
MAT 2125 – Homework 2 – Solutions
(due at midnight on February 12, in Brightspace)

1 Formality

In the first assignment, we asked you to justify many steps directly from the axioms for R. Starting with this
homework, we can be slightly less formal – we can take it that it is understood what the number 21

4 means for

instance, as is the case for more exotic numbers like 3
1
7 . We can also freely use “obvious” facts, like the fact

that the maximum of a finite collection of real numbers exists and is finite, without directly citing anything.
With this comes some danger. As we will see in Section 4 of this homework, sometimes “obvious”-looking

statements are actually false. The only way around this is to use our judgement. Since this is an introductory
course, we ask you to err on the side of caution: if you haven’t seen something proved, and it looks like the sort
of thing that could be an exercise, you should prove it.

2 Limits

1. Suppose that {an} is a bounded sequence and lim
n→∞

bn = 0. Show that lim
n→∞

anbn = 0.

Proof: Since {an} is bounded, there exists some 0 ≤ M < ∞ so that supn |an| ≤ M . Next, we will
check that anbn → 0. Fix some ε > 0. Since limn→∞ bn = 0, there exists some N so that for all n > N ,
|bn| ≤ ε

M . Thus, for all n > N ,

|anbn| ≤M |bn| ≤M
ε

M
= ε.

Thus, anbn → 0. �

2. Suppose that {an} is a sequence and lim
n→∞

an exists. Show that {an} is a bounded sequence.

Proof: Let L = limn→∞ an. Since this limit exists, there exists some N so that for all n > N , |an−L| ≤ 1.
In particular, by the triangle inequality, |an| ≤ |L|+ 1. Thus, for all m ∈ N,

|am| ≤ max

{
max

1≤j≤N
{|aj |}, |L|+ 1

}
.

Since the right-hand side is a maximum of a finite set, it is finite. �

3. Show that, for all c ∈ (0,∞), lim
n→∞

c
1
n = 1. Vague hint: For c > 1, consider the sequence xn defined

by xn = (1+an)n, find a good linear approximation of (1+an)n, and apply an earlier part of this question.

Proof: For c = 1 the result is clear. For c > 1, define the sequence an = c
1
n −1 ≥ 0, so that c = (1+an)n.

Since an ≥ 0, we can write

c = (1 + an)n = 1 +

(
n

1

)
an +

(
n

2

)
a2n + . . . ≥ 1 + nan.

Rearranging, we find

0 ≤ an ≤
c− 1

n
.

Thus, by part 1 of this question, limn→∞ an = 0. But an = c
1
n − 1, so this implies limn→∞ c

1
n = 1 as

desired.

Finally, when 0 < c < 1, we can apply the earlier result to see that

1

limn→∞ c
1
n

= lim
n→∞

1

c
1
n

= 1.

This completes the proof. �
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4. Consider the sequence given by the recursion an+1 = 1
2 (an + a−1n ), with some initial condition a1 ∈

(−∞, 0) ∪ (0,∞). Find and prove the limit (if it exists) for initial conditions a1 = 3, a1 = 0.1.

Proof: Consider a value of n for which an ≥ 1. For this value,

an+1 =
1

2
(an + a−1n ) ≤ 1

2
(an + 1).

On the other hand, consider the function f(x) = 1
2 (x+ x−1) with domain x ∈ (0,∞). We recognize (e.g.

from completing the square) that, on this domain, the function is minimized at x = 1. In particular,
f(x) ≥ 1 for all x ∈ (0,∞). Thus,

an+1 =
1

2
(an + a−1n ) ≥ 1.

Putting together the two displayed equations, for an ≥ 1 we have

1 ≤ an+1 ≤
1

2
(an + 1).

We note that, by this bound, an ≥ 1 for all n ≥ 2 for any value of a1 ∈ (0,∞). Iterating the upper and
lower bounds, we have

1 ≤ an+1 ≤
1

2
(an + 1) ≤ 1

2

(
1

2
(an−1 + 1) + 1

)
=

1

4
an−1 +

3

4
.

Continuing to iterate, we find

1 ≤ an+1 ≤ 2−n+1a2 + (1− 2−n+1).

Applying the sandwich theorem, we calculate

1 ≤ lim
n→∞

an+1 ≤ lim
n→∞

(2−n+1a2 + (1− 2−n+1)) = 1.

This completes the proof. �

3 Subsequences

Let {an} be a sequence with no convergent subsequences. Show that |an| → ∞.

Proof: We prove this by contradiction. Assume that |an| does not diverge to infinity. Then, by the definition of
diverging to infinity, there exists some M <∞ such that |an| < M infinitely often. Let 1 ≤ m1 ≤ m2 ≤ m3 ≤ . . .
be the indices satisfying |amn

| < M .
Set bn = amn . Then {bn} is a bounded sequence and so has a convergent subsequence {bkn}n by Bolzano-

Weierstrass. But {amkn
}n = {bkn}n is in fact a convergent subsequence of {an}, contradicting the information

given in the question. We conclude that our assumption was false, and so |an| diverges to infinity. �
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4 Limit Superior and Limit Inferior

We define the limit inferior and the limit superior of a sequence as follows:

lim inf
n→∞

an = lim
n→∞

inf{ak | k ≥ n}

lim sup
n→∞

an = lim
n→∞

sup{ak | k ≥ n}.

