
MAT 2125 – Exercises

1. Let a, b ∈ R and suppose that a ≤ b+ ε for all ε > 0. Show that a ≤ b.

2. Let c > 0 be a real number.

(a) If c > 1, show that cn ≥ c for all n ∈ N and that cn > 1 if n > 1.

(b) If 0 < c < 1, show that cn ≤ c for all n ∈ N and that cn < 1 if n > 1.

3. Let c > 0 be a real number.

(a) If c > 1 and m,n ∈ N, show that cm > cn if and only if m > n.

(b) If 0 < c < 1 and m,n ∈ N, show that cm > cn if and only if m < n.

4. Let S2 = {x ∈ R | x > 0}. Does S2 have lower bounds? Does S2 have upper bounds? Does
inf S2 exist? Does supS2 exist? Prove your statements.

5. Let S4 =
{

1− (−1)n
n | n ∈ N

}
. Find inf S4 and supS4.

6. Let S ⊆ R be non-empty. Show that if u = supS exists, then for every number n ∈ N the
number u− 1

n is not an upper bound of S, but the number u+ 1
n is.

7. If S =
{

1
n −

1
m | m,n ∈ N

}
, find inf S and supS.

8. Let X be a non-empty set and let f : X → R have bounded range in R. If a ∈ R, show that

sup{a+ f(x) : x ∈ X} = a+ sup{f(x) : x ∈ X}
inf{a+ f(x) : x ∈ X} = a+ inf{f(x) : x ∈ X}.

9. Let A and B be bounded non-empty subsets of R, and let

A+B = {a+ b | a ∈ A, b ∈ B}.

Prove that sup(A+B) = supA+ supB and inf(A+B) = inf A+ inf B.

10. Let X be a non-empty set and let f, g : X → R have bounded range in R. Show that

sup{f(x) + g(x) | x ∈ X} ≤ sup{f(x) | x ∈ X}+ sup{g(x) | x ∈ X}
inf{f(x) | x ∈ X}+ inf{g(x) | x ∈ X} ≤ inf{f(x) + g(x) | x ∈ X}.
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11. Let X and Y be non-empty sets and let h : X × Y → R have bounded range in R. Let
F : X → R and G : Y → R be defined by

F (x) = sup{h(x, y) | y ∈ Y } and G(y) = sup{h(x, y) | x ∈ X}.

Show that

sup{h(x, y) | (x, y) ∈ X × Y } = sup{F (x) | x ∈ X}
= sup{G(y) | y ∈ Y }.

12. Show there exists a positive real number u such that u2 = 3.

13. Show there exists a positive real number u such that u3 = 2.

14. Let S ⊆ R and suppose that s∗ = supS belongs to S. If u 6∈ S, show that sup(S ∪ {u}) =
sup{s∗, u}.

15. Show that a non-empty finite set S ⊆ R contains its supremum.

16. If S ⊆ R is a non-empty bounded set and IS = [inf S, supS], show that S ⊆ IS . Moreover, if
J is any closed bounded interval of R such that S ⊆ J , show that IS ⊆ J .

17. Prove that if Kn = (n,∞) for n ∈ N, then⋂
n∈N

Kn = ∅.

18. If S is finite and s∗ 6∈ S, show S ∪ {s∗} is finite.

19. The first few terms of a sequence (xn) are given below. Assuming that the “natural pattern”
indicated by these terms persists, give a formula for the nth term xn.

(a) (5, 7, 9, 11, . . .);

(b)
(
1
2 ,−

1
4 ,

1
8 ,−

1
16 , . . .

)
;

(c)
(
1
2 ,

2
3 ,

3
4 ,

4
5 , . . .

)
;

(d) (1, 4, 9, 16, . . .).

