators of β1, β2, and extract the mean squared error (MSE) in R,
assuming that x, y, Sxx, and Sxy have been assigned/computed in a
previous step.

> library(ggplot2) ### for line of best fit, residual plots

> fuels=data.frame(x,y)

> model <- lm(y ~ x, data=fuels) ### R function for linear regression
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> summary(model) ### we will explain this output later

Call: lm(formula = y ~ x, data = fuels)

Residuals:

Min 1Q Median 3Q Max

-1.83029 -0.73334 0.04497 0.69969 1.96809

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 74.283 1.593 46.62 < 2e-16 ***

x 14.947 1.317 11.35 1.23e-09 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.087 on 18 degrees of freedom

Multiple R-squared: 0.8774, Adjusted R-squared: 0.8706

F-statistic: 128.9 on 1 and 18 DF, p-value: 1.227e-09
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> ggplot(model) + geom_point(aes(x=x, y=y)) + ### plotting line of best fit

geom_line(aes(x=x, y=.fitted), color="blue" ) +

theme_bw()

> ggplot(model) + geom_point(aes(x=x, y=y)) + ### plotting residuals

geom_line(aes(x=x, y=.fitted), color="blue" ) +

geom_linerange(aes(x=x, ymin=.fitted, ymax=y), color="red") +

theme_bw()

> n=length(x)

> sigma2 = (Syy-as.numeric(model$coefficients[2])*Sxy)/(n-2) ### directly

> sigma2

1.180545

> summary(model)$sigma^2 ### getting the MSE from the summary

1.180545
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Properties of the Least Square Estimators

Recall that the simple linear regression model is

Y = β0 + β1X + ε, with E[ε] = 0, σ2
ε = σ2.

Given X, Y is a random variable with mean β0 + β1X and variance σ2:

E[Y |X] = β0 + β1X, Var[Y |X] = σ2.

Note that b0 and b1 depend on the observed x’s and y’s, which are
realizations of the random variables X and Y . As a result, the estimators
are random variables, that is to say: different realizations (observed data)
lead to different estimates b0, b1 for β0, β1.
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It can be shown that

E[b0] = β0, σ2
b0

= σ2

[
1

n
+

x2

Sxx

]
= σ2

∑n
i=1 x

2
i

nSxx
,

E[b1] = β1, σ2
b1

= σ2/Sxx.

We say that b0 and b1 are unbiased estimators of β0 and β1, respectively.
The estimated standard errors (replacing σ2 by MSE = σ̂2 in the
expressions for σ2

b1
and σ2

b0
above) are

se(b0) =

√
σ̂2

[
1

n
+

x2

Sxx

]
and se(b1) =

√
σ̂2

Sxx
.
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Example: find the estimated standard error for b0 and b1 in the fuels data.

Solution: we have n = 20, x = 1.20, Sxx = 0.68, and σ̂2 = 1.18, so that

se(b0) =

√
1.18

[
1

20
+

1.202

0.68

]
≈ 1.593 and se(b1) =

√
1.18

0.68
≈ 1.317.

This information is also available in the R output:

> summary(model)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 74.28331 1.593473 46.61723 3.171476e-20

x 14.94748 1.316758 11.35173 1.227314e-09
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7.3 – Hypothesis Testing for Linear Regression

With standard errors, we can test hypotheses on the regression parameters.

We try to determine if the true parameters β0, β1 take on specific values,
and whether the line of best fit describes a bivariate dataset well.

The steps are the same as in Chapter 6:

1. set up a null hypothesis H0 and an alternative hypothesis H1

2. compute a test statistic (often by some form of standardizing)

3. find a critical region/p−value for the test statistic under H0

4. reject or fail to reject H0 based on the critical region/p−value
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Hypothesis Test for the Intercept β0

We might be interested in testing whether the true intercept β0 is equal to
some candidate value β0,0, i.e.

H0 : β0 = β0,0 against H1 : β0 6= β0,0.

The linear regression model requires normal errors ε ∼ N (0, σ2), which
implies that Yi ∼ N (β0 + β1Xi, σ

2), i = 1, . . . , n.

