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21. Show that

(a) lim
n→∞

(
1√
n+ 7

)
= 0;

(b) lim
n→∞

(
2n

n+ 2

)
= 2;

(c) lim
n→∞

( √
n

n+ 1

)
= 0, and

(d) lim
n→∞

(
(−1)nn
n2 + 1

)
= 0.
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Proof.

(a) Let ε > 0. By the Archimedean property, there is a positive integer
Nε >

1
ε2

. Then∣∣∣∣ 1√
n+ 7

− 0

∣∣∣∣ = 1√
n+ 7

<
1√
n
<

1√
Nε

< ε,

whenever n > Nε.
(b) Let ε > 0. By the Archimedean property, there is a positive integer

Nε >
4
ε. Then∣∣∣∣ 2n

n+ 2
− 2

∣∣∣∣ = ∣∣∣∣− 4

n+ 2

∣∣∣∣ = 4

n+ 2
<

4

n
<

4

Nε
< ε,

whenever n > Nε.
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(c) Let ε > 0. By the Archimedean property, there is a positive integer
Nε >

1
ε2

. Then

∣∣∣∣ √nn+ 1
− 0

∣∣∣∣ = √
n

n+ 1
<

√
n

n
=

1√
n
<

1√
Nε

< ε,

whenever n > Nε.
(d) Let ε > 0. By the Archimedean property, there is a positive integer

Nε >
1
ε. Then∣∣∣∣(−1)nnn2 + 1

− 0

∣∣∣∣ = n

n2 + 1
<

n

n2
=

1

n
<

1

Nε
< ε,

whenever n > Nε. �
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22. Show that lim
n→∞

(
1

n
− 1

n+ 1

)
= 0.
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Proof. Let ε > 0. By the Archimedean property, there is a positive
integer Nε >

1√
ε
.

Then ∣∣∣∣1n − 1

n+ 1
− 0

∣∣∣∣ = 1

n(1 + n)
<

1

n2
<

1

N2
ε

< ε,

whenever n > Nε. �
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23. Find the limit of the following sequences:

(a) lim
n→∞

((
2 +

1

n

)2
)

;

(b) lim
n→∞

(
(−1)n

n+ 2

)
;

(c) lim
n→∞

(√
n− 1√
n+ 1

)
, and

(d) lim
n→∞

(
n+ 1

n
√
n

)
.
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Solution. We can only use the definition if we have a candidate.
Throughout, we will assume that it is known that 1

n → 0.

(a) Note that (2 + 1
n)

2 = 4 + 2
n + 1

n2. Then, by theorem 14 (operations on
sequences and limits),

2

n
= 2 · 1

n
→ 2 · 0 = 0 and

1

n2
=

1

n
· 1
n
→ 0 · 0 = 0,

so that 4 + 2
n + 1

n2 → 4 + 0 + 0 = 4.

(b) Clearly,
−1

n+ 2
≤ (−1)n

n+ 2
≤ 1

n+ 2
, ∀n ∈ N.
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Note that n+ 2 ≥ n for all n so that

0 ≤ 1

n+ 2
≤ 1

n
, ∀n ∈ N;

as a result, 1
n+2 → 0 by the squeeze theorem. Then − 1

n+2 → −0 = 0 by

theorem 14, so that (−1)n
n+2 → 0 by the squeeze theorem.

(c) Re-write
√
n−1√
n+1

= 1− 2√
n+1

. Note that

0 ≤ 1√
n+ 1

<
1√
n
, ∀n ∈ N.

We have seen that 1√
n
→ 0; as a result of the squeeze theorem,

1√
n+1
→ 0. Then 1− 2√

n+1
→ 1− 2 · 0 = 1, by theorem 14.
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(d) Note that n ≤ n
√
n ≤ n2 for all n ∈ N so

1

n2
≤ 1

n
√
n
≤ 1

n
, ∀n ∈ N.

But 1
n,

1
n2,

1√
n
→ 0 (see previous problems) so that 1

n
√
n
→ 0 by the

squeeze theorem. Furthermore,

n+ 1

n
√
n

=
1√
n
+

1

n
√
n
→ 0 + 0 = 0,

by theorem 14. �
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24. Let yn =
√
n+ 1−

√
n. Show that (yn) and (

√
nyn) converge.
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Proof. As

0 ≤
√
n+ 1−

√
n =

1√
n+ 1 +

√
n
≤ 1√

n
, ∀n ∈ N,

and 1√
n
→ 0, then

√
n+ 1−

√
n→ 0 by the squeeze theorem.

