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38. Show that, if || - ||1,]| - ||z are norms on R% and ¢;,cy € (0,00), then
cill - |1 4 2| - ||2 is a norm.
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Proof. Write f(x) = c1|x||1 + c2||x|[2. Then f:R% — R since || - [|1.2
are norms and cj 2 > 0.

The function f is a norm on R? if it satisfies the following properties:

(a) f(0)=0;
(b) f(ax) = |a|f(x) for all @ € R,x € R?, and

(c) fx+y) < f(x)+ f(y) forall x,y € R%.

But
f(0) = c1][0f]1 + 2[[0f]2 = ¢1 - 0+ c2- 0 =0,
so the first condition is met.

Similarly, for a € R and x € R?, we have
flax) = c1llax|[1 + c2||ax||2 = cilall[x|l1 + calal||x[[2 = |a] f(x)

and the second condition is met.
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The triangle inequality is proven in the same manner: for x,y € R?, we
have

fx+y)=cx+yli+efx+ylo
<ci(|[x[[1 + llyllr) + e2(l|xll2 + [l¥ll2)
= c1||x||1 + c2|x|]2 + ci||ly s + c2||yll2
= f(x)+ f(y).
The function f is thus a norm. |
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39. Prove that every convergent sequence in R? is bounded.
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Proof. Let (x,,) C R? converge to x € R%. Then fore =1, say, 4N € N
such that
|x, —x|| <1 whenn > N.

Thanks to the reverse triangle inequality, we also have
1x.] — [|x]] < ||xn — x| <1 when n > N,
so that ||x,| < ||x|| + 1 when n > N.

Now, set M = max{||xi|,...,[|xn],[|x]| + 1}. Then ||x,| < M
for all n and so (x,,) is bounded. H

Note that the proof does not depend on the specific nature of the norm
function in use, only on the sub-additivity property (triangle inequality,
reverse triangle inequality) of norms in general.
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40. Recall that the open ball of radius > 0 centered on x € R? with respect
to a norm || - || is defined by

By(x;|-[l) ={y e R | Ix =yl <7}

A set S C R is open if for all x € S, 3r > 0 so that B.(x;| - ||) C S.

Show that this definition of an open set does not depend on the norm
used to define the open balls.
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Proof. Let || - ||, and || - || be two norms on R?.

Let S C R? be open w.r.t. to || - |
dr > 0 such that B.(x;|| - ||lo) C S.

a, and let x € §. By assumption,

By equivalence of norms, 3C > 0 s.t. Cllyl|la < ||y||s for all y € R?. Set
r'=C-r>0.If |yl € B.(x;]| - ||p), then ||x —y||y < r’" and

,r,/

Cllx =yl < lx=yly <7 =[x =yl < 7=

which means that y € B/.(x; || - ||a)-
Thus 3’ > 0 such that B.(x;] - |[s) € B.(x;] - |l«) € S, and so

S is open with respect to || - ||[s. Since the norms are arbitrary, this
completes the proof. |
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41. Give an open cover of (0, 1) with no finite subcover. Also give a sequence
in (0, 1) without any subsequence that converges to a point in (0,1).
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Proof. Consider the open collection U = {(n_lﬂ, ) | n € N}

The set U is a cover of (0,1). Indeed, let z € (0,1). Then > 1
and, by the Archimedean property, 3N € N such that NV < = L < N + 2.

Thus = € (N+2, N) € U. But no finite subset of U can cover (0,1).
Indeed, let {n; < ... < n,,} be a finite set of integers, corresponding to
the finite subset

F=mma) o () S

belongs to an element of F, and so

But no real number 0 < z <
F cannot be a subcover of (0, 1)

_|_

Thus (0,1) is not a compact subset of R (in the metric topology).
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The sequence (%) C (0,1) converges to 0, and so any of its convergent
subsequences must also converge to 0 (by a theorem seen in class); as
such, none of its subsequences can converge to a point in (0, 1). H
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42. Say that a set K C R%is disconnected if there exist open sets A, B # &
suchthat K = AUB, ANnB=ANB = g&. Otherwise, it is connected.

Show that K; = [0,1] is connected while Ky = (0,1) U (1,2) is
disconnected.

Note: the closure A of a set A C R? is the smallest closed set containing
A, which is to say, it is the set of all limit points of A.
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Proof. That the set K3 = (0,1) U (1,2) is disconnected is immediate —
indeed, if A=(0,1), B=(1,2),then A=1[0,1], B=[1,2]|, Ko = AUB
and

ANB=(0,1)N[1,2] =2 =1[0,1]Nn(1,2) = AN B.

Now assume 3@ # A, B C K; suchthat ANB=ANB = 0.

Since A,B # &, Ja € A,b € B such that a < b (re-label the sets
A, B if necessary). By assumption, [a,b] C Kj.

Consider the sets Ag = AN a,b], Bo = BNla,b] € K; = [0,1]. Since
Ay # @ is bounded, its supremum ¢ = sup Ay exists, with ¢ € Ay C A.

As Ag is bounded above by b and below by a, we must have a < ¢ <b.
However, AN B = & by assumption, so c ¢ B. But b € B, so ¢ < b.
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If c € A, then Jr > 0 such that B,.(¢) C A = B,(c) N |a,b] C Ay.

