
MAT 2125 – Homework 4 – Solutions
(due at midnight on March 26, in Brightspace)

1 Continuous Functions

1. Define g : R→ R by

g(x) =

{
(−1)n

n if x = 1/n for some n ∈ N,
0 otherwise

Prove that g is continuous at 0.

Proof: Let ε > 0. Set δε = ε. Then,∣∣∣∣ 1n − 0

∣∣∣∣ < δ =⇒ |g(1/n)− g(0)| = 1/n = |1/n| < δ = ε.

So g is continuous at 0. �

2. Assume that the temperature distribution on the Earth’s equator is continuous. Show that there are, at
any time, antipodal points on the Earth’s equator with the same temperature.

Proof: At a given moment, let the temperature on the Earth’s equator be given by a continuous function
f : [0, 1]→ R such that f(0) = f(1).

The coordinate x could represent the Eastward distance from Quito, Ecuador, say, as a fraction of the
Earth’s circumference at the equator. The antipode of a point x in [0, 1] is

a(x) =

{
x+ 1

2 if x ∈ [0, 12 ]

x− 1
2 if x ∈ [ 12 , 1]

Consider the function g : [0, 12 ]→ R defined by

g(x) = f(x)− f(a(x)).

As f and a are continuous, g is also continuous, being the difference of the continuous function f and the
composition of the continuous functions f and a.

Now, note that g(0) = f(0)− f(a(0)) = f(0)− f
(
1
2

)
and

g
(
1
2

)
= f

(
1
2

)
− f

(
a
(
1
2

))
= f

(
1
2

)
− f(1) = f

(
1
2

)
− f(0).

Thus g(0)g( 1
2 ) = −(g(0))2 < 0; by the Intermediate Value Theorem,

∃c ∈ (0, 12 ) s.t. g(c) = 0 =⇒ f(c) = f(a(c)),

which completes the proof. �

3. Suppose f : Rd → Rm. The pre-image of a subset B ⊆ Rm under f is

f−1(B) = {a ∈ A : f(a) ∈ B}.

Prove that f is continuous if and only if the pre-image of every open subset of Rm is an open subset of
Rd. (It is also true if ”open” is replaced by ”closed”, but we will not ask you to prove this.)

Hint: what is the definition of continuity for functions f : Rd → Rm?
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Proof: Suppose f is continuous and let B ⊆ Rm be open. Choose a ∈ f−1(B). Thus f(a) ∈ B.
Since B is open, there exists ε > 0 such that

B(f(a), ε) ⊆ B.

Since f is continuous, there exists δ > 0 such that

f(B(x, δ)) ⊆ B(f(x), ε) ⊆ B.

Thus B(a, δ) ⊆ f−1(B). So f−1(B) is open.

Now suppose that the pre-image of every open subset of Rm is open. Let a ∈ Rd and ε > 0. Then B(f(a), ε)
is an open subset of Rm. Therefore, by assumption, f−1(B(f(a), ε)) is open. Since a ∈ f−1(B(f(a), ε)),
this means that there exists δ > 0 such that

B(a, δ) ⊆ f−1(B(f(a), ε)) =⇒ f(B(a, δ)) ⊆ B(f(a), ε).

Therefore f is continuous at a. Since a was arbitrary, f is continuous.1 �

4. A function f : A→ R is said to be Lipschitz if there is a positive number M such that

|f(x)− f(y)| ≤M |x− y| ∀x, y ∈ A.

Show that a Lipschitz function must be uniformly continuous, but that uniformly continuous functions do
not have to be Lipschitz.

Hint: for the second statement, consider the function g : [0, 1]→ R, g(x) =
√
x.

Proof: We will prove the statement in the general multi-dimensional case. The one-dimensional case
will then simply be a special case of the more general result.

Suppose f is Lipschitz and a ∈ A. Let ε > 0. Set δ = ε/M . Then

‖x− y‖ < δ =⇒ ‖f(x)− f(y)‖ ≤M‖x− y‖ < Mε/M = ε.

Thus f is uniformly continuous.

