MAT 2125 Elementary Real Analysis

Exercises – Solutions – Q76-Q79

Winter 2021

76. Let a > 0 and J = [-a, a]. Let $f : J \to \mathbb{R}$ be bounded and let \mathcal{P}^* be the set of all partitions P of J that contain 0 and are symmetric.

Show $L(f) = \sup\{L(P; f) : P \in \mathcal{P}^*\}.$

Proof. Let $\alpha = \sup\{L(P; f) : P \in \mathcal{P}^*\}$. By definition,

$$\alpha \leq L(f) = \sup\{L(P; f) : P \text{ is a partition of } [-a, a]\}.$$

Let $\varepsilon > 0$ and $P_{\varepsilon} = \{x_0, x_1, \dots, x_n\}$ be a partition of [-a, a] s.t. $L(f) - \varepsilon < L(P_{\varepsilon}; f) \le L(f)$. Such a partition exists as $L(f) - \varepsilon$ is not the supremum of the aforementioned set.

Consider the set

$$\{0,\pm x_0,\ldots,\pm x_n\}.$$

Eliminate all the repetitions from this set and re-order its elements in an increasing order. Denote the new set by Q_{ε} .

Then Q_{ε} is a refinement of P_{ε} and $Q_{\varepsilon} \in \mathcal{P}^*$; furthermore, $\alpha \geq L(Q_{\varepsilon}; f)$.

In particular,

$$L(f) - \varepsilon < L(P_{\varepsilon}; f) \le L(Q_{\varepsilon}; f) \le \alpha \le L(f),$$

as $\varepsilon > 0$ is arbitrary, $L(f) = \alpha$.

77. Let J be as in the previous question and let f be integrable on J. If f is even (i.e. f(-x) = f(x) for all x), show that

$$\int_{-a}^{a} f = 2 \int_{0}^{a} f.$$

If f is odd (i.e. f(-x) = -f(x) for all x), show that

$$\int_{-a}^{a} f = 0$$

Proof. As f is integrable over [-a, a], a result seen in class (Theorem 56) implies that f is integrable over [0, a].

If f is even, let $P \in \mathcal{P}^*$. Then there is a partition \tilde{P} of [0, a] s.t. $L(P; f) = 2L(\tilde{P}; f)$ and vice-versa.

Indeed, let

$$P = \{x_{-n}, \dots, x_{-1}, x_0, x_1, \dots, x_n\},\$$

where $x_0 = 0$ and $x_{-i} = -x_i$ for all $i = 1, \ldots, n$.

Then
$$P \in \mathcal{P}^*$$
.
Let $m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\}$, for $i = -n - 1, \dots, 0, \dots, n$.
Since f is even, $m_i = m_{-i+1}$ for $i = -n - 1, \dots, 0, \dots, n$.

Then

$$L(P;f) = \sum_{i=-n-1}^{0} m_i(x_i - x_{i-1}) + \sum_{i=1}^{n} m_i(x_i - x_{i-1})$$
$$= 2\sum_{i=1}^{n} m_i(x_i - x_{i-1}) = L(\tilde{P};f),$$

where \tilde{P} is a partition of [0, a]. This, combined with the previous exercise, yields

$$\int_{-a}^{a} f = \sup\{L(P; f) : P \in \mathcal{P}^*\} = \sup\{2L(\tilde{P}; f) : \tilde{P} \text{ is a partition of } [0, a]\}$$
$$= 2\sup\{L(\tilde{P}; f) : \tilde{P} \text{ is a partition of } [0, a]\} = 2\int_{0}^{a} f.$$

If f is odd, consider the function $h:\mathbb{R}\to\mathbb{R}$ given by

$$h(x) = \begin{cases} 1 & \text{if } x \ge 0\\ -1 & \text{if } x < 0 \end{cases}$$

The product fh is an even function, so

$$2\int_{0}^{a} f = 2\int_{0}^{a} hf = \int_{-a}^{a} hf = \int_{-a}^{0} hf + \int_{0}^{a} hf = \int_{-a}^{0} -f + \int_{0}^{a} f,$$

and so $\int_{0}^{a} f = \int_{-a}^{0} -f = -\int_{-a}^{0} f$. Then

$$\int_{-a}^{a} f = \int_{-a}^{0} f + \int_{0}^{a} f = -\int_{0}^{a} f + \int_{0}^{a} f = 0.$$

78. Give an example of a function $f : [0,1] \to \mathbb{R}$ that is not integrable on [0,1], but s.t. |f| is integrable on [0,1].

Proof. Here is one example: $f : [0,1] \to \mathbb{R}$, defined by f(x) = -1 if $x \notin \mathbb{Q}$ and f(x) = 1 if $x \in \mathbb{Q}$.

The proof that f is not Riemann integrable is similar to the one done in class.

How would you prove that $|f| \equiv 1$ is Riemann integrable? (Hint: what do U(P; f) and L(P; f) look like?)

79. Let $f : [a, b] \to \mathbb{R}$ be integrable on [a, b]. Show |f| is integrable on [a, b] directly (without using a result seen in class).

Proof. Let $\varepsilon > 0$.

By the Riemann Criterion, there exists a partition $P_{\varepsilon} = \{x_0, \ldots, x_n\}$ of [a, b] s.t. $U(P_{\varepsilon}; f) - L(P_{\varepsilon}; f) < \varepsilon$.

For all $i = 1, \ldots, n$, let

 $M_i = \sup\{f(x) : x \in [x_{i-1}, x_i]\}$ and $m_i = \inf\{f(x) : x \in [x_{i-1}, x_i]\}.$

For all $i = 1, \ldots, n$, then,

$$|f(x) - f(y)| \le M_i - m_i$$
 on $[x_{i-1}, x_i]$.

As $||f(x)| - |f(y)|| \le |f(x) - f(y)| \le M_i - m_i$ for all $x, y \in [x_{i-1}, x_i]$, we have

$$\tilde{M}_i - \tilde{m}_i \le M_i - m_i,$$

where

$$\tilde{M}_i = \sup\{|f(x)| : x \in [x_{i-1}, x_i]\}$$
 and $\tilde{m}_i = \inf\{|f(x)| : x \in [x_{i-1}, x_i]\}$

for all $i = 1, \ldots, n$. Then

$$U(P_{\varepsilon};|f|) - L(P_{\varepsilon};|f|) = \sum_{i=1}^{n} \left(\tilde{M}_{i} - \tilde{m}_{i}\right) (x_{i} = x_{i-1})$$
$$\leq \sum_{i=1}^{n} \left(M_{i} - m_{i}\right) (x_{i} = x_{i-1}) = U(P_{\varepsilon};|f|) - L(P_{\varepsilon};|f|) < \varepsilon.$$

By the Riemann Criterion, this shows that |f| is integrable on [a, b].