Since b0 is a linear function of the observed responses yi, it has normal

distribution with mean β0 and variance σ2
∑
x2i

nSxx
. Therefore, under H0,

Z0 =
b0 − β0,0√
σ2

∑
x2i

nSxx

∼ N (0, 1).
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But σ2 is not known, so the test statistic with σ̂2 = MSE

T0 =
b0 − β0,0√
σ̂2

∑
x2i

nSxx

∼ t(n− 2)

follows a Student t−distribution with n− 2 degrees of freedom.

Alternative Hypothesis Critical/Rejection Region
H1 : β0 > β0,0 t0 > tα(n− 2)
H1 : β0 < β0,0 t0 < −tα(n− 2)
H1 : β0 6= β0,0 |t0| > tα/2(n− 2)

where t0 is the observed value of T0 and tα(n− 2) is the t−value satisfying
P (T > tα(n− 2)) = α , and T ∼ t(n− 2).

Reject H0 if t0 in the critical region.
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Hypothesis Test for the Slope β1

We might be interested in testing whether the true slope β1 is equal to
some candidate value β1,0, i.e.

H0 : β1 = β1,0 against H1 : β1 6= β1,0.

The linear regression model requires normal errors ε ∼ N (0, σ2), which
implies that Yi ∼ N (β0 + β1Xi, σ

2), i = 1, . . . , n.

Since b1 is a linear function of the observed responses yi, it has normal

distribution with mean β1 and variance σ2

Sxx
. Therefore, under H0,

Z0a =
b1 − β1,0√
σ2/Sxx

∼ N (0, 1).
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But σ2 is not known, so the test statistic with σ̂2 = MSE

T0 =
b1 − β1,0√
σ̂2/Sxx

∼ t(n− 2)

follows a Student t−distribution with n− 2 degrees of freedom.

Alternative Hypothesis Critical/Rejection Region
H1 : β1 > β1,0 t0 > tα(n− 2)
H1 : β1 < β1,0 t0 < −tα(n− 2)
H1 : β1 6= β1,0 |t0| > tα/2(n− 2)

where t0 is the observed value of T0 and tα(n− 2) is the t−value satisfying
P (T > tα(n− 2)) = α , and T ∼ t(n− 2).

Reject H0 if t0 in the critical region.
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Examples: use the fuels dataset and assume the quantities/models (n,
sigma2, Sxx, x, model) have been assigned/computed in a previous step.

a) Test for H0 : β0 = 75 against H1 : β0 < 75 at α = 0.05.

b) Test for H0 : β1 = 10 against H1 : β1 > 10 at α = 0.05.

c) Test for H0 : β1 = 0 against H1 : β1 6= 0 at α = 0.05.

Solution: the following code shows that we fail to reject H0 for a), but
that we reject H0 in favour of H1 for b) and c).

> b0 = as.numeric(model$coefficients[1]) ### LS parameters

> b1 = as.numeric(model$coefficients[2]) ### LS parmeters

> beta00 = 75 ### for a)

> beta10 = 10 ### for b)
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# a)

> t0a = (b0-beta00)/sqrt(sigma2*sum(x^2)/n/Sxx) ### test statistic

> crit_t005_18a = qt(0.05,n-2) ### critical value

> t0a < crit_t005_18a ### test for critical region

FALSE ### fail to reject H0

# b)

> t0b = (b1-beta10)/sqrt(sigma2/Sxx) ### test statistic

> crit_t005_18b = - qt(0.05,n-2) ### critical value

> t0b > crit_t005_18b ### test for critical region

TRUE ### reject H0

# c)

> t0c = b1/sqrt(sigma2/Sxx) ### test statistic

> crit_t0025_18c = - qt(0.025,18) ### critical value

> abs(t0c) > crit_t0025_18c ### test for critical region

TRUE ### reject H0
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Significance of Regression

As long as Sxx 6= 0 (at least two distinct values of X in the data), we can
fit a regression line to the observations using the least squares framework.
Recall that one of the goals of linear regression is to describe a linear
relationship between X and Y ... if one exists.
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The regression line for the dataset on the previous slide is

ŷ = −0.01− 0.04x,

but this line does not describe the bivariate data set at all, which is more
like a diffuse blob. The relationship between X and Y in that dataset is
simply not linear.

Given a regression line, we may want to test whether it is significant. The
test for significance of the regression is

H0 : β1 = 0 against H1 : β1 6= 0.