The function g is continuous on the compact interval [0, 1], hence it is uniformly continuous by a Theorem
seen in class (continuous functions on compact sets are uniformly continuous). Assume that g is Lipschitz.
Then ∃M > 0 such that

|h(x)− h(0)| ≤M |x− 0| ∀x ∈ [0, 1] =⇒
√
x ≤Mx ∀x ∈ [0, 1]. =⇒ M ≥ 1√

x
∀x ∈ [0, 1].

This contradicts the fact that 1/
√
x→∞ as x→ 0+. Hence, g cannot be Lipschitz. �

1The pre-image of closed sets by a continuous function is also closed. Note that

f−1(B){ = {a ∈ A : f(a) 6∈ B} = {a ∈ A : f(a) ∈ B{} = f−1
(
B{

)
.

Hence

f is continuous ⇐⇒ f−1(B) is open for all open B ⇐⇒ f−1(B){ is closed for all open B

⇐⇒ f−1
(
B{

)
is closed for all open B ⇐⇒ f−1(C) is open for all closed C,

where in the last if and only if statement we let C = B{ (so C is closed if and only if B is open).
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2 Differentiation

1. Let a ∈ R and f : R→ R be defined by

f(x) =

{
x2 if x ≥ 0,

ax if x < 0.

For which values of a is f differentiable at x = 0? For which values of a is f continuous at x = 0?

Proof: We have

f ′+(0) = lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0+

x2

x
= lim

x→0+
x = 0

and

f ′−(0) = lim
x→0−

f(x)− f(0)

x− 0
= lim

x→0−

ax

x
= lim

x→0+
a = a.

Thus, f is differentiable at x = 0 if and only if a = 0.

Since both x2 and ax are continuous functions, we have

lim
x→0+

f(x) = lim
x→0+

x2 = 0 = f(0) = 0 = lim
x→0−

ax = lim
x→0−

f(x)

and the the function f is continuous at x = 0 for all values of a. �

2. Let f : [a, b]→ R be continuous on [a, b] and differentiable on (a, b). Show that f is Lipschitz if and only
if f ′ is bounded on (a, b).

Hint: Apply the Mean Value Theorem to f on [x, y] ⊆ [a, b] to show one of the directions.

Proof: Suppose that f satisfies the Lipschitz condition on [a, b] with constant M . Then, for all x0 ∈ (a, b),
we have ∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ ≤M ∀x ∈ (a, b) \ {x0}.

Thus

|f ′(x0)| =
∣∣∣∣ lim
x→x0

f(x)− f(x0)

x− x0

∣∣∣∣ = lim
x→x0

∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ ≤M,

where we used the fact that the absolute value function is continuous to pull the limit out of the absolute
value. So the derivative of f is bounded on (a, b).

Now assume that |f ′(x)| ≤ M for all x ∈ (a, b). Let x, y ∈ [a, b], x < y. Applying the Mean Value
Theorem to f on the interval [x, y] gives the existence of c ∈ (x, y) such that

f(y)− f(x)

y − x
= f ′(c).

Thus ∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤M =⇒ |f(x)− f(y)| ≤M |x− y|.

This completes the proof. �

3. If x > 0, show 1 + 1
2x−

1
8x

2 ≤
√

1 + x ≤ 1 + 1
2x.

Proof: Let x0 = 0 and f(x) =
√

1 + x. According to Taylor’s theorem, f(x) = P1(x) + R1(x) and
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f(x) = P2(x) +R2(x), where

P1(x) = f(x0) + f ′(x0)(x− x0) =
√

1 + 0 +
1

2
√

1 + 0
x = 1 +

1

2
x

P2(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)2 =

√
1 + 0 +

1

2
√

1 + 0
x− 1

8 3
√

1 + 0
x2 = 1 +

1

2
x− 1

8
x2

R1(x) =
f ′′(c1)

2
(x− x0)2 = − 1

8 3
√

1 + c1
x2, for some c1 ∈ [0, x]

R2(x) =
f ′′′(c2)

6
(x− x0)3 =

3

48 5
√

1 + c2
x3, for some c2 ∈ [0, x].

But R1(x) ≤ 0 and R2(x) ≥ 0 for all x > 0. Hence, P2(x) ≤ f(x) ≤ P1(x), which completes the proof. �

3 Riemann Integral

1. Using the definition of Riemann-integrability, show that h : [a, b] → R defined by h(x) = 2x + 1 is
Riemann-integrable on [a, b], b > a ≥ 0, and that that the Riemann integral of h on [a, b] is b2−a2 + b−a.

