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54. Let K > 0 and let f : R→ R satisfy the condition

|f(x)− f(y)| ≤ K|x− y|

for all x, y ∈ R. Show that f is continuous on R.
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Proof. Let c ∈ R and ε > 0. Set δε =
ε
K . Then

|f(x)− f(c)| ≤ K|x− c| < Kδε < K
ε

K
= ε

whenever |x− c| < δε.
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55. Let f : (0, 1)→ R be bounded and s.t. lim
x→0

f(x) does not exist.

Show that there are two convergent sequences (xn), (yn) ⊆ (0, 1) with
xn, yn → 0 and f(xn)→ ξ, f(yn)→ ζ, but ξ 6= ζ.
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Proof. For n ∈ N, let In = (0, 1/n) and set

sn = sup f(In) and tn = inf f(In).

These are well defined as f(In) is bounded. By construction, (sn) is
decreasing and (tn) is increasing. Since

s1 ≥ sn = sup f(In) ≥ inf f(In) = tn ≥ t1,

(sn) is bounded below by t1 and (tn) is bounded above by s1. Hence
sn → s and tn → t exist, by the Monotone Convergence theorem.

For n ∈ N, let xn, yn ∈ In be s.t.

|f(xn)− sn| <
1

n
and |f(yn)− tn| <

1

n
.
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This can always be done as sn− 1
n and tn+

1
n are not the supremum and

the infimum, respectively, of f(In).

Then, xn, yn → 0 and xn, yn 6= 0 for all n ∈ N. Furthermore, f(xn)→ s
and f(yn)→ t, by the Squeeze Theorem; indeed, sn − 1

n < f(xn) ≤ sn,
tn ≤ f(yn) < tn +

1
n, sn → s, and tn → t, and the statement follows.

Now, suppose that s = t = `. Then sn, tn → `. Let ε > 0. ∃N1, N2 ∈ N
s.t. |sn − `| < ε whenever n > N1 and |tn − `| < ε whenever n > N2.

Set Nε = max{N1, N2}. Then

`− ε < tn ≤ sn < `− ε

whenever n > Nε. Set δε =
1
Nε

. Then

`− ε < tNε = inf f(INε) ≤ f(x) ≤ sup f(INε) ≤ sNε < `+ ε,
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i.e. |f(x)− `| < ε whenever 0 < |x−0| < 1
Nε

= δε. Hence lim
x→0

f(x) = `,

which contradicts the hypothesis that the limit does not exist.

As a result, s 6= t, which completes the proof. �
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56. Let f : R→ R be continuous on R and let P = {x ∈ R : f(x) > 0}. If
c ∈ P , show that there exists a neighbourhood Vδ(c) ⊆ P .
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Proof. Let c ∈ P . Then f(c) > 0 and ∃ε0 > 0 s.t. f(c)− ε0 > 0.

By continuity of f , ∃δε0 s.t. |f(x)− f(c)| < ε0 whenever |x− c| < δε0.

Thus, 0 < f(c)− ε0 < f(x) for all x ∈ Vδε0, i.e. Vδε0 ⊆ P . �
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57. Prove that if an additive function is continuous at some point c ∈ R, it
is continuous on R.
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Proof. In the light of a previous question on the topic, it is sufficient to
show that if lim

x→c
f(x) = f(c) for some c ∈ R, then lim

x→0
f(x) = 0.

Let f be continuous at c. Then

f(c) = lim
x→c

f(x) = lim
x→c

(f(x− c) + f(c))

= lim
x→c

f(x− c) + lim
x→c

f(c) = lim
y→0

f(y) + f(c),

hence lim
y→0

f(y) = 0, which completes the proof. �
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58. If f is a continuous additive function on R, show that f(x) = cx for all
x ∈ R, where c = f(1).
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Proof. Let n ∈ N. Then

f(1) = f
(n
n

)
= f

(
1

n
+ · · ·+ 1

n

)
= f

(
1

n

)
+ · · ·+f

(
1

n

)
= nf

(
1

n

)
,

hence 1
nf(1) = f

(
1
n

)
.

Set c = f(1). Let y ∈ Q. Then y = m
n , where m ∈ Z and n ∈ N×, and

f(y) = f
(m
n

)
= mf

(
1

n

)
= m

1

n
f(1) = yc.

Let x ∈ R. Since x is a limit point of Q, ∃(xn) ⊆ Q s.t. xn → x,
with xn 6= x for all n ∈ N. But f(xn) → f(x), by continuity, so
f(xn) = cxn → cx, by the above discussion. Hence, f(x) = cx. �
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59. Let I = [a, b] and f : I → R be a continuous function on I s.t. ∀x ∈ I,
∃y ∈ I s.t. |f(y)| ≤ 1

2|f(x)|. Show ∃c ∈ I s.t. f(c) = 0.
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Proof. Let x1 ∈ I. By hypothesis, ∃x2 ∈ I s.t.

|f(x2)| ≤
1

2
|f(x1)|.

Since x2 ∈ I, ∃x3 ∈ I s.t.

|f(x3)| ≤
1

2
|f(x2)| ≤

1

2

(
1

2
|f(x1)|

)
=

1

22
|f(x1)|,

and so on. The sequence (xn) ⊆ I thusly built satistfies

0 ≤ |f(xn)| ≤
1

2n−1
|f(x1)|,

by induction (can you show this?).
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Then lim
n→∞

|f(xn)| = 0, by the Squeeze Theorem, and so f(xn)→ 0.

As (xn) is bounded, it has a convergent subsequence (xnk) (by the
Bolzano-Weierstrass Theorem) whose limit c is in I (because a ≤ xn ≤ b
for all n).

Since
(
f(xnk)

)
is a subsequence of (f(xn)), then

lim
k→∞

f(xnk) = 0.

However,

lim
k→∞

f(xnk) = f

(
lim
k→∞

xnk

)
= f(c),

as f is continuous. Hence f(c) = 0. �
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60. Show that every polynomial with odd degree has at least one real root.
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Proof. Let

f(x) = a2n+1x
2n+1 + a2nx

2n + · · ·+ a1x+ a0,

where ai ∈ R for i = 0, . . . , 2n + 1. Assume that a2n 6= 0 (if that is
not the case, the proof will proceed in a similar fashion, but a2n will
be replaced by the first ai that is non-zero, starting with a2n−1; if all
coefficients are 0, then the real root is 0).

Let

M = max

{
(2n+ 1)

|a2n|
|a2n+1|

,

(
|a2n−k|
|a2n|

)1/k

; k = 1, . . . , 2n

}
.
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Then, whenever |x| ≥M ,

• |a2n||x2n| ≥ |a2n||x2n|;
• |a2n||x2n| ≥ |a2n−1||x2n−1|;
• · · · ;
• |a2n||x2n| ≥ |a1||x|, and
• |a2n||x2n| ≥ |a0|,

and so

|a2nx2n + · · · a0| ≤ |a2n||x2n|+ · · ·+ |a0| ≤ |a2n||x2n|+ · · ·+ |a2n||x2n|

= (2n+ 1)|a2n||x2n| ≤ |a2n+1||x2n+1| = |a2n+1x
2n+1|.

Then f(M+1)f(−M−1) < 0. As f is continuous on [−M−1,M+1],
∃c ∈ [−M − 1,M + 1] s.t. f(c) = 0, by the IVT. �
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