MAT 2125 — Homework 4 — Solutions

(due at midnight on March 26, in Brightspace)

Continuous Functions

. Define g : R — R by

(*:L)n if x = 1/n for some n € N,
0 otherwise

Prove that g is continuous at 0.
Proof: Let € > 0. Set 6. = . Then,
1
‘n - O’ <d = |g(1/n)—g(0)|=1/n=11/n| <d=c.

So g is continuous at 0. |

. Assume that the temperature distribution on the Earth’s equator is continuous. Show that there are, at
any time, antipodal points on the Earth’s equator with the same temperature.

Proof: At a given moment, let the temperature on the Earth’s equator be given by a continuous function
f:]0,1] — R such that f(0) = f(1).

The coordinate x could represent the Eastward distance from Quito, Ecuador, say, as a fraction of the
Earth’s circumference at the equator. The antipode of a point  in [0, 1] is

As f and a are continuous, g is also continuous, being the difference of the continuous function f and the
composition of the continuous functions f and a.

Now, note that g(0) = £(0) — f(a(0)) = f(0) — f (3) and
9()=1G)-f@i@)=7G) - 1) =7E) - 10
Thus g(0)g(3) = —(g(0))* < 0; by the Intermediate Value Theorem,
e € (0,3) st gc) =0 = f(c) = f(a(c)),
which completes the proof. |

. Suppose f : R* — R™. The pre-image of a subset B C R™ under f is
fYB)={ac A: f(a) € B}.

Prove that f is continuous if and only if the pre-image of every open subset of R™ is an open subset of
R?. (It is also true if "open” is replaced by ”closed”, but we will not ask you to prove this.)

Hint: what is the definition of continuity for functions f : R? — R™?



Proof: Suppose f is continuous and let B C R™ be open. Choose a € f~'(B). Thus f(a) € B.
Since B is open, there exists € > 0 such that

B(f(a),e) € B.
Since f is continuous, there exists § > 0 such that
F(B(x,6)) € B(f(x),2) € B,

Thus B(a,d) C f~1(B). So f~1(B) is open.

Now suppose that the pre-image of every open subset of R™ is open. Let a € R? and ¢ > 0. Then B(f(a),¢)
is an open subset of R™. Therefore, by assumption, f~!(B(f(a),¢)) is open. Since a € f~1(B(f(a),¢)),
this means that there exists § > 0 such that

B(a,8) C f71(B(f(a),c)) = f(B(a,d)) C B(f(a),e).

Therefore f is continuous at a. Since a was arbitrary, f is continuous.! ]

4. A function f: A — R is said to be Lipschitz if there is a positive number M such that
[f(@) = fy)l < M|z —y| Va,yecA

Show that a Lipschitz function must be uniformly continuous, but that uniformly continuous functions do
not have to be Lipschitz.

Hint: for the second statement, consider the function g : [0,1] = R, g(z) = /.

Proof: We will prove the statement in the general multi-dimensional case. The one-dimensional case
will then simply be a special case of the more general result.

Suppose f is Lipschitz and a € A. Let € > 0. Set 6 = &/M. Then
[x=yll<d = [[f(x) = fWI < Mx -yl < Me/M =e.
Thus f is uniformly continuous.

The function g is continuous on the compact interval [0, 1], hence it is uniformly continuous by a Theorem
seen in class (continuous functions on compact sets are uniformly continuous). Assume that g is Lipschitz.
Then M > 0 such that

|h(x) — h(0)]| < M|z — 0| Vze€l0,1]] = Vo< Mz Vzel0l. = M> vz e [0,1].

-

This contradicts the fact that 1//r — oo as z — 0. Hence, g cannot be Lipschitz. |

1The pre-image of closed sets by a continuous function is also closed. Note that
FFUBE ={acA:fla) ¢ B} ={acA: f(a) € B} = r~" (BY).
Hence
f is continuous <= f~!(B) is open for all open B <= f_l(B)E is closed for all open B

— ! (Bc> is closed for all open B <= ffl(C) is open for all closed C,

where in the last if and only if statement we let C = Bt (so C is closed if and only if B is open).



Differentiation
. Let a ¢ R and f: R — R be defined by

@) = {x2 if x >0,

ar if z <0.

For which values of a is f differentiable at x = 07 For which values of a is f continuous at z = 07

Proof: We have

o fl@) - f0) a2t
! = 1 _— = 1 _— = 1 =
FO=tn e S e =
and 0
f.(0) = lim fl@) - 1) = lim — = lim a=a
z—0— z—0 z—0—- T z—0t

Thus, f is differentiable at x = 0 if and only if a = 0.

Since both 22 and az are continuous functions, we have

lim f(z) = lim 22 =0= f(0) =0= lim ar= lim f(x)

z—0t1 z—0t1 z—0— z—0—
and the the function f is continuous at z = 0 for all values of a. |

. Let f :[a,b] — R be continuous on [a,b] and differentiable on (a,b). Show that f is Lipschitz if and only
if f’ is bounded on (a,b).

Hint: Apply the Mean Value Theorem to f on [z,y] C [a, ] to show one of the directions.

