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MAT 2125 – Elementary Real Analysis Exercises – Solutions – Q38-Q43

38. Show that, if ‖ · ‖1, ‖ · ‖2 are norms on Rd and c1, c2 ∈ (0,∞), then
c1‖ · ‖1 + c2‖ · ‖2 is a norm.
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Proof. Write f(x) = c1‖x‖1+ c2‖x‖2. Then f : Rd → R+
0 since ‖ · ‖1,2

are norms and c1,2 > 0.

The function f is a norm on Rd if it satisfies the following properties:

(a) f(0) = 0;
(b) f(ax) = |a|f(x) for all a ∈ R,x ∈ Rd, and
(c) f(x+ y) ≤ f(x) + f(y) for all x,y ∈ Rd.

But
f(0) = c1‖0‖1 + c2‖0‖2 = c1 · 0 + c2 · 0 = 0,

so the first condition is met.

Similarly, for a ∈ R and x ∈ Rd, we have

f(ax) = c1‖ax‖1 + c2‖ax‖2 = c1|a|‖x‖1 + c2|a|‖x‖2 = |a|f(x)

and the second condition is met.

P. Boily (uOttawa) 2



MAT 2125 – Elementary Real Analysis Exercises – Solutions – Q38-Q43

The triangle inequality is proven in the same manner: for x,y ∈ Rd, we
have

f(x+ y) = c1‖x+ y‖1 + c2‖x+ y‖2
≤ c1(‖x‖1 + ‖y‖1) + c2(‖x‖2 + ‖y‖2)
= c1‖x‖1 + c2‖x‖2 + c1‖y‖1 + c2‖y‖2
= f(x) + f(y).

The function f is thus a norm. �
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39. Prove that every convergent sequence in Rd is bounded.
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Proof. Let (xn) ⊆ Rd converge to x ∈ Rd. Then for ε = 1, say, ∃N ∈ N
such that

‖xn − x‖ < 1 when n > N.

Thanks to the reverse triangle inequality, we also have

‖xn‖ − ‖x‖ ≤ ‖xn − x‖ < 1 when n > N,

so that ‖xn‖ < ‖x‖+ 1 when n > N .

Now, set M = max{‖x1‖, . . . , ‖xN‖, ‖x‖ + 1}. Then ‖xn‖ ≤ M
for all n and so (xn) is bounded. �

Note that the proof does not depend on the specific nature of the norm
function in use, only on the sub-additivity property (triangle inequality,
reverse triangle inequality) of norms in general.
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40. Recall that the open ball of radius r > 0 centered on x ∈ Rd with respect
to a norm ‖ · ‖ is defined by

Br(x; ‖ · ‖) =
{
y ∈ Rd | ‖x− y‖ < r

}
.

A set S ⊆ Rd is open if for all x ∈ S, ∃r > 0 so that Br(x; ‖ · ‖) ⊆ S.

Show that this definition of an open set does not depend on the norm
used to define the open balls.
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Proof. Let ‖ · ‖a and ‖ · ‖b be two norms on Rd.

Let S ⊆ Rd be open w.r.t. to ‖ · ‖a, and let x ∈ S. By assumption,
∃r > 0 such that Br(x; ‖ · ‖a) ⊆ S.

By equivalence of norms, ∃C > 0 s.t. C‖y‖a ≤ ‖y‖b for all y ∈ Rd. Set
r′ = C · r > 0. If ‖y‖ ∈ Br′(x; ‖ · ‖b), then ‖x− y‖b < r′ and

C‖x− y‖a ≤ ‖x− y‖b < r′ =⇒ ‖x− y‖a <
r′

C
= r,

which means that y ∈ B′r(x; ‖ · ‖a).

Thus ∃r′ > 0 such that Br′(x; ‖ · ‖b) ⊆ Br(x; ‖ · ‖a) ⊆ S, and so
S is open with respect to ‖ · ‖b. Since the norms are arbitrary, this
completes the proof. �
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41. Give an open cover of (0, 1) with no finite subcover. Also give a sequence
in (0, 1) without any subsequence that converges to a point in (0, 1).
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Proof. Consider the open collection U =
{(

1
n+2,

1
n

)
| n ∈ N

}
.

The set U is a cover of (0, 1). Indeed, let x ∈ (0, 1). Then 1
x > 1

and, by the Archimedean property, ∃N ∈ N such that N < 1
x < N + 2.