If we reject H0 in favour of H1, then the evidence suggests that there is a
linear relationship between X and Y .
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Example: in the fuels dataset, we have b1 = 14.95, n = 20, Sxx = 0.68,
σ̂2 = 1.18. We test for significance of the regression at α = 0.01:

H0 : β1 = 0 , against H1 : β1 6= 0.

Since the observed value of the test statistic is

t0 =
b1 − 0√
σ̂2/Sxx

= 11.35 > 2.88 = t0.01/2(18) ,

where t0.01/2(18) is the critical value of Student’s t−distribution with 18
degrees of freedom at α = 0.01 for two-sided tests, we reject H0 and
conclude that there is a linear relationship between X and Y (at α = 0.01).

(Use -qt(0.01/2,18) to get the critical value in R.)
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7.4 – Confidence and Prediction Intervals for
Linear Regression

We can also build confidence intervals (C.I.) for the regression parameters
and prediction intervals (P.I.) for the predicted values.

The steps are the same as in Chapter 5:

1. find a point estimate W for the parameter β or the prediction Y

2. find the appropriate standard error se(W )

3. select a confidence level α and find the appropriate critical value kα/2

4. build the 100(1− α)% interval W ± kα/2 · se(W )
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C.I. for the Intercept β0 and the Slope β1

Since we estimate the error variance with σ̂2 = MSE, we need to use
Student’s t−distribution with n− 2 degrees of freedom (remember that we
use the data to estimate 2 parameters).

The 100(1− α)% C.I. for β0 and β1 are:

β0 : b0 ± tα/2(n− 2)se(b0) = b0 ± tα/2(n− 2)

√
σ̂2

∑
x2i

nSxx

β1 : b1 ± tα/2(n− 2)se(b1) = b1 ± tα/2(n− 2)

√
σ̂2

Sxx

The caveat regarding the interpretation of confidence intervals still applies.
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Example: build 95% and 99% C.I. for β0 and β1 in the fuels data.

Solution: from previous examples, we have b0 = 74.283, b1 = 14.947,
se(b0) = 1.593, se(b1) = 1.317, t0.025(18) = 2.10 and t0.005(18) = 2.88.

Then, for α = 0.05, we have

β0 : 74.283± 2.10(1.593) = (70.93, 77.63)

β1 : 14.497± 2.10(1.317) = (12.18, 17.71)

and for α = 0.01, we have

β0 : 74.283± 2.88(1.593) = (69.70, 78.87)

β1 : 14.497± 2.88(1.317) = (11.15, 18.74).
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Confidence Intervals for the Mean Response

We might also be interested in estimating µY |x0 = E[Y |x0], the mean
response at an observed x0 (in practice, there could be more than one
response at the predictor, due to replication in an experiment, say).

The predicted value can be read directly from the regression line:

µ̂Y |x0 = b0 + b1x0.

The distance (at x0) between the estimated value and the true regression
line is

µ̂Y |x0 − µY |x0 = (b0 − β0) + (b1 − β1)x0.
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Now, E[µ̂Y |x0] = µY |x0 and

Var[µ̂Y |x0] = σ2

[
1

n
+

(x0 − x)2

Sxx

]
.

Note that

Var[µ̂Y |x0] = Var[b0 + b1x0] 6= Var[b0] + Var[b1x0]

since b0 and b1 are dependent.

With the usual tα/2(n− 2), the 100(1− α)% C.I. for the mean response
µY |x0 (or for the line of regression) is

µ̂Y |x0 ± tα/2(n− 2)

√
σ̂2

[
1

n
+

(x0 − x)2
Sxx

]
.
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Example: for the fuels dataset, the 95% C.I. for µY |x0 is

74.28 + 14.95x0 ± 2.10

√
1.18

[
1

20
+

(x0 − 1.12)2

0.68

]
.
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A fair number of the observations are found outside the 95% C.I. for the
mean response, potentially because of the relatively small sample size.

The R code to produce this chart is shown below:

> ggplot(fuels, aes(x=x, y=y)) +

geom_point(color=’#2980B9’, size = 4) +

geom_smooth(method=lm, color=’#2C3E50’) +

theme_bw()
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Predicting New Observations

If x0 is the value of interest for the regressor (predictor), then the estimated
value of the response variable Y is

ŷ = Ŷ0 = b0 + b1x0.