1. Let {an} be a bounded sequence. Show that lim inf
n→∞

an and lim sup
n→∞

an exist and are in R.

Proof: Define the sequence of sets Bn = {ak | k ≥ n} and the sequence of numbers bn = sup(Bn),
so that

lim sup
n→∞

an = lim
n→∞

bn.

We note that B1 ⊃ B2 ⊃ . . ., which implies sup(B1) ≤ sup(B2) ≤ . . ., which means that {bn} is monotone
decreasing. Furthermore, since {an} is bounded, there exists some −∞ < M <∞ so that an ≥M for all
n ∈ N. But this M is a lower bound for {an}, which means it must be a lower bound for Bn for all n ∈ N,
which means bn = sup(Bn) ≥M for all n ∈ N as well.

Thus, we have shown that {bn} is a monotone decreasing sequence that is bounded from below. Hence,
by the monotone convergence theorem, it has a limit and so

lim sup
n→∞

an = lim
n→∞

bn

exists.1 �

2. Let {an} be an unbounded sequence. Show that either lim inf
n→∞

an = −∞ or lim sup
n→∞

an =∞ (or possibly

both).

Proof: Since {an} is unbounded, for all 0 < M < ∞ there exists n = n(M) satisfying |an| > M .
Define the subsequence {bk} by setting bk = an(k), so that |bk| > k for all k ∈ N. Since this is an infinite
sequence, we have by the pigeonhole principle that at least one of the two sets I+ = {k ∈ N | bk ≥ 0},
I− = {k ∈ N | bk ≤ 0} is infinite.

In the case that I+ is infinite, write the elements i1 < i2 < i3 < . . . in order and define the subsequence
{c`} of {bn} by the formula c` = bi` = an(i`). But then for all n, we have

sup{ak | k ≥ n} ≥ sup{an(i`) | ` ≥ n} = sup{ck | k ≥ n} ≥ sup{k | k ≥ n} =∞.

Thus,

lim sup
n→∞

an =∞.

The case that I− is infinite is essentially the same, with the conclusion

lim inf
n→∞

an = −∞.

This completes the proof.2 �

1The proof for the lim inf is the same. The details are at the end of this document for reference. You could also use (and prove)
the identity

lim inf
n→∞

an = − lim sup
n→∞

(−an).

2As an aside, if I−, I+ are both infinite, then we have

lim sup
n→∞

an =∞, lim inf
n→∞

an = −∞,

which you can check holds for sequences such as an = (−n)n, for instance.
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3. Let {an}, {bn} be two sequences. Show that

lim inf
n→∞

an + lim sup
n→∞

bn ≤ lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.

Furthermore, find a pair of sequences for which the second inequality is strict.

Proof: Fix ε > 0. Then there exists some N = N(ε) so that, for all m > N , the following inquali-
ties all hold:

ε

2
+ lim sup

n→∞
an ≥ am ≥ −

ε

2
+ lim inf

n→∞
an (4.1)

ε

2
+ lim sup

n→∞
bn ≥ bm ≥ −

ε

2
+ lim inf

n→∞
bn.

Adding the left-hand sided inequalities, we get:

am + bm ≤ ε+ lim sup
n→∞

an + lim sup
n→∞

bn.

We conclude with our first desired inequality,

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.

To obtain the reverse inequality, again fix ε > 0. Then there exists a sequence {kn} so that

bkm ≥ −
ε

2
+ lim sup

n→∞
bn for all m.

Chopping off the finitely-many terms in the sequence occurring before N = N(ε) and applying (4.1), we
have for all m:

akm + bkm ≥ −
ε

2
+ lim inf

n→∞
an −

ε

2
+ lim sup

n→∞
bn.

We conclude with our first desired inequality,

lim sup
n→∞

(an + bn) ≥ lim inf
n→∞

an + lim sup
n→∞

bn.

For the second inequality example, consider the sequences an = (−1)n, bn = (−1)n+1. It is clear that
an + bn = 0 for all n, so lim sup

n→∞
(an + bn) = 0. However, lim sup

n→∞
an = lim sup

n→∞
bn = 1. �

Details for the Analogous Limit Inferior Proof

Define the sequence of sets Bn = {ak | k ≥ n} and the sequence of numbers bn = inf(Bn), so that

lim inf
n→∞

an = lim
n→∞

bn.

We note that B1 ⊃ B2 ⊃ . . ., which implies inf(B1) ≥ sup(B2) ≥ . . ., which means that {bn} is monotone
increasing. Furthermore, since {an} is bounded, there exists some −∞ < M <∞ so that an ≤M for all n ∈ N.
But this M is an upper bound for {an}, which means it must be an upper bound for Bn for all n ∈ N, which
means bn = inf(Bn) ≤M for all n ∈ N as well.

Thus, we have shown that {bn} is a monotone bounded sequence. Hence, by the monotone convergence theorem,
it has a limit and so

lim sup
n→∞

an = lim
n→∞

bn

exists. �
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