MAT 2125 Elementary Real Analysis

Exercises – Solutions – Q38-Q43

Winter 2021

38. Show that, if $\|\cdot\|_1, \|\cdot\|_2$ are norms on \mathbb{R}^d and $c_1, c_2 \in (0, \infty)$, then $c_1 \|\cdot\|_1 + c_2 \|\cdot\|_2$ is a norm.

Proof. Write $f(\mathbf{x}) = c_1 ||\mathbf{x}||_1 + c_2 ||\mathbf{x}||_2$. Then $f : \mathbb{R}^d \to \mathbb{R}_0^+$ since $|| \cdot ||_{1,2}$ are norms and $c_{1,2} > 0$.

The function f is a norm on \mathbb{R}^d if it satisfies the following properties:

(a)
$$f(\mathbf{0}) = 0$$
;
(b) $f(a\mathbf{x}) = |a|f(\mathbf{x})$ for all $a \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^d$, and
(c) $f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.

But

$$f(\mathbf{0}) = c_1 \|\mathbf{0}\|_1 + c_2 \|\mathbf{0}\|_2 = c_1 \cdot \mathbf{0} + c_2 \cdot \mathbf{0} = 0,$$

so the first condition is met.

Similarly, for $a \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^d$, we have

 $f(a\mathbf{x}) = c_1 ||a\mathbf{x}||_1 + c_2 ||a\mathbf{x}||_2 = c_1 |a| ||\mathbf{x}||_1 + c_2 |a| ||\mathbf{x}||_2 = |a| f(\mathbf{x})$

and the second condition is met.

The triangle inequality is proven in the same manner: for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$, we have

$$f(\mathbf{x} + \mathbf{y}) = c_1 \|\mathbf{x} + \mathbf{y}\|_1 + c_2 \|\mathbf{x} + \mathbf{y}\|_2$$

$$\leq c_1 (\|\mathbf{x}\|_1 + \|\mathbf{y}\|_1) + c_2 (\|\mathbf{x}\|_2 + \|\mathbf{y}\|_2)$$

$$= c_1 \|\mathbf{x}\|_1 + c_2 \|\mathbf{x}\|_2 + c_1 \|\mathbf{y}\|_1 + c_2 \|\mathbf{y}\|_2$$

$$= f(\mathbf{x}) + f(\mathbf{y}).$$

The function f is thus a norm.

39. Prove that every convergent sequence in \mathbb{R}^d is bounded.

Proof. Let $(\mathbf{x}_n) \subseteq \mathbb{R}^d$ converge to $\mathbf{x} \in \mathbb{R}^d$. Then for $\varepsilon = 1$, say, $\exists N \in \mathbb{N}$ such that

$$\|\mathbf{x}_n - \mathbf{x}\| < 1$$
 when $n > N$.

Thanks to the reverse triangle inequality, we also have

$$\|\mathbf{x}_n\| - \|\mathbf{x}\| \le \|\mathbf{x}_n - \mathbf{x}\| < 1$$
 when $n > N$,

so that $\|\mathbf{x}_n\| < \|\mathbf{x}\| + 1$ when n > N.

Now, set $M = \max\{\|\mathbf{x}_1\|, \dots, \|\mathbf{x}_N\|, \|\mathbf{x}\| + 1\}$. Then $\|\mathbf{x}_n\| \leq M$ for all n and so (\mathbf{x}_n) is bounded.

Note that the proof does not depend on the specific nature of the norm function in use, only on the sub-additivity property (triangle inequality, reverse triangle inequality) of norms in general.

P. Boily (uOttawa)

40. Recall that the open ball of radius r > 0 centered on $\mathbf{x} \in \mathbb{R}^d$ with respect to a norm $\|\cdot\|$ is defined by

$$B_r(\mathbf{x}; \|\cdot\|) = \left\{ \mathbf{y} \in \mathbb{R}^d \mid \|\mathbf{x} - \mathbf{y}\| < r \right\}.$$

A set $S \subseteq \mathbb{R}^d$ is open if for all $\mathbf{x} \in S$, $\exists r > 0$ so that $B_r(\mathbf{x}; \|\cdot\|) \subseteq S$.

Show that this definition of an open set does not depend on the norm used to define the open balls.

Proof. Let $\|\cdot\|_a$ and $\|\cdot\|_b$ be two norms on \mathbb{R}^d .

Let $S \subseteq \mathbb{R}^d$ be open w.r.t. to $\|\cdot\|_a$, and let $\mathbf{x} \in S$. By assumption, $\exists r > 0$ such that $B_r(\mathbf{x}; \|\cdot\|_a) \subseteq S$.

