MAT 2125 Elementary Real Analysis

Exercises – Solutions – Q31-Q34

Winter 2021

31. Let (x_n) be a bounded sequence.

For each $n \in \mathbb{N}$, let $s_n = \sup\{x_k : k \ge n\}$. If $S = \inf\{s_n\}$, show that there is a subsequence of (x_n) that converges to S.

Proof. As (x_n) is bounded, $\exists M > 0$ such that $-M < x_n < M$ for all $n \in \mathbb{N}$. By definition, $s_1 \ge s_2 \ge \cdots$ and $s_n \ge x_k$ for all $n \in \mathbb{N}$, $k \ge n$.

Hence $s_n > -M$ for all n and (s_n) is bounded below and decreasing, i.e. (s_n) is convergent.

Furthermore, for each $n \in \mathbb{N}$, as $s_n = \sup\{x_k : k \ge n\}$, $\exists k_n \in \mathbb{N}$ s.t.

$$s_n - \frac{1}{n} \le x_{k_n} < s_n$$

(otherwise s_n is not the supremum).

The sequence (x_{k_n}) might not necessarily be a subsequence of (x_n) , but by deleting the terms that are out of order, the resulting sequence, which we will also denote by (x_{k_n}) is a subsequence of (x_n) . Then

$$0 \le |x_{k_n} - s_n| \le \frac{1}{n}, \quad \forall n \in \mathbb{N}.$$

By the squeeze theorem,

$$0 \le \lim_{n \to \infty} |x_{k_n} - s_n| \le 0, \quad \text{so} \lim_{n \to \infty} |x_{k_n} - s_n| = 0.$$

From a theorem seen in class, this means that

$$\lim_{n \to \infty} x_{k_n} = \lim_{n \to \infty} s_n = S,$$

where the last equality comes from the theorem on bounded increasing/decreasing sequences.

32. Suppose that $x_n \ge 0$ for all $n \in \mathbb{N}$ and that $((-1)^n x_n)$ converges. Show that (x_n) converges.

Proof. Let $(-1)^n x_n \to \alpha$.

Consider its subsequences

 $((-1)^{2n}x_{2n}) = (x_{2n})$ and $((-1)^{2n+1}x_{2n+1}) = (-x_{2n+1}).$

Then $x_{2n} \to \alpha$ and $(-x_{2n+1}) \to \alpha$. But $x_{2n} \ge 0 \ \forall n \in \mathbb{N}$ so $\alpha \ge 0$. Similarly, $-x_{2n+1} \le 0 \ \forall n \in \mathbb{N}$ so $\alpha \le 0$. Since $0 \le \alpha \le 0$, $\alpha = 0$.

By Theorem 14 (operations on limits),

$$\lim_{n \to \infty} |(-1)^n x_n| = |0| = 0.$$

But $|(-1)^n x_n| = x_n \ \forall n$, so $x_n \to 0$.

33. Show that if (x_n) is unbounded, then there exists a subsequence (x_{n_k}) such that $1/x_{n_k} \to 0$.

Proof. As (x_n) is unbounded, $\exists n_1 \in \mathbb{N}$ such that $|x_{n_1}| \geq 1$.

Moreover, $\forall k \geq 2$, $\exists n_k \in \mathbb{N}$ such that $|x_{n_k}| \geq k$ and $n_{k+1} > n_k$ (otherwise the sequence would be bounded).

Let $\varepsilon > 0$. By the Archimedean property, $\exists K_{\varepsilon} \in \mathbb{N}$ such that $K_{\varepsilon} > \frac{1}{\varepsilon}$ and

$$\left|\frac{1}{x_{n_k}} - 0\right| = \frac{1}{|x_{n_k}|} \le \frac{1}{k} < \frac{1}{K_{\varepsilon}} < \varepsilon$$

whenever $k > K_{\varepsilon}$.

Thus, $1/x_{n_k} \to 0$.

34. If $x_n = \frac{(-1)^n}{n}$, find the convergent subsequence in the proof of the Bolzano-Weierstrass theorem, with $I_1 = [-1, 1]$.

Solution. We must first note that (x_n) is bounded by -1 and 1, so the question makes sense.

Let $n_1 = 1$. Then $x_{n_1} = x_1 = -1$ and $\text{length}(I_1) = 2$. Set $I'_1 = [-1, 0]$ and $I''_1 = [0, 1]$.

We have

$$A_1 = \{ n \in \mathbb{N} \mid n > n_1 \text{ and } x_n \in I'_1 \} = \{ 3, 5, 7, 9, 11, \ldots \}$$

and

$$B_1 = \{n \in \mathbb{N} \mid n > n_1 \text{ and } x_n \in I_1''\} = \{2, 4, 6, 8, 10, \ldots\}.$$

Since A_1 is infinite (why?), set $I_2 = I'_1 = [-1, 0]$ and $n_2 = \min A_1 = 3$, so that $x_{n_2} = -1/3$. Note that $n_2 > n_1$, $I_2 \subseteq I_1$, and $\text{length}(I_2) = 1$.

Set
$$I'_2 = [-1, -1/2]$$
 and $I''_2 = [-1/2, 0]$.

We have

$$A_2 = \{ n \in \mathbb{N} \mid n > n_2 \text{ and } x_n \in I'_2 \} = \emptyset$$

and

$$B_2 = \{n \in \mathbb{N} \mid n > n_2 \text{ and } x_n \in I_2''\} = \{5, 7, 9, 11, 13, \ldots\}.$$

Since A_2 is finite, set $I_3 = I_2'' = [-1/2, 0]$ and $n_3 = \min B_2 = 5$, so that $x_{n_3} = -1/5$.

Note that $n_3 > n_2 > n_1$, $I_3 \subseteq I_2 \subseteq I_1$, and $\text{length}(I_3) = 1/2$.

For
$$k \ge 3$$
, we set $I'_k = [-1/2^{k-2}, -1/2^{k-1}]$ and $I''_k = [-1/2^{k-1}, 0]$.
Then
$$A_k = \{n \in \mathbb{N} \mid n > n_k \text{ and } x_n \in I'_k\} = \emptyset$$
and

$$B_k = \{n \in \mathbb{N} \mid n > n_k \text{ and } x_n \in I_k''\} = \{2k+1, 2k+3, 2k+5, \ldots\}.$$

$$A_k$$
 is finite, so set $I_{k+1} = I_k'' = [-1/2^{k-1}, 0].$

Furthermore, $n_{k+1} = \min B_k = 2k+1$ so that $x_{n_k} = \frac{-1}{2k+1}$.

Note that $n_{k+1} > n_k > \cdots > n_2 > n_1$, $I_{k+1} \subseteq I_k \subseteq \cdots \subseteq I_2 \subseteq I_1$ and $\text{length}(I_{k+1}) = 1/2^{k-2}$.

The convergent subsequence is thus is $-1, -1/3, -1/5, \ldots \rightarrow 0$.