MAT 2125 Elementary Real Analysis

Exercises – Solutions – Q73-Q75

Winter 2021

P. Boily (uOttawa)

73. Let $f : [a, b] \to \mathbb{R}$ be bounded and s.t. $f(x) \ge 0$ for all $x \in [a, b]$.

Show $L(f) \ge 0$.

Proof. As f is bounded on [a, b], L(f) exists and the set

$$\{f(x): x \in [a,b]\} \neq \varnothing$$

is bounded below.

By completeness of \mathbb{R} , $m_1 = \inf\{f(x) : x \in [a, b]\}$ exists.

Furthermore, $m_1 \ge 0$ since $f(x) \ge 0$ for all $x \in [a, b]$.

Let $P = \{x_0, x_1\} = \{a, b\}$ be the trivial partition of [a, b].

Then $L(f) \ge L(P; f) = m_1(b - a) \ge 0$.

74. Let $f : [a, b] \to \mathbb{R}$ be increasing on [a, b]. If P_n partitions [a, b] into n equal parts, show that

$$0 \le U(P_n; f) - \int_a^b f \le \frac{f(b) - f(a)}{n} (b - a).$$

Proof. As f is increasing, it is monotone and thus Riemann integrable by a result seen in class (Theorem 53).

Then
$$L(f) = U(f) = \int_a^b f$$
.

Let

$$P_n = \{x_i = a + i\frac{b-a}{n} : i = 0, \dots, n\}$$

be the partition of [a, b] into n equal sub-intervals.

By definition, $L(P_n; f) \leq \int_a^b f$ and $U(P_n; f) \geq \int_a^b f$. Then

$$U(P_n; f) - L(P_n; f) \ge U(P_n; f) - \int_a^b f \ge \int_a^b f - \int_a^b f = 0.$$

In particular, $U(P_n; f) - \int_a^b f \ge 0$. As f is increasing on [a, b],

$$M_{i} = \sup_{[x_{i-1}, x_{i}]} \{f(x)\} = f(x_{i}), \quad m_{i} = \inf_{[x_{i-1}, x_{i}]} \{f(x)\} = f(x_{i-1}), \text{ and}$$
$$U(P_{n}; f) - L(P_{n}; f) = \sum_{i=1}^{n} (M_{i} - m_{i})(x_{i} - x_{i-1})$$
$$= \frac{b-a}{n} \sum_{i=1}^{n} (f(x_{i}) - f(x_{i-1})) = \frac{b-a}{n} (f(b) - f(a)).$$

Since $L(P_n; f) \leq \int_a^b f$, then

$$\frac{b-a}{n}(f(b) - f(a)) = U(P_n; f) - L(P_n; f) \ge U(P_n; f) - \int_a^b f \ge 0.$$

75. Let $f : [a, b] \to \mathbb{R}$ be an integrable function and let $\varepsilon > 0$.

If P_{ε} is the partition whose existence is asserted by the Riemann Criterion, show that $U(P; f) - L(P; f) < \varepsilon$ for all refinement P of P_{ε} .

Proof. Let P be a refinement of P_{ε} .

Then $U(P_{\varepsilon;f}) \ge U(P;f)$ and $L(P_{\varepsilon};f) \le L(P;f)$, and so

$$U(P_{\varepsilon}; f) \ge U(P; f) \ge L(P; f) \ge L(P_{\varepsilon}; f).$$

By the Riemann Criterion, $U(P_{\varepsilon}; f) < \varepsilon + L(P_{\varepsilon}; f)$. Then

 $\varepsilon + L(P; f) \ge \varepsilon + L(P_{\varepsilon}; f) > U(P_{\varepsilon}; f) \ge U(P; f),$

i.e. $\varepsilon + L(P; f) > U(P; f)$, which completes the proof.