Thus x ∈ ( 1
N+2,

1
N ) ∈ U . But no finite subset of U can cover (0, 1).

Indeed, let {n1 < . . . < nm} be a finite set of integers, corresponding to
the finite subset

F =
{(

1
n1+2,

1
n1

)
, · · · ,

(
1

nm+2,
1
nm

)}
⊆ U .

But no real number 0 < x < 1
nm+2 belongs to an element of F , and so

F cannot be a subcover of (0, 1).

Thus (0, 1) is not a compact subset of R (in the metric topology).
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The sequence
(
1
n

)
⊆ (0, 1) converges to 0, and so any of its convergent

subsequences must also converge to 0 (by a theorem seen in class); as
such, none of its subsequences can converge to a point in (0, 1). �
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42. Say that a set K ⊂ Rd is disconnected if there exist open sets A,B 6= ∅
such that K = A∪B, A∩B = A∩B = ∅. Otherwise, it is connected.

Show that K1 = [0, 1] is connected while K2 = (0, 1) ∪ (1, 2) is
disconnected.

Note: the closure A of a set A ⊆ Rd is the smallest closed set containing
A, which is to say, it is the set of all limit points of A.
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Proof. That the set K2 = (0, 1) ∪ (1, 2) is disconnected is immediate –
indeed, if A = (0, 1), B = (1, 2), then A = [0, 1], B = [1, 2], K2 = A∪B
and

A ∩B = (0, 1) ∩ [1, 2] = ∅ = [0, 1] ∩ (1, 2) = A ∩B.

Now assume ∃∅ 6= A,B ⊆ K1 such that A ∩B = A ∩B = ∅.

Since A,B 6= ∅, ∃a ∈ A, b ∈ B such that a < b (re-label the sets
A,B if necessary). By assumption, [a, b] ⊆ K1.

Consider the sets A0 = A ∩ [a, b], B0 = B ∩ [a, b] ⊆ K1 = [0, 1]. Since
A0 6= ∅ is bounded, its supremum c = supA0 exists, with c ∈ A0 ⊆ A.

As A0 is bounded above by b and below by a, we must have a ≤ c ≤ b.
However, A ∩B = ∅ by assumption, so c 6∈ B. But b ∈ B, so c < b.
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If c ∈ A, then ∃r > 0 such that Br(c) ⊆ A =⇒ Br(c) ∩ [a, b] ⊆ A0.

Let ε = min{r2,
b−c
2 } > 0.

Then c+ ε ∈ A since c < c+ ε < c+ r.

Furthermore, c+ ε ∈ [a, b] since a ≤ c < c+ ε < b.

Thus c + ε ∈ A ∩ [a, b] = A0, which contradicts the fact that c is
an upper bound of A0. We must then have c 6∈ A.

We have thus found a real number c ∈ [a, b] ⊆ K1 = [0, 1] which
is in neither A nor B; consequently, A ∪B 6= K1 = [0, 1].

As A and B were arbitrary, K1 must then be connected. �
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43. We say that K ⊂ Rd is path-connected if for all x1,x2 ∈ K, there exists
a continuous function p : [0, 1]→ K such that p(0) = x1 and p(1) = x2.

Let K be a compact, path-connected set and let f : K → R be
continuous on K.

Show ∃xmin,xmax ∈ K such that f(K) = [f(xmin), f(xmax)].

P. Boily (uOttawa) 14



MAT 2125 – Elementary Real Analysis Exercises – Solutions – Q38-Q43

Proof. Since f is continuous and since K is compact and path-
connected, f(K) is both compact and path-connected.

We start by showing compactness. Let U = {Ui | i ∈ I} be an open
cover of f(K). Consider the collection W = {f−1(Ui) | i ∈ I}, where

f−1(V ) = {y ∈ K | f(y) ∈ V }.

If x ∈ K, then f(x) ∈ f(K). Since U is an open cover of f(K),
∃Ui ∈ U such that f(x) ∈ Ui, which means that x ∈ f−1(Ui). But
x was arbitrary, and so W is a cover of K. Now, let x ∈ K. Then
∃Ui ∈ U such that f(x) ∈ Ui. Since Ui is open in R, ∃r > 0 such that
Br(f(x)) ⊆ Ui.