By equivalence of norms, $\exists C > 0$ s.t. $C \|\mathbf{y}\|_a \leq \|\mathbf{y}\|_b$ for all $\mathbf{y} \in \mathbb{R}^d$. Set $r' = C \cdot r > 0$. If $\|\mathbf{y}\| \in B_{r'}(\mathbf{x}; \|\cdot\|_b)$, then $\|\mathbf{x} - \mathbf{y}\|_b < r'$ and

$$C \|\mathbf{x} - \mathbf{y}\|_a \le \|\mathbf{x} - \mathbf{y}\|_b < r' \implies \|\mathbf{x} - \mathbf{y}\|_a < \frac{r'}{C} = r,$$

which means that $\mathbf{y} \in B'_r(\mathbf{x}; \|\cdot\|_a)$.

Thus $\exists r' > 0$ such that $B_{r'}(\mathbf{x}; \| \cdot \|_b) \subseteq B_r(\mathbf{x}; \| \cdot \|_a) \subseteq S$, and so S is open with respect to $\| \cdot \|_b$. Since the norms are arbitrary, this completes the proof.

41. Give an open cover of (0, 1) with no finite subcover. Also give a sequence in (0, 1) without any subsequence that converges to a point in (0, 1).

Proof. Consider the open collection
$$\mathcal{U} = \left\{ \left(\frac{1}{n+2}, \frac{1}{n}\right) \mid n \in \mathbb{N} \right\}.$$

The set \mathcal{U} is a cover of (0,1). Indeed, let $x \in (0,1)$. Then $\frac{1}{x} > 1$ and, by the Archimedean property, $\exists N \in \mathbb{N}$ such that $N < \frac{1}{x} < N + 2$.

Thus $x \in (\frac{1}{N+2}, \frac{1}{N}) \in \mathcal{U}$. But no finite subset of \mathcal{U} can cover (0, 1). Indeed, let $\{n_1 < \ldots < n_m\}$ be a finite set of integers, corresponding to the finite subset

$$\mathcal{F} = \left\{ \left(\frac{1}{n_1+2}, \frac{1}{n_1} \right), \cdots, \left(\frac{1}{n_m+2}, \frac{1}{n_m} \right) \right\} \subseteq \mathcal{U}.$$

But no real number $0 < x < \frac{1}{n_m+2}$ belongs to an element of \mathcal{F} , and so \mathcal{F} cannot be a subcover of (0, 1).

Thus (0,1) is not a compact subset of \mathbb{R} (in the metric topology).

The sequence $\left(\frac{1}{n}\right) \subseteq (0,1)$ converges to 0, and so any of its convergent subsequences must also converge to 0 (by a theorem seen in class); as such, none of its subsequences can converge to a point in (0,1).

42. Say that a set $K \subset \mathbb{R}^d$ is disconnected if there exist open sets $A, B \neq \emptyset$ such that $K = A \cup B$, $A \cap \overline{B} = \overline{A} \cap B = \emptyset$. Otherwise, it is connected.

Show that $K_1 = [0,1]$ is connected while $K_2 = (0,1) \cup (1,2)$ is disconnected.

Note: the closure \overline{A} of a set $A \subseteq \mathbb{R}^d$ is the smallest closed set containing A, which is to say, it is the set of all limit points of A.

Proof. That the set $K_2 = (0,1) \cup (1,2)$ is disconnected is immediate – indeed, if A = (0,1), B = (1,2), then $\overline{A} = [0,1]$, $\overline{B} = [1,2]$, $K_2 = A \cup B$ and

$$A \cap \overline{B} = (0,1) \cap [1,2] = \emptyset = [0,1] \cap (1,2) = \overline{A} \cap B.$$

Now assume $\exists \varnothing \neq A, B \subseteq K_1$ such that $A \cap \overline{B} = \overline{A} \cap B = \varnothing$.

Since $A, B \neq \emptyset$, $\exists a \in A, b \in B$ such that a < b (re-label the sets A, B if necessary). By assumption, $[a, b] \subseteq K_1$.

Consider the sets $A_0 = A \cap [a, b], B_0 = B \cap [a, b] \subseteq K_1 = [0, 1]$. Since $A_0 \neq \emptyset$ is bounded, its supremum $c = \sup A_0$ exists, with $c \in \overline{A_0} \subseteq \overline{A}$.

