
MAT 2125 – Homework 3 – Solutions
(due at midnight on March 01, in Brightspace)

1 Norms

1. Suppose ‖ · ‖ and ‖ · ‖′ are two arbitrary norms on Rd. Prove that ‖ · ‖′′, defined by

‖x‖′′ = ‖x‖+ ‖x‖′, x ∈ Rd,

is also a norm on Rd.

Proof: For x,y ∈ Rd, λ ∈ R, we have

• x = 0 ⇐⇒ ‖x‖ = 0 and ‖x‖′ = 0 ⇐⇒ ‖x‖+ ‖x‖′ = 0 ⇐⇒ ‖x‖′′ = 0;

• ‖λx‖′′ = ‖λx‖+ ‖λx‖′ = |λ| · ‖x‖+ |λ| · ‖x‖′ = |λ| · (‖x‖+ ‖x‖′) = |λ| · ‖x‖′′, and

• ‖x + y‖′′ = ‖x + y‖+ ‖x + y‖′ ≤ ‖x‖+ ‖y‖+ ‖x‖′ + ‖y‖′ = ‖x‖′′ + ‖y‖′′.

Since ‖ · ‖′′ satisfies N1, N2, and N3, it is a norm. �

2. A function ‖ · ‖ is called a seminorm if it satisfies all of the norm properties, except possibly N1 (norms are
also seminorms). Let ‖ · ‖1, . . . , ‖ · ‖k be a collection of seminorms on Rd. Assume that, for all x ∈ Rd\{0},

there exists i ∈ {1, . . . , k} so that ‖x‖i > 0. Show that ‖ · ‖ =

k∑
i=1

‖ · ‖i is a norm.

Proof: N2, N3 are exactly as in the previous question (note that the proof of the N2 property only
uses the N2 property of the constituent norms, and similarly for the N3 property). We now prove N1.

If x = 0, then ‖x‖ = ‖0 · x‖ = |0|‖x‖ = 0, applying N2 to the second equality. Conversely, if x 6= 0, then
by assumption there exists i ∈ {1, . . . , k} such that ‖x‖i > 0; consequently

‖x‖ = ‖x‖i +

k∑
j 6=i=1

‖x‖j 6= 0.

Combined, these two results show that ‖x‖ = 0 ⇐⇒ x = 0.

3. Suppose {xn}∞n=1 is a sequence in Rd converging to y. Prove that lim
n→∞

‖xn‖ = ‖y‖.

Proof: By the triangle inequality, we have

‖xn‖ ≤ ‖xn − y‖+ ‖y‖ =⇒ ‖xn‖ − ‖y‖ ≤ ‖xn − y‖ and

‖y‖ ≤ ‖y − xn‖+ ‖xn‖ =⇒ ‖y‖ − ‖xn‖ ≤ ‖y − xn‖ = ‖xn − y‖ =⇒ −‖xn − y‖ ≤ ‖xn‖ − ‖y‖.

Thus
−‖xn − y‖ ≤ ‖xn‖ − ‖y‖ ≤ ‖xn − y‖.

Since ‖xn − y‖ → 0, it follows from the Squeeze Theorem that ‖xn‖ − ‖y‖ → 0, and so ‖xn‖ → ‖y‖. �

2 Closed and Open Sets

1. Fix an n by n matrix M . Show that, for any C ≥ 0, S = {x ∈ Rn : xtMx ≤ C} is a closed set.

Proof: Consider x,y ∈ Rn. By the triangle inequality, we have

‖x>Mx− y>My‖ ≤ ‖x>Mx− x>My‖+ ‖x>My − y>My‖.
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But

‖x>Mx− x>My‖ = ‖x>M(x− y)‖ ≤ ‖x>M‖∞‖x− y‖
≤ n2 ·max {|x[i]| | i = 1, . . . , n} ·max {|M [i, j]| | i, j = 1, . . . , n} ‖x− y‖.

Similarly,

‖x>My − y>My‖ ≤ n2 ·max {|y[i]| | i = 1, . . . , n} ·max {|M [i, j]| | i, j = 1, . . . , n} ‖x− y‖.

Let A = max{1, 2n2, |x[1]|, . . . , |x[n]|, |y[1]|, . . . , |y[n]|, |M [1, 1]|, . . . , |M [n, n]} <∞. Then

‖x>Mx− y>My‖ ≤ A‖x− y‖.

It remains to prove that S is closed. We will do so by proving that S{ is open. Let x ∈ S{. By definition,
δ = x>Mx− C > 0. Set ε = δ

3A and pick y such that ‖x− y‖ < ε.

From the reverse triangle inequality and the previous remarks, we have

‖y>My‖ ≥ ‖x>Mx‖ − ‖x>Mx− y>My‖ > C + δ − ‖x>Mx‖ − ‖x>Mx− y>My‖

≥ C + δ −A‖x− y‖ ≥ C + δ −A δ

3A
= C +

2

3
δ > C.