20. Use the definition of the limit of a sequence to establish the following limits.

(a) lim
n→∞

(
1

n2 + 1

)
= 0;

(b) lim
n→∞

(
2n

n+ 1

)
= 2;

(c) lim
n→∞

(
3n+ 1

2n+ 5

)
=

3

2
, and

(d) lim
n→∞

(
n2 − 1

2n2 + 3

)
=

1

2
.
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21. Show that

(a) lim
n→∞

(
1√
n+ 7

)
= 0;

(b) lim
n→∞

(
2n

n+ 2

)
= 2;

(c) lim
n→∞

( √
n

n+ 1

)
= 0, and

(d) lim
n→∞

(
(−1)nn

n2 + 1

)
= 0.

22. Show that lim
n→∞

(
1

n
− 1

n+ 1

)
= 0.

23. Find the limit of the following sequences:

(a) lim
n→∞

((
2 +

1

n

)2
)

;

(b) lim
n→∞

(
(−1)n

n+ 2

)
;

(c) lim
n→∞

(√
n− 1√
n+ 1

)
, and

(d) lim
n→∞

(
n+ 1

n
√
n

)
.

24. Let yn =
√
n+ 1−

√
n. Show that (yn) and (

√
nyn) converge.

25. Find the limit of the following sequences:

noitemsep lim
n→∞

sin(n2 + 212)

n
;

noiitemsep lim
n→∞

2n− 1

n+ 7
;

noiiitemsep lim
n→∞

qn, if |q| < 1;

noivtemsep lim
n→∞

n
√
n;

novtemsep lim
n→∞

n!

nn
, and

novitemsep lim
n→∞

n
√

3n + 5n.

26. Let (xn) be a sequence of positive real numbers such that

lim
n→∞

x1/nn = L < 1.

Show ∃r ∈ (0, 1) such that 0 < xn < rn for all sufficiently large n ∈ N.

Use this result to show that
lim
n→∞

xn = 0.
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27. Give an example of a convergent (resp. divergent) sequence (xn) of positive real numbers

with x
1/n
n → 1.

28. Let x1 = 1, xn+1 =
√

2 + xn for n ∈ N. Show that (xn) converges and find the limit.

29. Let xn =
n∑
k=1

1

k2
for all n ∈ N.

Show that (xn) is increasing and bounded above.

30. Show that c1/n → 1 if 0 < c < 1.

31. Let (xn) be a bounded sequence.

For each n ∈ N, let sn = sup{xk : k ≥ n}. If S = inf{sn}, show that there is a subsequence
of (xn) that converges to S.

32. Suppose that xn ≥ 0 for all n ∈ N and that ((−1)nxn) converges. Show that (xn) converges.

33. Show that if (xn) is unbounded, then there exists a subsequence (xnk
) such that 1/xnk

→ 0.

34. If xn = (−1)n
n , find the convergent subsequence in the proof of the Bolzano-Weierstrass theo-

rem, with I1 = [−1, 1].

35. Show directly that a bounded increasing sequence is Cauchy.

36. If 0 < r < 1 and |xn+1 − xn| < rn for all n ∈ N, show that (xn) is Cauchy.

37. If x1 < x2 and xn = 1
2(xn−1 + xn−2) for all n ∈ N, show that (xn) is convergent and compute

its limit.

38. Show that, if ‖ ·‖1, ‖ ·‖2 are norms on Rd and c1, c2 ∈ (0,∞), then c1‖ ·‖1 +c2‖ ·‖2 is a norm.

39. Prove that every convergent sequence in Rd is bounded.

40. Recall that the open ball of radius r > 0 centered on x ∈ Rd with respect to a norm ‖ · ‖ is
defined by

Br(x; ‖ · ‖) =
{
y ∈ Rd | ‖x− y‖ < r

}
.

A set S ⊆ Rd is open if for all x ∈ S, ∃r > 0 so that Br(x; ‖ · ‖) ⊆ S.

Show that this definition of an open set does not depend on the norm used to define the open
balls.

41. Give an open cover of (0, 1) with no finite subcover. Also give a sequence in (0, 1) without
any subsequence that converges to a point in (0, 1).

42. Say that a set K ⊂ Rd is disconnected if there exist open sets A,B 6= ∅ such that K = A∪B,
A ∩B = A ∩B = ∅. Otherwise, it is connected.

