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MAT 2125 — Elementary Real Analysis Notes

Theorem 1. (ARCHIMEDEAN PROPERTY)
Let x € R. Then dn, € N* such that x < n,.
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Proof. Suppose that there is no such integer. Then x > n Vn € N.

Consequently, x is an upper bound of N*. But N* is a non-empty subset
of R. Since R is complete, o = sup N* exists.

By definition of the supremum (the smallest upper bound), o — 1 is not an
upper bound of N* (otherwise o would not be the smallest upper bound,
as a — 1 < a would be a smaller upper bound).

Since o — 1 is not an upper bound of N*, dm € N* such that « — 1 < m.
Using the properties of R, we must then have o < m + 1 € N*; that is, «
is not an upper bound of N*.

This contradicts the fact that o = supN*, and so, since N* # &, x cannot
be an upper bound of N*. Thus dn, € N* such that z < n,. |
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Theorem 2. (ARCHIMEDEAN PROPERTY; VARIANTS)
Let z,y € RT. Then 3ni,ny,ns > 1 such that

1. © < my;
2. 0< n% <y, and

3 n3—1<ax<n;.
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Proof.

1. Let z = % > (0. By the Archimedean property, dn; > 1 such that
z=§<n1. Then x < nqy.

2. If x
0<

1, then part 1 implies dny > 1 such that 0 < 1 < nsgy. Then
<.

Sl

3. Let L = {m € N* : z < m}. By the Archimedean property, L # &.
Indeed, there is at least one n > 1 such that x < n. By the well-ordering
principle, L has a smallest element, say m = n3. Then n3g—1¢& L
(otherwise, nz — 1 would be the least element of L, which it is not) and
song — 1<z <ns.

There are other variants, but these are the ones we'll use the most. |
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Theorem 3. (BERNOULLI'S INEQUALITY)
Let x > —1. Then (14+x)" > 1+ nz, Vn € N.
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Proof. We prove the result by induction on n.

e lfn=1then (1+2)l=1+2>1+ 1xz.

e Suppose that the result is true for n = k, that is (1 + )" > 1+ kx. We
have to show that it is also true for n = k4 1. But

(14 x)k_H = (1+ az)k(l + x)

Ind. Hyp. | > (1 + kx)(l + CI?)

=1+ (k+ 1)z + ka*
>1+(k+1)x. u

(Where does the hypothesis z > —1 come in to play?)
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Theorem 4. (CAUCHY’S INEQUALITY)
Ifai,...,a, and by, ...,b, are real numbers, then

(San) = (Xa) (L),

(The indices are understood to run from 1 to n in what follows.)
Furthermore, if b; # 0 for one of 1 < j < n, then equality holds if
and only if ds € R such that a; = sb; foralli=1,...,n.
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Proof. For any t € R,

0 S Z(CL@ —I—tbi)Q = ZCL? -+ QtZaibi —I-tQZb,?

The right-hand side of this inequality is a polynomial of degree 2 in t.

It is always greater than or equal to 0: it has at most 1 real root,
l.e. its discriminant

(2 3 aibi)Q 4 (Z af) (Z b?) <0,
(San) < (Xat) (2H).

If all the b; are 0, the equality holds trivially, as both the left and right side
of the Cauchy inequality are 0.

and so
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So suppose b; # 0 for at least one of the values j between 1 and n. We
have two statements to prove. If a; = sb; forall i =1,....nand s € R is
fixed then

(Can) = (XCst) == (02) == () ()
= (20s02) (o0) = (3o at) (222)-

On the other hand, if

(Yan) = () (%)

4 (Z aibi)Q 4 (Z af) (Z b?) — 0.
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But the left-hand side of this expression is the discriminant of the following
polynomial of degree 2 in t:

Z(ai + tbi)Q = CL? + QtZ aibi + t2 Z b?

Since the discriminant is 0, the polynomial has a unique root, say t = —s,

" Z(CL@ — sz)Q = 0.

Since (a; — sb;)? >0 forall i =1,...,n, then

(a; —sb;)>=0 foralli=1,...,n
c.a;—sb,=0 foralli=1,....n
a; =sb; foralli=1,...,n. |
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Theorem 5. (TRIANGLE INEQUALITY)
Ifai,...,an,,01,...,b, € R, then
1/2

(Starror) < (Sat) "+ ()

Furthermore, if b; # 0 for one of 1 < j < n, then equality holds if and only
if ds € R such that a; = sb; for allt =1,...,n.

1/2
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Proof. As

Z az+b Za +22azb +Zb2
Cavcry neq | < D a2 +2 (D a )1/2 (> b2)1/2 +3 0
() ()"

Taking the square root on both sides yields the desired result.