If Y0 is the true future observation at X = x0 (so, Y0 = β0+ β1x0+ ε) and
Ŷ0 is the predicted value, given by the above equation, then the prediction
error

ep̂ = Y0 − Ŷ0 = β0 + β1x0 + ε− (b0 + b1x0) = (β0 − b0) + (β1 − b1)x0 + ε

has normal distribution with zero mean and variance σ2
[
1 + 1

n + (x0−x)2
Sxx

]
.
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Substitute σ2 by its estimator σ̂2 = MSE and we get a 100(1 − α)%
prediction interval for Y0:

b0 + b1x0 ± tα/2(n− 2)

√
σ̂2

[
1 +

1

n
+

(x0 − x)2
Sxx

]
,

where tα/2 is the critical value of Student’s t−distribution with n−2 degrees
of freedom at α.

Example: for the fuels dataset, the 95% P.I. for µY |x0 is

74.28 + 14.95x0 ± 2.10

√
1.18

[
1 +

1

20
+

(x0 − 1.12)2

0.68

]
.
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None of the observations are found outside the 95% P.I. for new
observations. In general, for a given α, the prediction interval is wider
than the confidence interval, which is not surprising: the CLT implies that
the mean response has a smaller variance than the predicted responses.

Based on course notes by Rafa l Kulik 44



MAT 2377 – Probability and Statistics for Engineers Chapter 7 – Linear Regression and Correlation

The R code that produces the chart on the previous slide is

## build P.I. for various regressors

> preds <- predict(model, interval="prediction")

## put data in a new dataframe

> new.fuels <- cbind(fuels, preds)

> ggplot(new.fuels, aes(x=x, y=y)) +

geom_point(color=’#2980B9’, size = 4) +

geom_smooth(method=lm, color=’#2C3E50’) +

geom_line(aes(y=lwr), color = "red", linetype = "dashed") +

geom_line(aes(y=upr), color = "red", linetype = "dashed") +

theme_bw()
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7.5 – Analysis of Variance

The test for significance of regression,

H0 : β1 = 0 against H1 : β1 6= 0,

can be restated in term of the analysis-of-variance (ANOVA), given by the
following table:

Source of Sum of df Mean Square F ∗ p−Value
Variation Squares

Regression SSR 1 MSR MSR
MSE P (F > F ∗)

Error SSE n− 2 MSE

Total SST n− 1
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In this table, the F−statistic F ∗ ∼ F (1, n− 2), and

SSE =

n∑
i=1

(yi − ŷi)2, SSR =

n∑
i=1

(ŷi − y)2 , SST =

n∑
i=1

(yi − y)2,

MSR =
SSR

1
, MSE =

SSE

n− 2
, and F ∗ =

MSR

MSE
=

SSR/1

SSE/n− 2

The rejection region for the null hypothesis H0 : β1 = 0 is still given by∣∣∣∣∣ b1 − β1,0√
σ̂2/Sxx

∣∣∣∣∣ > tα/2(n− 2),

but it can also be written as F ∗ > fα(1, n− 2) , where fα(1, n− 2) is the
critical F−value of the F -distribution with ν1 = 1 and ν2 = n− 2 df.

Based on course notes by Rafa l Kulik 47



MAT 2377 – Probability and Statistics for Engineers Chapter 7 – Linear Regression and Correlation

Example: the F−statistic can be found in the output of the linear regression
summary in R. For the fuels dataset, it is:

Residual standard error: 1.087 on 18 degrees of freedom

Multiple R-squared: 0.8774, Adjusted R-squared: 0.8706

F-statistic: 128.9 on 1 and 18 DF, p-value: 1.227e-09

The critical value for α = 0.05 is f0.05(1, 18) = qf(0.95,1,18) = 4.41.

Since
F ∗ = 128.9 > f0.05(1, 18) = 4.4,

we reject the null hypothesis H0 in favour of the regression being significant
at α = 0.05.
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7.6 – Coefficient of Determination

For observations (xi, yi), i = 1, . . . , n, we define the coefficient of
determination as

R2 = 1− SSE

SST
,

where SSE and SST are as in the ANOVA.

The coefficient of determination is the proportion of the variability in the
response that is explained by the fitted model. Note that R2 always lies
between 0 and 1; when R2 ≈ 1, the fit is considered to be very good.

