MAT 2125 Elementary Real Analysis

Exercises – Solutions – Q49-Q54

Winter 2021

49. Let $f : \mathbb{R} \to \mathbb{R}$, let J be a closed interval in \mathbb{R} and let $c \in J$.

If f_2 is the restriction of f to J, show that if f has a limit at c then f_2 has a limit at c. Show the converse is not necessarily true.

Proof. Suppose
$$\lim_{x \to c} f(x) = L$$
 exists.
Then, $\forall \varepsilon > 0$, $\exists \delta_{\varepsilon} > 0$ s.t. $|f(x) - L| < \varepsilon$ whenever $0 < |x - c| < \delta_{\varepsilon}$.
But $f_2(x) = f(x)$ for all $x \in J \subseteq \mathbb{R}$.
Then, $\forall \varepsilon > 0$, $\exists \delta_{\varepsilon} > 0$ (exactly as above) s.t. $|f_2(x) - L| = |f(x) - L| < \varepsilon$
whenever $0 < |x - c| < \delta_{\varepsilon}$ and $x \in J$, and so $\lim_{x \to c} f_2(x) = L$.

Now consider $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 0 & \text{if } x \in (-\infty, 0) \cup (1, \infty) \\ 1 & \text{if } x \in [0, 1] \end{cases},$$

with J = [0,1] and $f_2 = f|_J$. Then $\lim_{x \to 1} f_2(x) = 1$ but $\lim_{x \to 1} f(x)$ does not exist.

50. Determine the following limits and state which theorems are used in each case.

(a)
$$\lim_{x \to 2} \sqrt{\frac{2x+1}{x+3}}$$
, $(x > 0)$;
(b) $\lim_{x \to 2} \frac{x^2 - 4}{x-2}$, $(x > 0)$;
(c) $\lim_{x \to 0} \sqrt{\frac{(x+1)^2 - 1}{x}}$, $(x > 0)$, and
(d) $\lim_{x \to 1} \frac{\sqrt{x-1}}{x-1}$, $(x > 0)$.

Proof. We will do (c) and just give the answers to the others.

Consider the sequence $(x_n) = (\frac{1}{n})$. Then $x_n \to 0$, $x_n \neq 0 \ \forall n \in \mathbb{N}$, and

$$\frac{(x_n+1)^2-1}{x_n} = \frac{\left(\frac{1}{n}+1\right)^2-1}{\frac{1}{n}} = \frac{1}{n}+2 \to 2.$$

Hence, if $\lim_{x\to 0} \frac{(x+1)^2 - 1}{x}$ exists, its value must be 2, by theorem 26. Let $\varepsilon > 0$. Set $\delta_{\varepsilon} = \varepsilon$. Then when $0 < |x - 0| < \delta_{\varepsilon}$ and x > 0, we have $\left| \frac{(x+1)^2 - 1}{x} - 2 \right| = \left| \frac{x^2 + 2x + 1 - 1 - 2x}{x} \right| = \left| \frac{x^2}{x} \right| = |x| = |x - 0| < \delta_{\varepsilon} = \varepsilon$. (a) 1 (b) 4 (d) $\frac{1}{2}$

51. Give examples of functions f and g such that f and g do not have limits at point c, but both f + g and fg have limits at c.

Proof. Let $f,g:\mathbb{R}\to\mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1 & x \ge 0\\ -1 & x < 0 \end{cases}$$

and g(x) = -f(x) for all $x \in \mathbb{R}$.

Then $f(x) + g(x) \equiv 0$ and $f(x)g(x) \equiv -1$. As a result,

$$\lim_{x \to 0} (f+g)(x) = 0 \quad \text{and} \lim_{x \to 0} (fg)(x) = -1,$$

but the limits of f and g don't exist at 0 (see problem ??).

52. Determine whether the following limits exist in \mathbb{R} :

(a)
$$\lim_{x \to 0} \sin\left(\frac{1}{x^2}\right)$$
, with $x \neq 0$;
(b) $\lim_{x \to 0} x \sin\left(\frac{1}{x^2}\right)$, with $x \neq 0$;
(c) $\lim_{x \to 0} \operatorname{sgn} \sin\left(\frac{1}{x}\right)$, with $x \neq 0$, and
(d) $\lim_{x \to 0} \sqrt{x} \sin\left(\frac{1}{x^2}\right)$, with $x > 0$.

