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1. True or False Statement: determine the validity of the following statement. If it is
false, provide a counter-example.

If A C R is countable and A C B, then B is countable.

Answer False; A = N is countable and A C B = R, but B = R is uncountable.

2. True or False Statement: determine the validity of the following statement. If it is
false, provide a counter-example.

If A C R is uncountable and A C B, then B is uncountable.

Answer True.

3. True or False Statement: determine the validity of the following statement. If it is
false, provide a counter-example.

Q is complete.

Answer False; the set {z € Q | 22 < 2} is bounded but does not admit a supre-
mum in Q.

4. True or False Statement: determine the validity of the following statement. If it is
false, provide a counter-example.

Every sequence (z,,) C R has a convergent subsequence.

Answer False; the sequence (z,) = (n), for instance, does not admit convergent sub-
sequences, since all of its subsequences are unbounded.

5. True or False Statement: determine the validity of the following statement. If it is
false, provide a counter-example.

Every bounded sequence (z,) C R has a convergent subsequence.

Answer True (Bolzano-Weierstrass).

6. True or False Statement: determine the validity of the following statement. If it is
false, provide a counter-example.

Every Cauchy sequence (z,) C R is convergent.

Answer True; the Cauchy sequences in R are exactly those sequences that are conver-
gent in R.
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10.

11.

12.

True or False Statement: determine the validity of the following statement. If it is
false, provide a counter-example.

Every monotone sequence (x,,) C R is a Cauchy sequence.

Answer False; the sequence (z,,) = (n) is monotone increasing, but it is not a Cauchy
sequence.

True or False Statement: determine the validity of the following statement. If it is
false, provide a counter-example.

Every convergent sequence (x,) C R is bounded.

Answer True; all convergent sequences are bounded.

True or False Statement: determine the validity of the following statement. If it is
false, provide a counter-example.

If a, < b, <c, for all n, and a, — A,b, = B,c, — C, then A < B < (.

Answer False; a, = 1/n, b, = 2/n and ¢, = 3/n are such that a,, < b, < ¢, for
all n, but a,,b,,c, — 0and 0 £ 0 £ 0.
True or False Statement: determine the validity of the following statement. If it is

false, provide a counter-example.

For sequences (z,,), (yn), liminf(z, + y,,) = liminf z,, + lim inf y,,.
n—00 n—00 n—ro0

Answer False; consider z,, = (—1)" and y,, = (—1)"*! for alln € N - then x, +y, =0
for all n, and

liminf(z, +y,) =0, andliminfz, 4+ liminfy, =-1—-1= —2.

n— o0 n—0o0 n—oo

True or False Statement: determine the validity of the following statement. If it is
false, provide a counter-example.

If (|z,|) converges, then (z,) converges.

Answer False: |(—1)"| converges to 1, but (—1)" does not converge.

True or False Statement: determine the validity of the following statement. If it is
false, provide a counter-example.

If x,, doesn’t converge, then x,, is unbounded.

Answer False; (—1)" doesn’t converge, but it is bounded by 2, say.
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13.

14.

15.

16.

17.

18.

True or False Statement: determine the validity of the following statement. If it is
false, provide a counter-example.

If (x,) C R is unbounded, either lim z,, = cc or lim z,, = —oc.
Answer False; (—1)"n is unbounded, but neither lim (—1)"n = oo nor lim (—1)"n = —co.
n— o0 n—oo

True or False Statement: determine the validity of the following statement. If it is
false, provide a counter-example.

If (z,) € R? and (z,[i]) converges to a limit S[i] for each i € {1,2,...,d}, then (z,)
converges to S = (S[1],...,S[d]).

Answer True.

True or False Statement: determine the validity of the following statement. If it is
false, provide a counter-example.

If a subset of R? is not open, it is closed.

Answer False; [0,1) is not open in R, but it is not closed in R.

True or False Statement: determine the validity of the following statement. If it is
false, provide a counter-example.

