MAT 2125 Elementary Real Analysis

Exercises – Solutions – Q27-Q30

Winter 2021

P. Boily (uOttawa)

27. Give an example of a convergent (resp. divergent) sequence (x_n) of positive real numbers with $x_n^{1/n} \to 1$.

Proof. The sequences $(x_n) = \frac{1}{n}$ and $(x_n) = (n)$ do the trick. You should fill in the details or ask for hints if you're not sure how to show this – there are other solutions.

28. Let $x_1 = 1$, $x_{n+1} = \sqrt{2 + x_n}$ for $n \in \mathbb{N}$. Show that (x_n) converges and find the limit.

Proof. We show (x_n) is increasing and bounded by induction; by a theorem seen in class, (x_n) converges.

A quick computation shows $x_2 = \sqrt{3}$.

Initial case: Clearly, $1 \le x_1 \le x_2 \le 2$.

Induction hypothesis: Suppose $1 \le x_k \le x_{k+1} \le 2$. Then

$$3 \le x_k + 2 \le x_{k+1} + 2 \le 4$$

and so

$$1 \le \sqrt{3} \le \sqrt{x_k + 2} \le \sqrt{x_{k+1} + 2} \le \sqrt{4} = 2,$$

i.e. $1 \le x_{k+1} \le x_{k+2} = 2.$

Hence (x_n) is increasing and bounded above by 2; as such $x_n \to x$ for some $x \in \mathbb{R}$. exists.

But

$$x = \lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \sqrt{2 + x_n} = \sqrt{2 + \lim_{n \to \infty} x_n} = \sqrt{2 + x},$$

that is, $x^2 = 2 + x$. The only solutions are x = 2 or x = -1, but x = -1must be rejected since $1 \le x_n$ for all n.

Thus, $x_n \rightarrow 2$.

29. Let
$$x_n = \sum_{k=1}^n \frac{1}{k^2}$$
 for all $n \in \mathbb{N}$.

Show that (x_n) is increasing and bounded above.

Proof. As
$$\frac{1}{(n+1)^2} > 0$$
 for all $n \in \mathbb{N}$, we have
$$x_n = \frac{1}{1^2} + \dots + \frac{1}{n^2} \le \frac{1}{1^2} + \dots + \frac{1}{n^2} + \frac{1}{(n+1)^2} = x_{n+1}.$$

Furthermore, for any $k \ge 2 \in \mathbb{N}$, we have $\frac{1}{k^2} < \frac{1}{k-1} - \frac{1}{k}$. Then

$$x_n = \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2}$$

$$\leq 1 + \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right)$$

$$= 1 + 1 + 0 + \dots + 0 - \frac{1}{n} < 2$$

for all $n \in \mathbb{N}$. Hence (x_n) is increasing and bounded above by 2.

30. Show that $c^{1/n} \rightarrow 1$ if 0 < c < 1.

Proof. Let $x_n = c^{1/n}$ for all $n \in \mathbb{N}$.

Since $x_{n+1} = c^{1/(n+1)} > c^{1/n} = x_n$ for all $n \in \mathbb{N}$ (as c < 1), then (x_n) is increasing. Furthermore, $0 < c^{1/n} < 1^{1/n} = 1$ for all $n \in \mathbb{N}$, so (x_n) is bounded above.

Hence (x_n) converges, and $x_n \to x$, for some $x \in \mathbb{R}$. As all subsequences of a convergent sequence converge to the same limit as the convergent sequence, $x_{2n} = c^{1/2n} \to x$. As such,

$$x = \lim_{n \to \infty} c^{1/2n} = \lim_{n \to \infty} \sqrt{c^{1/n}} = \lim_{n \to \infty} \sqrt{x_n} = \sqrt{\lim_{n \to \infty} x_n} = \sqrt{x},$$

and so either x = 0 or x = 1. But as x_n increases to 1, there comes a point after which all x_n are "far" from 0 (you should mathematicize this statement...), so $x_n \to 1$.

P. Boily (uOttawa)