Proof: Suppose that f satisfies the Lipschitz condition on [a, b] with constant M. Then, for all zy € (a,b),

we have
%ﬁﬁxo) <M Va € (a,b)\ {zo}
Thus
| (z0)| = | lim fz) = f(@o) | _ lim f(z) = f(z0) < M,
0 T — Xg r—x0 T — g

where we used the fact that the absolute value function is continuous to pull the limit out of the absolute
value. So the derivative of f is bounded on (a,b).

Now assume that |f'(z)| < M for all x € (a,b). Let z,y € [a,b], * < y. Applying the Mean Value
Theorem to f on the interval [z,y] gives the existence of ¢ € (x,y) such that

fy)—fl@) _
= T
Thus
110 <ot = 1760) - 110 < Mo -
This completes the proof. .

.Ifx>0,show1+%x—§x2§\/1+x§1+%x.

Proof: Let zyp = 0 and f(z) = v/1+ 2. According to Taylor’s theorem, f(z) = Pi(z) + Ri(z) and



f(z) = Py(z) + Ra(x), where

Pi(x) = f(zo) + f(wo)(x —x0) = V1 4+ 0+ ——— m :1—1—%95
Py(z) = f(x0) + f'(w0)(z — x0) + f (;0) (x—20) =vV1I+0+ 2\/mcﬂ - 33 11+0x2 =1+ %x — §x2
Ry(z) = f”(;l) (x —x0)? = _8\3/1;—1—701362’ for some ¢; € [0, 2]
Ry(z) = f”/éCQ) (x —x0)% = 48\5/%1’3, for some ¢ € [0, z].

But R;(z) <0 and Ra(x) > 0 for all z > 0. Hence, Py(z) < f(z) < Py(x), which completes the proof. B

Riemann Integral

. Using the definition of Riemann-integrability, show that h : [a,b] — R defined by h(z) = 2z + 1 is
Riemann-integrable on [a, b], b > a > 0, and that that the Riemann integral of h on [a, b] is b* —a® +b— a.

Warning: you cannot use the rules of integration from calculus.

Proof: Let n € N and P, = {mi =a+ b*T“ AR 0,...,n} be the partition of [a,b] into n equal
segments. Set m; = inf{f(x) | z € [z;—1,x;]}, for i = 1,... n. With this notation, we have

Pnah Zmz Tj — Tj— 1 _azmz

But h/(x) =2 > 0 when = > 0, and so h is increasing on [a, b].

Consequently, for i =1,...,n, we have

mi =21 +1=2(a+2%G0 —1)) +1=(2a+1) + 29 —1).

The lower sum of h associated to P, is thus

L(P,: h) = baz<(2a—|—l)+ 2(ba)(i_1)) _ n(b—a)(2a + 1) +2(b;2a) Z(i—l)

n n n
— (b—a)(2a+1)+ 2(1’;2“)2 . "<”2‘ Y b a)2a+1)+ (b—a)? (1 - i) .
But for the lower sum of h on [a, b], we have
L(h) = sup{L(P;h) | P € P([a,b])} > :ZE{L(PH; h)} = :lég {(b —a)(2a+1) + (b —a)? <1 — 711)}
:nli_{I;O (b—a)2a+1) + (b—a)? (1— 711)] =0b-a)2a+1)+(b—a)*=b>—a*+b—a.
Similarly, since h is increasing we have, for i = 1,...,n,

Mi:sup{f(x)|:v€[:vi,l,xi]}:2xi+1:2(a+b_7“-i)+1=(2a+1)+@~i,

from which we derive U(P,;h) = (b—a)(2a+ 1)+ (b—a)? (14 1), so that

U(h) < inf {U(Pai )} = lim U(Paih) =b* —a® +b—a.

Thusb2—a2+b—a§L(h)SU(h)sz—aQ—&—b—aandsoL(h)=U(h):f:h=b2—a2+b—a. [ ]



2. Prove Riemann’s Criterion for a bounded function f : [a,b] — R, namely: f is Riemann-integrable over
[a,b] if and only if Ve > 0, 3P a partition of [a,b] such that the lower sum L(FP;; f) and the upper sum
U(P:; f) of f corresponding to P. satisfy U(P:; f) — L(P:; f) < e.

Proof: If f is Riemann-integrable, then L(f) = U(f) = fbf Let € > 0. Since fbf — £ is not an
upper bound of {L(P; f) | P a partition of [a, b]}, there exists a partition P; such that

/abf—<LP1, /f

Using a similar argument, there exists a partition P» such that

/f+ > U(Py: f) /f

Set P. = Py U P,. Then P. is a refinement of P; and P, so

/f—*<L(P1,f)<L(Pe,f)<U(Pa,f)<UP2, /f+ — U(Pif)~ L(Puif) <=

Conversely, let € > 0 and let P. be a partition of [a, b] such that U(P.; f) — L(P.; f) < €. Since U(f) <
U(Pe; f) and L(f) = L(Pe; f), then

OSU(f)_L(f)SU(Ps;f)_L(PE;f)<€

But € > 0 was arbitrary, so U(f)— L(f) = 0, which implies that U(f) = L(f) and f is Riemann-integrable
on [a,b]. [ ]