If A C R?is an open set, it can be written as a finite union of open balls.

Answer False; the set R is open in R, but it cannot be write as a finite union of
open balls (each of which has to have a finite radius).

True or False Statement: determine the validity of the following statement. If it is
false, provide a counter-example.

Every nonempty open set A C R? contains an open ball of radius strictly greater than 0.

Answer True.

True or False Statement: determine the validity of the following statement. If it is
false, provide a counter-example.

Every nonempty closed set A C R? contains a closed ball of radius strictly greater than 0.

Answer False; {1} is closed in R, but it contains no closed ball of radius strictly
greater than 0.
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19.

20.

21.

22.

23.

True or False Statement: determine the validity of the following statement. If it is
false, provide a counter-example.

Every boundary point of A C R? is an accumulation (cluster) point.

Answer False; 1 is a boundary point of {1}, but {1} has no accumulation point.

True or False Statement: determine the validity of the following statement. If it is
false, provide a counter-example.

Every isolated point of A C R? is a boundary point.

Answer True.

Short Answer Question: provide a proof of the following statement.

Let S # @ be a bounded subset of R. Let a > 0. Define aS = {as : s € S}. Prove that
inf(aS) = ainf S.

Proof. By hypothesis, aS # @ is bounded. By completeness of R, inf S and inf(a5)
exist. We show ainf S = inf(aS) by showing ainf S < inf(aS) and ainf S > inf(a.S5).

Now, infS < s for all s € S. Since a > 0, ainfS < as for all s € S, so that
ainf S < inf(aS). Similarly, inf(aS) < as for all s € S. Since a > 0, L inf(aS) < s for
all s € S and so £ inf(aS) <infS. As a > 0, inf(aS) < ainf S. QED

Short Answer Question: provide a proof of the following statement.

Let S # @ be a bounded subset of R. Let b < 0. Define bS = {bs : s € S}. Prove that
sup(bS) = binf S.

Proof. By hypothesis, bS # @ is bounded. By completeness of R, inf S and sup(bS)
exist. We show binf S = sup(bS) by showing binf S > sup(bS) and binf S < sup(bS5).

Now, inf$S < s for all s € S. Since b < 0, binfS > bs for all s € S, so that
binf S > sup(bS). Similarly, sup(bS) > bs for all s € S. Since b < 0, 3 sup(bS) < s for
all s € S and so 3 sup(bS) <infS. As b > 0, sup(bS) > binf S. QED

Short Answer Question: provide a proof of the following statement.

Let A, B # @ be bounded subsets of R. Define A+ B = {a+0b : a € Ab € B}.
Show that sup(A + B) = sup(A) + sup(B).

Proof. Let A, B # @ be bounded subsets of R. Define A+ B = {a+b : a € Abe B}.
Show that sup(A + B) = sup(A) + sup(B).
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24.

25.

A and B are bounded and non-empty. By completeness, they have supremums in R, say
a, and by, respectively. Then a, > a and b, > bforalla € A, b€ B.

The real number a, + b, is an upper bound of A + B since a, + b, > a + b for all
a € A, b€ B. By completeness of R, A+ B has a supremum as it is also not empty. We
show that this supremum is indeed a, + b,.

Let w be an upper bound of A+ B. Then, w > a+ b for all a € A and b € B, or
w—>b>aforalla € Aand b € B. Thus, w— b is an upper bound of A for all b € B, i.e.
w—>b>a,forallbe B. Then w—a, > b forall b € B, so w — a, is an upper bound of
B; hence w — a, > b,. As a result, w > a, + b,, which concludes the proof. QED

Short Answer Question: provide a proof of the following statement.

If S # & is a bounded subset of R and Is = [inf S, sup S], show that S C Is. Moreover,
if J is any closed bounded interval containing S, show Ig C J.

Proof. As S is non-empty and bounded, sup S and inf S exist by the completeness
of R. Since infS < s < supS for all s € S, then inf S < sup .S and so the interval
I, = [inf S,sup S| is well-defined. Furthermore, the string of inequalities above also
shows that S C Ig.