Warning: you cannot use the rules of integration from calculus.

Proof: Let n ∈ N and Pn =
{
xi = a+ b−a

n · i | i = 0, . . . , n
}

be the partition of [a, b] into n equal
segments. Set mi = inf{f(x) | x ∈ [xi−1, xi]}, for i = 1, . . . , n. With this notation, we have

L(Pn;h) =

n∑
i=1

mi(xi − xi−1) =
b− a
n

n∑
i=1

mi.

But h′(x) = 2 ≥ 0 when x ≥ 0, and so h is increasing on [a, b].

Consequently, for i = 1, . . . , n, we have

mi = 2xi−1 + 1 = 2
(
a+ b−a

n (i− 1)
)

+ 1 = (2a+ 1) + 2(b−a)
n (i− 1).

The lower sum of h associated to Pn is thus

L(Pn;h) =
b− a
n

n∑
i=1

(
(2a+ 1) +

2(b− a)

n
(i− 1)

)
=
n(b− a)(2a+ 1)

n
+

2(b− a)2

n2

n∑
i=1

(i− 1)

= (b− a)(2a+ 1) +
2(b− a)2

n2
· n(n− 1)

2
= (b− a)(2a+ 1) + (b− a)2

(
1− 1

n

)
.

But for the lower sum of h on [a, b], we have

L(h) = sup{L(P ;h) | P ∈ P([a, b])} ≥ sup
n∈N
{L(Pn;h)} = sup

n∈N

{
(b− a)(2a+ 1) + (b− a)2

(
1− 1

n

)}
= lim

n→∞

[
(b− a)(2a+ 1) + (b− a)2

(
1− 1

n

)]
= (b− a)(2a+ 1) + (b− a)2 = b2 − a2 + b− a.

Similarly, since h is increasing we have, for i = 1, . . . , n,

Mi = sup{f(x) | x ∈ [xi−1, xi]} = 2xi + 1 = 2
(
a+ b−a

n · i
)

+ 1 = (2a+ 1) + 2(b−a)
n · i,

from which we derive U(Pn;h) = (b− a)(2a+ 1) + (b− a)2
(
1 + 1

n

)
, so that

U(h) ≤ inf
n∈N
{U(Pn;h)} = lim

n→∞
U(Pn;h) = b2 − a2 + b− a.

Thus b2 − a2 + b− a ≤ L(h) ≤ U(h) ≤ b2 − a2 + b− a and so L(h) = U(h) =
∫ b

a
h = b2 − a2 + b− a. �
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2. Prove Riemann’s Criterion for a bounded function f : [a, b] → R, namely: f is Riemann-integrable over
[a, b] if and only if ∀ε > 0, ∃Pε a partition of [a, b] such that the lower sum L(Pε; f) and the upper sum
U(Pε; f) of f corresponding to Pε satisfy U(Pε; f)− L(Pε; f) < ε.

Proof: If f is Riemann-integrable, then L(f) = U(f) =
∫ b

a
f . Let ε > 0. Since

∫ b

a
f − ε

2 is not an
upper bound of {L(P ; f) | P a partition of [a, b]}, there exists a partition P1 such that∫ b

a

f − ε

2
< L(P1; f) ≤

∫ b

a

f.

Using a similar argument, there exists a partition P2 such that∫ b

a

f +
ε

2
≥ U(P2; f) >

∫ b

a

f.

Set Pε = P1 ∪ P2. Then Pε is a refinement of P1 and P2, so∫ b

a

f − ε

2
< L(P1; f) ≤ L(Pε; f) ≤ U(Pε; f) ≤ U(P2; f) <

∫ b

a

f +
ε

2
=⇒ U(Pε; f)− L(Pε; f) < ε.

Conversely, let ε > 0 and let Pε be a partition of [a, b] such that U(Pε; f) − L(Pε; f) < ε. Since U(f) ≤
U(Pε; f) and L(f) ≥ L(Pε; f), then

0 ≤ U(f)− L(f) ≤ U(Pε; f)− L(Pε; f) < ε.

But ε > 0 was arbitrary, so U(f)−L(f) = 0, which implies that U(f) = L(f) and f is Riemann-integrable
on [a, b]. �
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