Show that K1 = [0, 1] is connected while K2 = (0, 1) ∪ (1, 2) is disconnected.

43. We say that K ⊂ Rd is path-connected if for all x1,x2 ∈ K, there exists a continuous function
p : [0, 1]→ K such that p(0) = x1 and p(1) = x2.

Let K be a compact, path-connected set and let f : K → R be continuous on K.

Show ∃xmin,xmax ∈ K such that f(K) = [f(xmin), f(xmax)].
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44. Let f : R→ R and let c ∈ R.

Show that lim
x→c

f(x) = L if and only if lim
x→0

f(x+ c) = L.

45. Show lim
x→c

x3 = c3 for any c ∈ R.

46. Use either the ε − δ definition of the limit or the Sequential Criterion for limits to establish
the following limits:

(a) lim
x→2

1

1− x
= −1;

(b) lim
x→1

x

1 + x
=

1

2
;

(c) lim
x→0

x2

|x|
= 0, and

(d) lim
x→1

x2 − x+ 1

x+ 1
=

1

2

47. Show that the following limits do not exist:

(a) lim
x→0

1

x2
, with x > 0;

(b) lim
x→0

1√
x
, with x > 0;

(c) lim
x→0

(x+ sgn(x)), and

(d) lim
x→0

sin(1/x2), with x > 0.

48. Let c ∈ R and let f : R→ R be such that lim
x→c

(f(x))2 = L.

Show that if L = 0, then lim
x→c

f(x) = 0.

Show that if L 6= 0, then f may not have a limit at c.

49. Let f : R→ R, let J be a closed interval in R and let c ∈ J .

If f2 is the restriction of f to J , show that if f has a limit at c then f2 has a limit at c.
Show the converse is not necessarily true.

50. Determine the following limits and state which theorems are used in each case.

(a) lim
x→2

√
2x+ 1

x+ 3
, (x > 0);

(b) lim
x→2

x2 − 4

x− 2
, (x > 0);

(c) lim
x→0

√
(x+ 1)2 − 1

x
, (x > 0), and
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(d) lim
x→1

√
x− 1

x− 1
, (x > 0).

51. Give examples of functions f and g such that f and g do not have limits at point c, but both
f + g and fg have limits at c.

52. Determine whether the following limits exist in R:

(a) lim
x→0

sin

(
1

x2

)
, with x 6= 0;

(b) lim
x→0

x sin

(
1

x2

)
, with x 6= 0;

(c) lim
x→0

sgn sin

(
1

x

)
, with x 6= 0, and

(d) lim
x→0

√
x sin

(
1

x2

)
, with x > 0.

53. Let f : R → R be s.t. f(x + y) = f(x) + f(y) for all x, y ∈ R. Assume lim
x→0

f(x) = L exists.

Prove that L = 0 and that f has a limit at every point c ∈ R.

54. Let K > 0 and let f : R→ R satisfy the condition

|f(x)− f(y)| ≤ K|x− y|

for all x, y ∈ R. Show that f is continuous on R.

55. Let f : (0, 1)→ R be bounded and s.t. lim
x→0

f(x) does not exist.

Show that there are two convergent sequences (xn), (yn) ⊆ (0, 1) with xn, yn → 0 and
f(xn)→ ξ, f(yn)→ ζ, but ξ 6= ζ.

56. Let f : R→ R be continuous on R and let P = {x ∈ R : f(x) > 0}. If c ∈ P , show that there
exists a neighbourhood Vδ(c) ⊆ P .

57. Prove that if an additive function is continuous at some point c ∈ R, it is continuous on R.

58. If f is a continuous additive function on R, show that f(x) = cx for all x ∈ R, where c = f(1).

59. Let I = [a, b] and f : I → R be a continuous function on I s.t. ∀x ∈ I, ∃y ∈ I s.t.
|f(y)| ≤ 1

2 |f(x)|. Show ∃c ∈ I s.t. f(c) = 0.