Let J = [a,b] be a closed interval containing S. Then a < s < b for all s € S.
Thus, a is a lower bound and b is an upper bound of S. By definition,

a<infS <supS <b,
and so [, = [inf S,sup S| C [a, b] = J. QED
Short Answer Question: provide a proof of the following statement.
Let (an), (bn) be bounded sequences in R. Show that

lim sup(a, + b,) < limsup a,, + limsup b,

n—oo n—oo n—oo

and show by example that this inequality can be strict.

Proof. Fix ¢ > 0. Then there exists some N = N(¢) so that, for all m > N, the
following inqualities all hold:

€ . € ..
— + limsupa, > a,, > —= + liminfa,
2 n—00 2 n—00

% + limsup b,, > b,, > —% + liminf b,,.

n—00 n—00
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26.

27.

Adding the left-hand sided inequalities, we get:

Qm + by, < €+ limsup a,, + limsup b,,.

n—oo n—oo

We conclude with our first desired inequality,

lim sup(a,, + b,) < limsup a,, + limsup b,.

n—oo n—oo n—0o0
For the counter-example, consider the sequences a, = (—1)",b, = (—=1)"*'. Then
a, + b, = 0 Vn, so limsup(a, + b,) = 0. However, limsupa,, = limsupb, =1. QED
n—00 n—00 n—00

Short Answer Question: provide a proof of the following statement.

Let (b,) be a convergent sequence of real numbers and (a,) a sequence of real num-
bers such that |a,, — a,| < |b;, — by for all n,m € N. Show (a,,) is convergent.

Proof. Fix ¢ > 0. Since (b,) is convergent, it is also Cauchy. Thus, there exists
some N = N(e) so that for all m,n > N(e),

|b, — bi| < €.
But then for all m,n > N(e), we also have
G — | < [0 — bn] < &,

which means that (a,) is Cauchy (hence convergent) as well. QED
Short Answer Question: provide a proof of the following statement.
Fix a sequence (x,). Assume there exists a > 0 so that

Tnt2 = Tpa1| < (1= a)|Tns1 — 2
for all n. Show that (x,) is Cauchy.
Proof. We begin by showing the following by induction: for all n € N with n > 2,

[Tt = 2| < (1= )" Han — 2.

The base case, when n = 2, is exactly the assumption. To do the induction step, assume
this holds for some particular value of n; then

[Znie — Tnta| < (1= Q)|[Tpi1 — 24
<(1—-a)(l—a)" oy — a1

= (1 —a)"xy — x1]
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as desired. Note that the first inequality is the assumption of the question, while the
second is our induction assumption.

Using this, we calculate for m,n € N with m > n:

m—1
[ = ] = | Y (241 — ;)]
j=n

m—1
< [Tj 41 — 5]
j=n
m—1
< (1—a)3_1|:172—:p1|

n

<(A-a) Moy —m| ) (1-ay
§=0

.
Il

_ 1’2—1’1’
= (1— n 1‘ ]
(1 —ayt2= 2

Finally, fix € > 0. There exists N so that for all n. > N, (1 —a)" ! < sy Lhus, for
m,n > N,

i<t ml e
o — ] < (1= a2 < 2
This completes the proof. QED

28. Short Answer Question: provide a proof of the following statement.
A sequence (a,) converges to A if and only if every one of its subsequences converges to A.

Proof. We prove the directions separately:

1. Assume z,, — L. Consider a strictly increasing function f : N — N. Fix € > 0.
Since x, — L, there exists some N so that for all n > N, |z, — L| < e. But for
such a value of n, we have f(n) >n > N, so

[Zpn) — L] <€

as well.

2. Assume 75,y — L for any strictly increasing function f : N+~ N. Then in
particular this is true for the function f(n) =n, so x, — L.

This completes the proof. QED
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29.

30.

31.

32.