As A_0 is bounded above by b and below by a, we must have $a \le c \le b$. However, $\overline{A} \cap B = \emptyset$ by assumption, so $c \notin B$. But $b \in B$, so c < b.

If $c \in A$, then $\exists r > 0$ such that $B_r(c) \subseteq A \implies B_r(c) \cap [a, b] \subseteq A_0$.

Let
$$\varepsilon = \min\{\frac{r}{2}, \frac{b-c}{2}\} > 0.$$

Then $c + \varepsilon \in A$ since $c < c + \varepsilon < c + r$.

Furthermore, $c + \varepsilon \in [a, b]$ since $a \leq c < c + \varepsilon < b$.

Thus $c + \varepsilon \in A \cap [a, b] = A_0$, which contradicts the fact that c is an upper bound of A_0 . We must then have $c \notin A$.

We have thus found a real number $c \in [a,b] \subseteq K_1 = [0,1]$ which is in neither A nor B; consequently, $A \cup B \neq K_1 = [0,1]$.

As A and B were arbitrary, K_1 must then be connected.

43. We say that $K \subset \mathbb{R}^d$ is path-connected if for all $\mathbf{x}_1, \mathbf{x}_2 \in K$, there exists a continuous function $p: [0,1] \to K$ such that $p(0) = \mathbf{x}_1$ and $p(1) = \mathbf{x}_2$.

Let K be a compact, path-connected set and let $f \colon K \to \mathbb{R}$ be continuous on K.

Show $\exists \mathbf{x}_{\min}, \mathbf{x}_{\max} \in K$ such that $f(K) = [f(\mathbf{x}_{\min}), f(\mathbf{x}_{\max})].$

Proof. Since f is continuous and since K is compact and path-connected, f(K) is both compact and path-connected.

We start by showing compactness. Let $\mathcal{U} = \{U_i \mid i \in I\}$ be an open cover of f(K). Consider the collection $\mathcal{W} = \{f^{-1}(U_i) \mid i \in I\}$, where

$$f^{-1}(V) = \{ \mathbf{y} \in K \mid f(\mathbf{y}) \in V \}.$$

If $\mathbf{x} \in K$, then $f(\mathbf{x}) \in f(K)$. Since \mathcal{U} is an open cover of f(K), $\exists U_i \in \mathcal{U}$ such that $f(\mathbf{x}) \in U_i$, which means that $\mathbf{x} \in f^{-1}(U_i)$. But \mathbf{x} was arbitrary, and so \mathcal{W} is a cover of K. Now, let $\mathbf{x} \in K$. Then $\exists U_i \in \mathcal{U}$ such that $f(\mathbf{x}) \in U_i$. Since U_i is open in \mathbb{R} , $\exists r > 0$ such that $B_r(f(\mathbf{x})) \subseteq U_i$.

We then have

$$f^{-1}(B_r(f(\mathbf{x}))) \subseteq f^{-1}(U_i).$$

But f is continuous at \mathbf{x} , so for $\varepsilon = r > 0$, $\exists \delta_{\varepsilon} = \delta_r > 0$ such that $|f(\mathbf{y}) - f(\mathbf{x})| < r$ when $\mathbf{y} \in B_{\delta_r}(\mathbf{x})$.

Thus, if $\mathbf{y} \in B_{\delta_r}(\mathbf{x})$, then $f(\mathbf{y}) \in B_r(f(\mathbf{x}))$; i.e.

$$B_{\delta_r}(\mathbf{x}) \subseteq f^{-1}(B_r(f(\mathbf{x}))) \subseteq f^{-1}(U_i),$$

which is to say that $f^{-1}(U_i)$ is open in \mathbb{R}^d .

Consequently, \mathcal{W} is an open cover of K. But K is compact, so \mathcal{W} admits a finite subcover $\{f^{-1}(U_{i_1}), \ldots, f^{-1}(U_{i_k})\}$.

The sub-collection $\mathcal{U}' = \{U_{i_1}, \ldots, U_{i_k}\}\$ is a subcover of f(K). Let $f(\mathbf{x}) \in f(K)$. Then $\mathbf{x} \in K$, so $\exists U_{i_m} \in \mathcal{U}'$ such that $\mathbf{x} \in f^{-1}(U_{i_m})$. But this is precisely the same as saying that $f(\mathbf{x}) \in U_{i_m}$. Thus \mathcal{U}' is a finite subcover and f(K) is compact.

To show that it is path-connected, consider two arbitrary points $f(\mathbf{x}_1), f(\mathbf{x}_2) \in f(K)$. Since K is path-connected, $\exists p : [0,1] \to K$ continuous with $p(0) = \mathbf{x}_1$ and $p(1) = \mathbf{x}_2$.