60. Show that every polynomial with odd degree has at least one real root.

61. Let f : [0, 1]→ R be continuous and s.t. f(0) = f(1). Show ∃c ∈ [0, 12 ] s.t. f(c) = f(c+ 1
2).

62. Show that f(x) = 1
x2

is uniformly continuous on A = [1,∞), but not on B = (0,∞).

63. If f(x) = x and g(x) = sinx, show that f and g are both uniformly continuous on R but that
their product is not uniformly continuous on R.

64. Let A ⊆ R and suppose that f has the following property:

∀ε > 0, ∃gε : A → R s.t. gε is uniformly continuous on A with |f(x) − gε(x)| < ε for all
x ∈ A.

Show f is uniformly continuous on A.

6



65. Prove that a continuous p−periodic fonction on R is bounded and uniformly continuous on R.

66. Use the definition to find the derivative of the function defined by g(x) = 1
x , x ∈ R, x 6= 0.

67. Prove that the derivative of an even differentiable function is odd, and vice-versa.

68. Let a > b > 0 and n ∈ N with n ≥ 2.

Show that a1/n − b1/n < (a− b)1/n.

69. Let f : [a, b]→ R be continuous on [a, b] and differentiable on (a, b). Show that if lim
x→a

f ′(x) = A,

then f ′(a) exists and equals A.

70. If x > 0, show 1 + 1
2x−

1
8x

2 ≤
√

1 + x ≤ 1 + 1
2x.

71. Show directly that the function defined by h(x) = x2 is Riemann-integrable over [a, b], b >

a ≥ 0. Furthermore show that
∫ b
a h = b3−a3

3 .

72. Prove that
∫ 1
0 g = 1

2 if

g(x) =

{
1 x ∈ (12 , 1]

0 x ∈ [0, 12 ]
.

Is that still true if g(12) = 7 instead?

73. Let f : [a, b]→ R be bounded and s.t. f(x) ≥ 0 for all x ∈ [a, b].

Show L(f) ≥ 0.

74. Let f : [a, b]→ R be increasing on [a, b]. If Pn partitions [a, b] into n equal parts, show that

0 ≤ U(Pn; f)−
∫ b

a
f ≤ f(b)− f(a)

n
(b− a).

75. Let f : [a, b]→ R be an integrable function and let ε > 0.

If Pε is the partition whose existence is asserted by the Riemann Criterion, show that
U(P ; f)− L(P ; f) < ε for all refinement P of Pε.

76. Let a > 0 and J = [−a, a]. Let f : J → R be bounded and let P∗ be the set of all partitions
P of J that contain 0 and are symmetric.

Show L(f) = sup{L(P ; f) : P ∈ P∗}.

77. Let J be as in the previous question and let f be integrable on J . If f is even (i.e. f(−x) = f(x)
for all x), show that ∫ a

−a
f = 2

∫ a

0
f.

If f is odd (i.e. f(−x) = −f(x) for all x), show that∫ a

−a
f = 0.
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78. Give an example of a function f : [0, 1] → R that is not integrable on [0, 1], but s.t. |f | is
integrable on [0, 1].

79. Let f : [a, b] → R be integrable on [a, b]. Show |f | is integrable on [a, b] directly (without
using a result seen in class).

80. If f is integrable on [a, b] and
0 ≤ m ≤ f(x) ≤M

for all x ∈ [a, b], show that

m ≤
[

1

b− a

∫ b

a
f2
]1/2
≤M.

81. If f is continuous on [a, b] and f(x) ≥ 0 for all x ∈ [a, b], show there exists c ∈ [a, b] s.t.

f(c) =

[
1

b− a

∫ b

a
f2
]1/2
.

82. If f is continuous on [a, b] and f(x) > 0 for all x ∈ [a, b], show that 1
f is integrable on [a, b].

83. Let f be continuous on [a, b]. Define H : [a, b]→ R by

H(x) =

∫ b

x
f for all x ∈ [a, b].

Find H ′(x) for all x ∈ [a, b].