BE CAREFUL: in practice, R2 is not always the best way to determine the
goodness-of-fit of the regression. There are factors (such as the number
of observations) which can affect the coefficient of determination.
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Example: the coefficient of determination R2 statistic can be found in the
output of the linear regression summary in R. For the fuels dataset, it is:

Residual standard error: 1.087 on 18 degrees of freedom

Multiple R-squared: 0.8774, Adjusted R-squared: 0.8706

F-statistic: 128.9 on 1 and 18 DF, p-value: 1.227e-09

At R2 = 0.8774, about 88% of the variability in the response Y can be
explained by line of best fit.
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Appendix – Summary of Regression Analysis

1. Draw scatterplot

2. Find the regression line

3. Check the appropriateness of a linear fit (correlation coefficient,
significance of regression test)

4. Check goodness-of-fit, or confidence interval for the regression line

5. Check model assumptions (residuals)

6. Offer predictions, if appropriate
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Example: US Arrests

This dataset US Arrests contains statistics, in arrests per 100, 000 residents
about various crimes in 1973, for each of the n = 50 US states.

1. The response is y: number of assaults, and the regressor is x: number
of murders, for each of the 50 states.

2. We have

n∑
i=1

xi = 389.4,

n∑
i=1

yi = 8538

n∑
i=1

x2i = 3962.2,

n∑
i=1

y2i = 1798262,

n∑
i=1

xiyi = 80756.

Based on course notes by Rafa l Kulik 52



MAT 2377 – Probability and Statistics for Engineers Chapter 7 – Linear Regression and Correlation

The line of best fit is ŷ = 51.27 + 15.34x.
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3. The correlation coefficient is ρ = 0.802, which suggests that there is a
linear relationship between x and y. We test for the significance of the
regression:

H0 : β1 = 0, against H1 : β1 6= 0;

the test statistic

T0 =
b1 − 0√
σ̂2/Sxx

∼ t(n− 2),

with σ̂2 = 2531.73 and Sxx = 929.55.

The observed value of the test statistic is t0 = 9.30; since

t0.05/2(48) ≈ 2.01 < t0 = 9.30,

we reject H0 in favour of a linear relationship between x and y.
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4. The 95% C.I. for the regression line is shown below:

Based on course notes by Rafa l Kulik 55



MAT 2377 – Probability and Statistics for Engineers Chapter 7 – Linear Regression and Correlation

5. The regression is a fairly good fit as the residuals show no systematic
pattern: they seem uniformly distributed around 0.
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6. As the regression seems to be a good model of the situation, it might
have good predictive power (over its domain). We can predict the
number of assaults in a state if the number of murders is x0 = 20:

ŷ0 = 51.27 + 15.34(20) = 358.07.

An equivalent way to ask for this answer is to look for a point estimate
of the number of assaults in a state if the number of murders is 20.

The prediction interval for the number of assault in a state if x0 = 20 is

358.07± 2.01

√
2531.73

[
1 +

1

48
+

(20− 7.78)2

929.55

]
= 358.07± 40.64.
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Example: Airline Data

This is a classic dataset, tracking the monthly totals of international airline
passengers from 1949 to 1960. It is available in R as AirPassengers.

1. The response is y: number of monthly passengers, and the regressor is
x: the number of month since January 1, 1949, x = (1, 2, . . . , 144).

2. We have

n∑
i=1

xi = 10440,

n∑
i=1

yi = 40363

n∑
i=1

x2i = 1005720,

n∑
i=1

y2i = 13371737,

n∑
i=1

xiyi = 3587478.
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The line of best fit is ŷ = 87.653 + 2.657x.
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3. The correlation coefficient is ρ = 0.924, which suggests that there is a
strong linear relationship between x and y. We test for the significance:

H0 : β1 = 0, against H1 : β1 6= 0;

the test statistic

T0 =
b1 − 0√
σ̂2/Sxx

∼ t(n− 2),

with σ̂2 = 2121.261 and Sxx = 248820.

The observed value of the test statistic is t0 = 28.77644; since

t0.05/2(142) ≈ 1.97 < t0 = 28.78,

we reject H0 in favour of a linear relationship between x and y.
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4. The 95% C.I. for the regression line is shown below:
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5. The residuals show some structure: the variance of the error in not
constant and increases with x. This suggests that data transformations
need to be conducted before proceeding with linear regression.
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