Computations and Applications of Definitions

3n+1 3

Use the definition of the limit of a sequence to show that lim = —.
n—oo 2n +95 2

Proof. Let ¢ > 0. By the Archimedean property, there is a positive integer N. > g.

Then

n+1 3 13 13 13

— =< "<
2n+5 2‘ 22n+5) 4n AN,
whenever n > N.. QED

<e,

Computations and Applications of Definitions

=0ifa>0.

Use the definition of the limit of a sequence to show that lim
n—oo 1 + an

Proof. Let ¢ > 0. By the Archimedean property, there is a positive integer N, > aie
Then

1 1 1 1
‘ 0‘ < &g,

— < — <
1+ na 1+na na N.a

whenever n > N.. QED

Computations and Applications of Definitions

Using the definition, show that (%) is a Cauchy sequence.

Proof. Let ¢ > 0. According to the Archimedean Property, 4N, € N such that

NE>§. Then,
2 2 1 1 1 1 2
nts_ m+3’—3 L g3(—+—> <3 = <e
n m nom nom N,
whenever m,n > N.. QED

Computations and Applications of Definitions

Let (x,) be the sequence defined by z; = 2 and z,, = 2 + /z,_1. Show (z,) con-
verges and compute its limit.

Proof. We show (z,,) is increasing and bounded by induction; as a results, (z,) con-
verges. A quick computation shows z, = 2 + /2.

Initial case — Clearly, 2 < 21 < x5 < 4.
Induction hypothesis — Suppose 2 < x; < x5 < 4. Then V2 < Jzr < VI <
V4 =2 and so

2<24+V2 <24 I <24 /Trl <242 =4,

ie. 2 <y < Xpyo =4
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33.

34.

Hence (z,) is increasing and bounded above by 4: z = lim x,, exists.

But

v =limz, =lm 2+ /T,—1) =2+ lim /z,—1 = 2+ lim /7, =2+ /z,
that is, x = 2 4+ y/z. The only solution is x = 4. Then, lim z,, = 4. QED
Computations and Applications of Definitions

2
- —x+1
Using the € — J definition or the sequential criterion, determine whether lin% Tj
z— T
for x # —1 exists (if the limit exists, find it).

Y

Proof. If the limit exists, it must be equal to % since the sequence f(z,) — % if
T, =1+1/n.
Let ¢ > 0 and set §. = min{3, 3¢}. Then

0<|z—1] <4 —> [20—1| <2 and <2

x — xr — and | —| < —.
} 2(x+1)| 3

Thus

?—z+1 1 20 — 1 | 1|<2| 1|<25<

— | = |— |- |z — = €

r+1 2 2(x +1) 3 3°

whenever 0 < |z — 1] < d. and = € R. QED

Computations and Applications of Definitions

Assume lim a, = 3. Using the € — § definition or the sequential criterion, compute
n—oo

lim a.
n—o0

Proof. Fix 0 < [0| < 1. We then have the following preliminary calculation:
[(3+0)" = 3% = [(4)(3%)0 + (6)(3)0 + (4)(3)0° + &

< (A)EH)0] + (6)(3%)[0] + (4)(3)[0] + |9
= 175|4].

We now start the body of the proof. Fix € > 0. Since a,, — 3, there exists N = N(¢) so
that for all n > N(e), |a, — 3| < min(5, 3). Using the preliminary calculation, for such
a value of n,

la* — 3% < 175]a, — 3| < ﬁ <e

This completes the proof. QED
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35. Computations and Applications of Definitions

Using the e — 4 definition or the sequential criterion, determine whether liH(l] sgn(sin(1/z))
T—

exists, where

1 ify>0
sgn(y) =40 ify=0.
-1 ify<O

If the limit exists, find it. For this question, you may assume that the regular properties
of the sin function are known.

Proof. Let (z,) = (m) Then x,, — 0, x, # 0 for all n € N and

sen (sin () ) =sn (-0 = (17,

1
which does not converge. Hence hH(l) sgn (sin (—)) does not exist.
T— T
36. Long Answer Question:
Show that there exists a positive real number y such that y* = 2.