Note that
√
nyn =

√
n(n+ 1) − n = 1√

1+1
n+1

for all n ∈ N. Then,

according to theorem 14,

lim
n→∞

√
nyn = lim

n→∞

1√
1 + 1

n + 1
=

1

lim
n→∞

(√
1 +

1

n
+ 1

) =
1

2
,

since
√

1 + 1
n + 1 > 2 for all n ∈ N. �
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25. Find the limit of the following sequences:

(a) lim
n→∞

sin(n2 + 212)

n
;

(b) lim
n→∞

2n− 1

n+ 7
;

(c) lim
n→∞

qn, if |q| < 1;

(d) lim
n→∞

n
√
n;

(e) lim
n→∞

n!

nn
, and

(f) lim
n→∞

n
√
3n + 5n.
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Solution.

(a) We cannot use Theorem 14 since neither limits exist. This doesn’t
necessarily mean that the limit of the quotient does not exist. In order
to determine if it does, we need to use another approach.

By definition of the sin function (which we will define when we talk
about power series), we have −1 ≤ sinx ≤ 1, ∀x ∈ R. Thus

−1 ≤ sin(n2 + 212) ≤ 1, ∀n =⇒ −1

n
≤ sin(n2 + 212)

n
≤ 1

n
, ∀n.

As ±1
n → 0, we can use the Squeeze Theorem to conclude that

lim
n→∞

sin(n2 + 212)

n
= 0.
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(b) We cannot apply Theorem 14 directly since neither the numerator nor
the denominator limits exist.

However,

2n− 1

n+ 7
=

1/n · (2n− 1)

1/n · (n+ 7)
=

2− 1/n

1 + 7/n
when n 6= 0.

Because each of the constituent parts converge (and because the
denominator is never equal to 0, either in the limit or in the sequence),
repeated applications of Theorem 14 yield

lim
n→∞

2n− 1

n+ 7
=

lim
n→∞

(2− 1/n)

lim
n→∞

(1 + 7/n)
=

2− lim
n→∞

1/n

1 + 7 · lim
n→∞

1/n
=

2− 0

1 + 7 · 0
= 2.
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(c) If q = 0, then qn = 0→ 0.

If q 6= 0, then 1
|q| > 1. Thus, ∃t > 0 such that 1

|q| = 1 + t.

From Bernoulli’s Inequality, we have(
1

|q|

)n

= (1 + t)n ≥ 1 + nt, ∀n ∈ N,

so that 0 ≤ |qn| ≤ |q|n ≤ 1
1+nt.

But 1
1+nt = 0 when n → ∞ (does this need to be proven?); thus

|qn| → 0 by the squeeze theorem.

Since −|qn| ≤ qn ≤ |qn| ∀n, qn → 0 by the squeeze theorem.
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(d) Let ε > 0. Then 1 + ε > 1 and 0 < 1
1+ε < 1.

Claim: n
(

1
1+ε

)n
→ 0 when n→∞. 1

Hence, ∃M1 ∈ N such that∣∣∣∣ n

(1 + ε)n
− 0

∣∣∣∣ < 1 when n > M1 =⇒ 1 ≤ n < (1 + ε)n when n > M1.

Set Nε = M1. Then 1− ε < 1 ≤ n1/n < 1+ ε when n > Nε. But this is
precisely the same as |n1/n − 1| < ε when n > Nε; thus n1/n → 1.

1The proof that nqn → 0 with n→∞ when |q| < 1 is left as an exercise; it is similar to the proof of
part (c), but uses an extension of Bernoulli’s Inequality which can be proven by induction:

(1 + t)
n ≥ 1 + nt +

n(n− 1)

2
t
2
, for t > 0, n ≥ 1.
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(e) Since

0 ≤ n!

nn
=

n · (n− 1) · · · · · 2 · 1
n · n · · · · · n · n

≤ 1

n
, ∀n ∈ N,

and 1
n → 0, the squeeze theorem implies n!

nn → 0.

(f) Since
5n ≤ 3n + 5n ≤ 5n + 5n = 2 · 5n ≤ n · 5n, ∀n ≥ 2,

then
5 ≤ n
√
3n + 5n ≤ n

√
n · 5, ∀n ≥ 2.

By part (d) of this question n
√
n→ 1. The squeeze theorem can then be

applied to the above chain of inequalities to conclude n
√
3n + 5n → 5. �
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26. Let (xn) be a sequence of positive real numbers such that

lim
n→∞

x1/n
n = L < 1.

Show ∃r ∈ (0, 1) such that 0 < xn < rn for all sufficiently large n ∈ N.

Use this result to show that

lim
n→∞

xn = 0.
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Proof. Since L < 1, ∃ε0 > 0 such that L < L+ε0 < 1. Then, ∃N0 ∈ N
such that

|x1/n
n − L| < ε0 whenever n > N0.

Hence L − ε0 < x
1/n
n < L + ε0 for all n > N0. Set r = L + ε0. Then

r ∈ (0, 1) and
0 < xn < rn, ∀n > N0.

Let ε > 0. rn → 0 (do you know how to show this?), ∃Nε ≥ N0 such
that rn < ε whenever n > Nε, hence

|xn − 0| = xn < rn < ε

whenever n > Nε. �
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