. b—
Let £ = min{%, 25<} > 0.
Thenc+ec € Asincec<c+e<cHr.
Furthermore, c+ ¢ € [a,b] sincea < c<c+¢e <b.

Thus ¢c+¢ € ANla,b] = Ay, which contradicts the fact that c is
an upper bound of Ay. We must then have ¢ &€ A.

We have thus found a real number ¢ € [a,b] C K; = [0,1] which
is in neither A nor B; consequently, AU B # K; = [0, 1].
As A and B were arbitrary, K1 must then be connected. H
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43. We say that K C R? is path-connected if for all x;,xs € K, there exists
a continuous function p : [0, 1] — K such that p(0) = x; and p(1) = xo.

Let K be a compact, path-connected set and let f: K — R be
continuous on K.

Show FXmin, Xmax € K such that f(K) = [f(Xmin), f(Xmax)]-
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Proof. Since f is continuous and since K is compact and path-
connected, f(K) is both compact and path-connected.

We start by showing compactness. Let & = {U; | i € I} be an open
cover of f(K). Consider the collection W = {f~Y(U;) | ¢ € I}, where

[FIV)={yeK|fly) eV}

If x € K, then f(x) € f(K). Since U is an open cover of f(K),
JU; € U such that f(x) € U;, which means that x € f~}(U;). But
x was arbitrary, and so W is a cover of K. Now, let x € K. Then
JU; € U such that f(x) € U;. Since U; is open in R, 3r > 0 such that
B.(f(x)) € Ui.

We then have
FH(Br(f(x))) € fHUL).
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But f is continuous at x, so for e = r > 0, 0. = 9, > 0 such that
f(y) — F(x)| <7 wheny € Bs, (x).

Thus, if y € Bs . (x), then f(y) € B.(f(x)); i.e.

Bs.(x) C f71 (B (f(x))) C fH(y),

which is to say that f~1(U;) is open in R

Consequently, W is an open cover of K. But K is compact, so W
admits a finite subcover {f~4(U;,),..., [~ (U; )}

The sub-collection U = {U;,,...,U;, } is a subcover of f(K). Let
f(x) € f(K). Thenx € K, so U;, € U’ such that x € f~1(U;_ ). But
this is precisely the same as saying that f(x) € U;_ . Thus U’ is a finite
subcover and f(K) is compact.
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To show that it is path-connected, consider two arbitrary points
f(x1), f(x2) € f(K). Since K is path-connected, Jp : [0,1] — K
continuous with p(0) = x; and p(1) = xs.

The composition ¢ = fop : [0,1] — R is continuous, being the
composition of continuous functions, with

©(0) = f(p(0)) = f(x1) and (1) = f(p(1)) = f(x2);

thus ¢ is a path from x( to x;. Consequently, f(K) is path-connected.

But the only subsets of R that are compact and path-connected are
precisely the closed and bounded intervals.

If f(K) is a singleton or &, there is nothing to show. So we assume that
there are at least two distinct elements a # 8 € f(K).
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To show that f(K) is bounded, let £ € f(K) and consider the open
interval
B,(§)={rxeR ||z —& <n} CR

The collection {B;(§) | ¢ € N} is an open cover of f(K).

By compactness of f(K), the collection admits a finite subcover
{Bp,(&),...,Bn, (&)} Let M = max{ni,...,ng}. Then

FE) € | By (€) = Bu(&).

To show that f(K) is closed, we show that its complement R\ f(K) is
open. Because f(K) is bounded, we know that 3y ¢ f(K).
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Forn e f(K), let r = h—;"' and set V,, = B,(v) and W, = B,(n). Note

that V,, N W, = &, by construction.

The collection W = {W,, | n € f(K)} is an open cover of f(K). Since
f(K) is compact, it admits a finite subcover {W,,..., W, }. Consider
the corresponding finite intersection

n

V=)V

g=1

Because all the V. are open balls centered at ~, the intersection is
simply the V,, with radius

n:gm{MM}
J 2 2
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Now, if
Zef(K)ngU'”UWnn’

then z € W,,. forsome 1 < j3 <n. Thus z ¢ V,,. and
Uk "
2E Vo=V, N---NV, .

Consequently, V,. N f(K) = @ and B}, () € R\ f(K), which means

2

that R\ f(K) is open and thus that f(K) is closed.

To show that f(K) C R is an interval, first note that it is bounded and
closed (as shown above), and so

inf{f(K)} =min{f(K)} € f(K) and sup{f(K)} = max{f(K)} € f(K);

thus f(K) C |, 8] = [inf f(K),sup f(K)].
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Now, let o < z < 6.

Since o, 8 € f(K) and f(K) is path-connected, 3 a continuous path
b1 [0,1] — f(K) C R with 1(0) = « and (1) = 8.

By the intermediate value theorem, Ju € [0,1] such that ¥(u) = z,
meaning that z € f(K). Thus |a, 8] C f(K).

We have thus shown that f(K) = [«, B].

As f : K — f(K) is surjective (onto), IXmin, Xmax € K such that
f(Xmin) = @ and f(Xmax) = B, which completes the proof. |
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