Proof. Consider the set S = {sRT : s* < 2}, where R™ denotes the set of posi-
tive real numbers. This set in not empty as 1 € S. Furthermore, S is bounded above by
2. Indeed, if t > 2, then t* > 16 > 2, whence t € S. By completeness of R, x = sup S > 1
exists. It will be enough to show that neither z* < 2 and z* > 2 can hold. The only
remaining possibility will be that = = v/2.

1. If 2* < 2, then % > (. By the Archimedean property, there is an integer

n > 0 such that % < n. By re-arranging the terms, we get

1
0<—(42° + 62> + 4z +1) <2 — 2",
n

et — St o< — o — 4
n n n n n

( 1 ) 4 422 62 Az 1 472 622 4z 1

1
=2t + —(4P + 62+ + 1) <2t +2 -2t =2
n

Since (x + %)4 <2,z +% eS. Bute<z+ %; x is then not an upper bound which
contradicts the fact that = sup S. Then z* £ 2.

2. If z* > 2, then 4‘“ +4m > 0. By the Archimedean property, there is an integer n > 0
such that 4”5 +4"” < n. By re-arranging the terms, we get

(4a® + 4x)
n

0> — > 2 — 4
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Then

1
= 2% — —(42® +4x) > 2t +2 -2t = 2.

n
Since (r — %)4 > 2, r— % is an upper bound of S. But x > = — %
the supremum, which is a contradiction. Thus z* % 2 or, equivalently, z = v/2 is a
positive real number. QED

; x can not be

37. Long Answer Question:

Fix a sequence (z,) that converges to L € R. Define y, = n=' > ,_ x,. Show di-
rectly that (y,) converges to L as well.

Proof. Consider a sequence (z,) with =, — L. Let y, = n~'>.7 | z,. We will
show that y,, — L as well.

Fix § > 0. Since x,, — L, there exists N = N(0) so that for all n > N(d), |z, — L| < .
Using such a value of n, we have:

g — LI =07 2, — L
k=1

N n
gn’lz\xn—L\jLn’l Z |z, — L]
k=1

k=N+1

N n 5

D VIS S
k=1 k=N+1

al 5
S”_IZ|$n_L|+Z'
k=1

Define A(§) = Z]kvz(? |z, — L|. Summarizing the above, we have shown:

A(S )
|yn_L|§—()+_-
n 4
Ale) € € €
I < Syt
=L S ==+ <7+ <e

This completes the proof. QED
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38. Long Answer Question:

Consider the Cauchy condition, with |z,, — x,| replaced by the adjacent-pair distance
|€p11 — x,|. Prove or disprove: this condition also implies convergence.

Proof. This condition does not imply convergence. To see this, we will construct

a counterexample. Define z,, = Y ;_, \/LE We now check that (i) this sequence satis-

fies the modified condition but (ii) this sequence does not converge. Since all Cauchy
sequences converge, this will imply that (z,) is not Cauchy.

1. We can immediately see that |z,11 — z,| = \/%H Fix ¢ > 0. For all n > 100[e 2],
€
|Tpi1 — 2| < =< — <&

J/n = 10
Thus, (x,) satisfies the modified Cauchy condition.
2. Next, fix m € N. We (sloppily) calculate:

4m
|z x ] Z !
agm — Tym—-1| = ——
k=4m-141 \/E

4m
1
> e —
Z (4m - 4m—1 o 1)2—m

Z 4m7127m — 2m71.

Since (z,,) is clearly monotone increasing, we have the telescoping sum inequality:

m—1

(]

Tygm = (.7/'4mfj — l’4m7j71)

=0

—_

> 2m=i=l > .

3

<
I
o

Since the subsequence (z4m) is bounded from below by a sequence that diverges to
infinity, the subsequence (z4m) also diverges to infinity.

This completes the proof. QED