Proof.

(a) Let
$$(x_n) = (\frac{1}{\sqrt{n\pi}})$$
 and $(y_n) = (\sqrt{\frac{2}{(4n+1)\pi}})$ for all $n \in \mathbb{N}$.

Then $x_n, y_n \to 0$ and $x_n, y_n \neq 0$ for all $n \in \mathbb{N}$. But

$$\sin\left(\frac{1}{x_n^2}\right) = \sin(n\pi) = 0 \quad \text{and} \quad \sin\left(\frac{1}{y_n^2}\right) = \sin\left(\frac{(4n+1)\pi}{2}\right) = 1$$

for all $n \in \mathbb{N}$.

Then $\sin(1/x_n^2) \to 0$ and $\sin(1/y_n^2) \to 1$. As $0 \neq 1$, $\lim_{x \to 0} \sin\left(\frac{1}{x^2}\right)$ doesn't exist.

(b) Consider the sequence $(x_n) = (\frac{1}{\sqrt{n\pi}})$. Then $x_n \to 0$ and $x_n \neq 0$ for all $n \in \mathbb{N}$. Furthermore,

$$x_n \sin\left(\frac{1}{x_n^2}\right) = \frac{1}{\sqrt{n\pi}} \sin(n\pi) = \frac{1}{\sqrt{n\pi}} \cdot 0 \to 0.$$

As a result, if $\lim_{x\to 0} x \sin\left(\frac{1}{x^2}\right)$ exists, it must take the value 0. Let $\varepsilon > 0$. Set $\delta_{\varepsilon} = \varepsilon$. Then

$$\left|x\sin\left(\frac{1}{x^2}\right) - 0\right| = |x| \left|\sin\left(\frac{1}{x^2}\right)\right| \le |x| = |x - 0| < \delta_{\varepsilon} = \varepsilon$$

whenever
$$0 < |x - 0| < \delta_{\varepsilon}$$
 and $x > 0$. Hence $\lim_{x \to 0} x \sin\left(\frac{1}{x^2}\right) = 0$.

(c) Let
$$(x_n) = \left(\frac{2}{(2n+1)\pi}\right)$$
. Then $x_n \to 0$, $x_n \neq 0$ for all $n \in \mathbb{N}$ and
 $\operatorname{sgn}\left(\sin\left(\frac{1}{x_n}\right)\right) = \operatorname{sgn}\left((-1)^n\right) = (-1)^n$,

which does not converge. Hence $\lim_{x \to 0} \operatorname{sgn}\left(\sin\left(\frac{1}{x}\right)\right)$ does not exist. (d) $\lim_{x \to 0} \sqrt{x} \sin\left(\frac{1}{x^2}\right) = 0$, with the same proof as (b), save for $\delta_{\varepsilon} = \varepsilon^2$. 53. Let $f : \mathbb{R} \to \mathbb{R}$ be s.t. f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Assume $\lim_{x \to 0} f(x) = L$ exists. Prove that L = 0 and that f has a limit at every point $c \in \mathbb{R}$.

Proof. As
$$f$$
 is additive, $f(2x) = f(x + x) = f(x) + f(x) = 2f(x)$, so

$$L = \lim_{y \to 0} f(y) = \lim_{2x \to 0} f(2x) = \lim_{x \to 0} f(2x) = \lim_{x \to 0} 2f(x) = 2\lim_{x \to 0} f(x) = 2L;$$

hence L = 2L and L = 0, i.e. $\lim_{x \to 0} f(x) = 0$.

Now, let $c \in \mathbb{R}$. Then

$$\lim_{x \to c} f(x) = \lim_{x \to c} \left(f(x-c) + f(c) \right) = \lim_{x \to c} f(x-c) + \lim_{x \to c} f(c)$$
$$= \lim_{y \to 0} f(y) + f(c) = 0 + f(c) = f(c).$$

As f is defined on all of \mathbb{R} , f(c) exists for all $c \in \mathbb{R}$, and so $\lim_{x \to c} f(x) = f(c)$ exists for all $c \in \mathbb{R}$.