We then have
f−1 (Br(f(x))) ⊆ f−1(Ui).
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But f is continuous at x, so for ε = r > 0, ∃δε = δr > 0 such that
|f(y)− f(x)| < r when y ∈ Bδr(x).

Thus, if y ∈ Bδr(x), then f(y) ∈ Br(f(x)); i.e.

Bδr(x) ⊆ f−1 (Br(f(x))) ⊆ f−1(Ui),

which is to say that f−1(Ui) is open in Rd.

Consequently, W is an open cover of K. But K is compact, so W
admits a finite subcover {f−1(Ui1), . . . , f−1(Uik)}.

The sub-collection U ′ = {Ui1, . . . , Uik} is a subcover of f(K). Let
f(x) ∈ f(K). Then x ∈ K, so ∃Uim ∈ U ′ such that x ∈ f−1(Uim). But
this is precisely the same as saying that f(x) ∈ Uim. Thus U ′ is a finite
subcover and f(K) is compact.
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To show that it is path-connected, consider two arbitrary points
f(x1), f(x2) ∈ f(K). Since K is path-connected, ∃p : [0, 1] → K
continuous with p(0) = x1 and p(1) = x2.

The composition ϕ = f ◦ p : [0, 1] → R is continuous, being the
composition of continuous functions, with

ϕ(0) = f(p(0)) = f(x1) and ϕ(1) = f(p(1)) = f(x2);

thus ϕ is a path from x0 to x1. Consequently, f(K) is path-connected.

But the only subsets of R that are compact and path-connected are
precisely the closed and bounded intervals.

If f(K) is a singleton or ∅, there is nothing to show. So we assume that
there are at least two distinct elements α 6= β ∈ f(K).
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To show that f(K) is bounded, let ξ ∈ f(K) and consider the open
interval

Bn(ξ) = {x ∈ R | |x− ξ| < n} ⊆ R.
The collection {Bi(ξ) | i ∈ N} is an open cover of f(K).

By compactness of f(K), the collection admits a finite subcover
{Bn1(ξ), . . . , Bnk(ξ)}. Let M = max{n1, . . . , nk}. Then

f(K) ⊆
k⋃
j=1

Bnj(ξ) = BM(ξ).

To show that f(K) is closed, we show that its complement R \ f(K) is
open. Because f(K) is bounded, we know that ∃γ 6∈ f(K).
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For η ∈ f(K), let r = |γ−η|2 and set Vη = Br(γ) and Wη = Br(η). Note
that Vη ∩Wη = ∅, by construction.

The collection W = {Wη | η ∈ f(K)} is an open cover of f(K). Since
f(K) is compact, it admits a finite subcover {Wη1, . . . ,Wηn}. Consider
the corresponding finite intersection

V =

n⋂
j=1

Vηj.

Because all the Vηj are open balls centered at γ, the intersection is
simply the Vη∗ with radius

η∗ = argηj min

{
|η1 − γ|

2
, . . . ,

|ηn − γ|
2

}
.
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Now, if
z ∈ f(K) ⊆Wη1 ∪ · · · ∪Wηn,

then z ∈Wηj for some 1 ≤ j ≤ n. Thus z 6∈ Vηj and

z 6∈ Vη∗ = Vη1 ∩ · · · ∩ Vηn.

Consequently, Vηj ∩f(K) = ∅ and B|η∗−γ|
2

(γ) ⊆ R\f(K), which means

that R \ f(K) is open and thus that f(K) is closed.

To show that f(K) ⊆ R is an interval, first note that it is bounded and
closed (as shown above), and so

inf{f(K)} = min{f(K)} ∈ f(K) and sup{f(K)} = max{f(K)} ∈ f(K);

thus f(K) ⊆ [α, β] = [inf f(K), sup f(K)].
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Now, let α ≤ z ≤ β.

Since α, β ∈ f(K) and f(K) is path-connected, ∃ a continuous path
ψ : [0, 1]→ f(K) ⊆ R with ψ(0) = α and ψ(1) = β.

By the intermediate value theorem, ∃µ ∈ [0, 1] such that ψ(µ) = z,
meaning that z ∈ f(K). Thus [α, β] ⊆ f(K).

We have thus shown that f(K) = [α, β].

As f : K → f(K) is surjective (onto), ∃xmin,xmax ∈ K such that
f(xmin) = α and f(xmax) = β, which completes the proof. �
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