Thus y ∈ S{, which shows that there is an open ball around x that stays completely within S{, i.e. S is
closed. �

2. Consider a sequence (an) with two distinct accumulation points. Show that the sequence does not have a
limit.

Proof: We prove this by contradiction. First, assume that the sequence has a limit L. Denote by
A,B two distinct accumulation points of the sequence, and assume (without loss of generality) that
|L−A| ≤ |L−B|, so that

|A−B| ≤ |A− L|+ |L−B| ≤ 2|L−B|.

Set ε = |B−a|
10 . Since the limit of the sequence (an) is L, there exists some N ∈ N such that for all n > N ,

|an − L| < |B−A|
10 . Then

|B − an| ≥ |B − L| − |L− an| ≥
1

2
|A−B| − 1

10
|A−B| = 2

5
|A−B|.

In particular, this means that there are only finitely many points of (an) within distance |B−A|10 of B, so
B cannot be an accumulation point of (an). This is a contradiction, and so the assumption that (an)
converges is false. �

3. Show that there exists a sequence (an) whose set of accumulation points is exactly the interval [0, 1]. You
don’t need to write down an explicit formula for the sequence - you just need to show that such a sequence
exists.

Proof: Let (an) be a list of the countable set Q ∩ [0, 1]. Since Q is dense in R, it follows immedi-
ately that, as a set, {an} is dense in R ∩ [0, 1], that is, in the neighbourhood of any point in [0, 1], there
are infinitely many rational numbers. In particular, each point of [0, 1] is an accumulation point of (an).
�

4. Does there exists a sequence (an) whose set of accumulation points is exactly the interval (0, 1)?

Proof: As we will see below, the set of accumulation points of a sequence is necessarily closed; since
(0, 1) is open, no sequence’s accumulation points can be exactly (0, 1).
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Let (an) be a sequence with a set of accumulation points S. Consider x ∈ S{. Then ∃rx 0 such that
|B(x, rx)∩{an}| <∞. Setting ε = r

3 , we note that for all y with ‖x−y‖ ≤ ε, we have B(y, ε) ⊆ B(x, rx).
Thus

|B(y, ε) ∩ {an}| ≤ |B(x, rx) ∩ {an}| <∞;

thus none of the y in ‖x − y‖ ≤ ε can be an accumulation point of (an), so y ∈ S{. As a result, S{ is
open, so S is closed. �

5. Prove that for all ε > 0 there exists a collection of open sets (a1, b1), (a2, b2), . . . satisfying the following
two properties: ⋃

n∈N
(an, bn) ⊇ Q and

∑
n∈N

(bn − an) < ε.

Hint: Recall that
∑
n∈N 2−n = 1.

Proof: Let (qn) be an enumeration of Q and fix ε > 0. Define

(an, bn) = (qn − ε2−n−4, qn + ε2−n−4).

It is clear that qn ∈ (an, bn) for all n, so

Q =
⋃
n∈N
{qn} ⊆

⋃
n∈N

(an, bn).

Additionally, ∑
n∈N

(bn − an) =
∑
n∈N

2ε · 2−n−4 =
ε

8
< ε,

which completes the proof.1 �

3 Compact Sets

1. Show that a finite union of compact sets is compact.

Proof: Suppose K1, . . . ,Kn are compact subsets of Rd. Then, by the Heine–Borel Theorem, they are
closed and bounded. Since they are bounded, for each i ∈ {1, . . . , d}, there exists Mi > 0 such that

‖x‖ ≤Mi ∀x ∈ Ki.

Setting M = max{M1, . . . ,Md}, we then see that

‖x‖ ≤M ∀x ∈ K1 ∪ · · · ∪Kd.

So the union is bounded. It is also closed as the finite union of closed sets is closed, by a propositions seen
in class. Thus it is compact by the Heine-Borel Theorem. 2 �

2. Show that an arbitrary intersection of compact sets is compact.

Proof: Suppose Kα, α ∈ I, are compact sets. Then they are closed and bounded by the Heine-Borel
Theorem. As the arbitrary intersection of closed sets is closed,

⋂
α∈I Kα is also closed. Now fix some

β ∈ I. Since ⋂
α∈I

Kα ⊆ Kβ ,

the intersection
⋂
α∈I Kα is bounded, since Kβ is. So the intersection is closed and bounded, hence

compact. �

1We will discuss the convergence of series later in the course; for now, we assume that infinite geometric series can be evaluated
as in calculus.

2Alternate solution: Suppose K1, . . . ,Kn are compact subsets of Rd. Let U be an open cover of the union. Then, for each
i ∈ {1, . . . , n}, there is a finite subcover Ui of Ki. Then U1 ∪ · · · ∪ Ud is a finite subcover of K1 ∪ · · · ∪Kd.
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