84. Suppose f : [0,∞)→ R is continuous and f(x) 6= 0 for all x > 0. If

(f(x))2 = 2

∫ x

0
f for all x > 0,

show that f(x) = x for all x ≥ 0.

85. Let f, g : [a, b]→ R be continuous and s.t.∫ b

a
f =

∫ b

a
g.

Show that there exists c ∈ [a, b] s.t. f(c) = g(c).

86. Let f : [0, 3]→ R be defined by

f(x) =


x x ∈ [0, 1)

1 x ∈ [1, 2)

x x ∈ [2, 3]

.

Find F : [0, 3]→ R, where

F (x) =

∫ x

0
f.

Where is F differentiable? What is F ′ there?
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87. If f : [0, 1]→ R is continuous and
∫ x
0 f =

∫ 1
x f for all x ∈ [0, 1], show that f ≡ 0.

88. Show that lim
n→∞

nx

1 + n2x2
= 0 for all x ∈ R.

89. Show that if fn(x) = x+ 1
n and f(x) = x for all x ∈ R, n ∈ N, then fn ⇒ f on R but f2n 6⇒ g

on R for any function g.

90. Let fn(x) = 1
(1+x)n for x ∈ [0, 1]. Denote by f the pointwise limit of fn on [0, 1]. Does fn ⇒ f

on [0, 1]?

91. Let (fn) be the sequence of functions defined by fn(x) = xn

n , for x ∈ [0, 1] and n ∈ N.

Show that (fn) converges uniformly to a differentiable function f : [0, 1] → R, and that
the sequence (f ′n) converges pointwise to a function g : [0, 1]→ R, but that g(1) 6= f ′(1).

92. Show that lim
n→∞

∫ 2

1
e−nx

2
dx = 0.

93. Answer the following questions about series.

(a) If

∞∑
k=1

(ak + bk) converges, what about

∞∑
k=1

ak and

∞∑
k=1

bk?

(b) If

∞∑
k=1

(ak + bk) diverges, what about

∞∑
k=1

ak and

∞∑
k=1

bk?

(c) If

∞∑
k=1

(a2k + a2k−1) converges, what about

∞∑
k=1

ak?

(d) If

∞∑
k=1

ak converges, what about

∞∑
k=1

(a2k + a2k−1)?

94. Show that
1

r − 1
=

1

r + 1
+

2

r2 + 1
+

4

r4 + 1
+

8

r8 + 1
+ · · ·

for all r > 1.

Hint: Note that
1

`− 1
− 1

`+ 1
=

2

`2 − 1
.

95. Find the values of p for which the series

∞∑
n=1

1

np
converges.

96. Which of the following series converge?

(a)

∞∑
n=1

n(n+ 1)

(n+ 2)2

(b)
∞∑
n=1

2 + sin3(n+ 1)

2n + n2

(c)

∞∑
n=1

1

2n − 1 + cos2 n3
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(d)
∞∑
n=1

n+ 1

n2 + 1

(e)
∞∑
n=1

n+ 1

n3 + 1

(f)

∞∑
n=1

n!

nn

(g)

∞∑
n=1

n!

5n

(h)
∞∑
n=1

nn

31+2n

(i)
∞∑
n=1

(
5n+ 3n3

7n3 + 2

)n

97. Give an example of a power series
∞∑
k=0

akx
k with interval of convergence exactly [−

√
2,
√

2).

98. Find the values of x for which the following series converge:

(a)

∞∑
n=1

(nx)n;

(b)
∞∑
n=1

xn;

(c)
∞∑
n=1

xn

n2
;

(d)

∞∑
n=1

xn

n!
.

99. If the power series
∞∑
k=0

akx
k has radius of convergence R, what is the radius of convergence of

the series
∞∑
k=0

akx
2k?

100. Obtain power series expansions for the following functions.

(a)
x

1 + x2
;

(b)
x

(1 + x2)2
;

(c)
x

1 + x3
;

(d)
x2

1 + x3
;

(e) f(x) =

∫ 1

0

1− e−sx

s
ds, about x = 0.
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