MAT 2125 – Homework 5

(due at midnight on April 14, in Brightspace)

1 Properties of the Riemann Integral

- 1. Let $f:[a,b] \to \mathbb{R}$ be continuous, $f \ge 0$ on [a,b], and $\int_a^b f = 0$. Show that f(x) = 0 for all $x \in [a,b]$.
- 2. Let $f:[a,b] \to \mathbb{R}$ be continuous and let $\int_a^b f = 0$. Show $\exists c \in [a,b]$ such that f(c) = 0.

2 Fundamental Theorem of Calculus

1. Let $f:[0,3] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x & x \in [0,1) \\ 1 & x \in [1,2) \\ x & x \in [2,3] \end{cases}$$

Find $F: [0,3] \to \mathbb{R}$, where

$$F(x) = \int_0^x f.$$

Where is F differentiable? What is F' there?

2. Compute $\frac{d}{dx} \int_{-x}^{x} e^{t^2} dt$.

3 Improper Integrals

1. Let $f : [a, b] \to \mathbb{R}$ be Riemann-integrable on $[a + \delta, b]$ and unbounded in the interval $(a, a + \delta)$ for every $0 < \delta < b - a$. Define

$$\int_{a}^{b} f = \lim_{\delta \to 0^{+}} \int_{a+\delta}^{b} f,$$

where $\delta \to 0^+$ means that $\delta \to 0$ and $\delta > 0$. A similar construction allows us to define

$$\int_{a}^{b} g = \lim_{\delta \to 0^{+}} \int_{a}^{b-\delta} g$$

Such integrals are said to be *improper*; when the limits exist, they are further said to be *convergent*.

How can the expression

$$\int_0^1 \frac{1}{\sqrt{|x|}} \, dx$$

be interpreted as an improper integral? Is it convergent? If so, what is its value?

2. For which values of s does the integral $\int_0^1 x^s dx$ converge? You may use the antiderivatives rules of calculus.

4 Sequences of Functions

- 1. Show that $\lim_{n \to \infty} \int_{\pi/2}^{\pi} \frac{\sin(nx)}{nx} dx = 0$. You may assume that sin is continuous and that $|\sin x| \le 1, \forall x \in \mathbb{R}$.
- 2. Show that if $f_n \rightrightarrows f$ on [a, b], and each f_n is continuous, then the sequence of functions

$$F_n(x) = \int_a^x f_n(t) \, dt$$

also converges uniformly on [a, b].

5 Series and Power Series

1. If the series
$$\sum_{k=1}^{\infty} a_k$$
 and $\sum_{k=1}^{\infty} b_k$ both converge, does $\sum_{k=1}^{\infty} a_k b_k$ converge?

2. Find the radius of convergence for each of the following series.

(a)
$$\sum_{k=0}^{\infty} (-1)^k x^{2k}$$

(b)
$$\sum_{k=0}^{\infty} k x^k$$

(c)
$$\sum_{k=0}^{\infty} k! x^k$$