The composition $\varphi=f\circ p:[0,1]\to\mathbb{R}$ is continuous, being the composition of continuous functions, with

$$\varphi(0) = f(p(0)) = f(\mathbf{x}_1)$$
 and $\varphi(1) = f(p(1)) = f(\mathbf{x}_2);$

thus φ is a path from \mathbf{x}_0 to \mathbf{x}_1 . Consequently, f(K) is path-connected.

But the only subsets of \mathbb{R} that are compact and path-connected are precisely the closed and bounded intervals.

If f(K) is a singleton or \emptyset , there is nothing to show. So we assume that there are at least two distinct elements $\alpha \neq \beta \in f(K)$.

To show that f(K) is bounded, let $\xi \in f(K)$ and consider the open interval

$$B_n(\xi) = \{ x \in \mathbb{R} \mid |x - \xi| < n \} \subseteq \mathbb{R}.$$

The collection $\{B_i(\xi) \mid i \in \mathbb{N}\}$ is an open cover of f(K).

By compactness of f(K), the collection admits a finite subcover $\{B_{n_1}(\xi), \ldots, B_{n_k}(\xi)\}$. Let $M = \max\{n_1, \ldots, n_k\}$. Then

$$f(K) \subseteq \bigcup_{j=1}^{k} B_{n_j}(\xi) = B_M(\xi).$$

To show that f(K) is closed, we show that its complement $\mathbb{R} \setminus f(K)$ is open. Because f(K) is bounded, we know that $\exists \gamma \notin f(K)$.

For $\eta \in f(K)$, let $r = \frac{|\gamma - \eta|}{2}$ and set $V_{\eta} = B_r(\gamma)$ and $W_{\eta} = B_r(\eta)$. Note that $V_{\eta} \cap W_{\eta} = \emptyset$, by construction.

The collection $\mathcal{W} = \{W_{\eta} \mid \eta \in f(K)\}$ is an open cover of f(K). Since f(K) is compact, it admits a finite subcover $\{W_{\eta_1}, \ldots, W_{\eta_n}\}$. Consider the corresponding finite intersection

$$V = \bigcap_{j=1}^{n} V_{\eta_j}$$

Because all the V_{η_j} are open balls centered at γ , the intersection is simply the $V_{\eta*}$ with radius

$$\eta * = \arg_{\eta_j} \min\left\{\frac{|\eta_1 - \gamma|}{2}, \dots, \frac{|\eta_n - \gamma|}{2}\right\}$$

Now, if

$$z \in f(K) \subseteq W_{\eta_1} \cup \cdots \cup W_{\eta_n},$$

then $z \in W_{\eta_j}$ for some $1 \leq j \leq n$. Thus $z \not\in V_{\eta_j}$ and

$$z \notin V_{\eta*} = V_{\eta_1} \cap \dots \cap V_{\eta_n}.$$

Consequently, $V_{\eta_j} \cap f(K) = \emptyset$ and $B_{\underline{|\eta*-\gamma|}}(\gamma) \subseteq \mathbb{R} \setminus f(K)$, which means that $\mathbb{R} \setminus f(K)$ is open and thus that f(K) is closed.

To show that $f(K) \subseteq \mathbb{R}$ is an interval, first note that it is bounded and closed (as shown above), and so

$$\inf\{f(K)\} = \min\{f(K)\} \in f(K) \text{ and } \sup\{f(K)\} = \max\{f(K)\} \in f(K);$$

thus
$$f(K) \subseteq [\alpha, \beta] = [\inf f(K), \sup f(K)].$$

Now, let $\alpha \leq z \leq \beta$.

Since $\alpha, \beta \in f(K)$ and f(K) is path-connected, \exists a continuous path $\psi : [0,1] \to f(K) \subseteq \mathbb{R}$ with $\psi(0) = \alpha$ and $\psi(1) = \beta$.

By the intermediate value theorem, $\exists \mu \in [0,1]$ such that $\psi(\mu) = z$, meaning that $z \in f(K)$. Thus $[\alpha, \beta] \subseteq f(K)$.

We have thus shown that $f(K) = [\alpha, \beta]$.

As $f : K \to f(K)$ is surjective (onto), $\exists \mathbf{x}_{\min}, \mathbf{x}_{\max} \in K$ such that $f(\mathbf{x}_{\min}) = \alpha$ and $f(\mathbf{x}_{\max}) = \beta$, which completes the proof.