If all the b; are 0, the equality holds trivially, as both the left and right side
of the Triangle Inequality are (3" a?) 1z

So suppose b; # 0 for at least one of the values j between 1 and n. We
have two statements to prove.
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If a; = sb; forall i =1,...,n and s € R is fixed then

(e ) (Do) = (Zeee )
() = e ()

and

(Z )1/2 (Zb2)1/2 _ (282b3)1/2+ (Zb?)1/2

and so equality holds.
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On the other hand, if

(Z(a’”" +b7;)2) 1/2 _ (Z a?) 1/2 N (Z bf)

1/2

then

S (i + b))% = ((Z af)m + (> b§)1/2)2.

Developing both sides of this expression yields

Za?—FQZ&z‘biﬂLZb?:Za?+2(za?)l/2 (be)

or simply

1/2

+ > b,

1/2

o= (L) (L)
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Elevating both sides to the second power yields

(Sat) =(Sa) (£)

By Theorem 4, ds € R such that a; = sb; forall 1 =1,...,n. |
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Theorem 6. (ABSOLUTE VALUE; PROPERTIES)
If x,y € R and ¢ > 0, then

:13|:\/P

—|z| <z < |z

zy| = |z|[y|

r+yl <z + |yl

r—y| <z + |yl

z| = |y|| < |z —y|
r—yYl<e<—y—cec<r<y+e

NS OA LD
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Theorem 7. (DENSITY OF Q)
Let x,y € R such that x < y. Then, dr € Q such that x < r < y.
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Proof. There are three distinct cases.

1. If £ <0 <y, then select r = 0.

2. If0§x<y,theny—x>()andy%x>0.

By the Archimedean property, dn > 1 such that

n > > 0.

y—x

By that same property, dm > 1 such that m — 1 < nx < m. Since
n(y —x) > 1, then ny — 1 > nx and nx > m — 1.

By transitivity of <, ny — 1 > m — 1, that is ny > m. But m > nz, so
ny >m >nx and y > 7 > x. Select r = .
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3. fx <y <0, theny—2x >0 and y%x > (. By the Archimedean property,

dn > 1 such that )

y—T
Note that —nx > 0. By yet another variant of that property (that we

haven't explicitly stated in class, but it's not too much work to show it),
dm >0 suchthatm< —nz<m-+lor—-m-—1<nx < —m.

> 0.

n >

Since n(y —xz) > 1, then ny — 1 > nx and nx > —m — 1.

By transitivity of <, ny—1 > —m—1, that is ny > —m. But —m > nz,

m

sony > —m >nx and y > - > x. Select r = —. H
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Theorem 8. If S is an infinite subset of a countable set A, then S is
countable.

Proof. https://youtu.be/MufHda7srwo

P. Boily (uOttawa) 20



MAT 2125 — Elementary Real Analysis Notes

Theorem 9. The set Q is countable.

Proof. https://youtu.be/MufHda7srwo
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Theorem 10. The set R is uncountable.

Proof. https://youtu.be/lJgtq4d_JYQE
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Theorem 11. (NESTED INTERVALS) For every integer n € N, let
(@, bn] = I, be such tht

IlQIQQInQIn—i—lQ

Then there exists 1, € R such that ¢ <n and |, oy In = ¥, 7).
Furthermore, if inf{b,, — a,, | n € N} =0, then ¢ = .

Proof. https://youtu.be/D6zHW5L_9L0
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Theorem 12. (UNIQUE LiMmIT) A convergent sequence (x,) of real
numbers has exactly one limit.
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Proof. Suppose that z,, — 2’ and z,, — z".

Let € > 0. Then there exist 2 integers N, N/ € N such that

|z, — 2| < & whenever n > N! and |z, — 2”| < ¢ whenever n > N’
Set N. = max{N., N}. Then whenever n > N., we have
0< |2/ —2"| =o' —xp + 2 —2"| < |2)y — 2| + |2, — 2| <€+ =2e.

Thus()<|x x|<5

But € > 0 was arbitrary, so =
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Theorem 13. Any convergent sequence (x,,) of real numbers is bounded.
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Proof. Let (x,,) C R converge to x € R. Then for ¢ = 1, say, 4N € N
such that
|z, — x| <1 whenn > N.

Thanks to the reverse triangle inequality, we also have

T —|z| < |z, —2x| <1 whenn > N,

so that |z,| < |z| + 1 when n > N.

Now, set M = max{|z1|,...,|zn]|,|z| +1}. Then |z,| < M for all n
and so (z,,) is bounded. H
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Theorem 14. (OPERATIONS ON CONVERGENT SEQUENCES)

Let (x,),(y,) be convergent sequences, with x, — x and y, — y. Let
c € R. Then

7

1. |z,| — |z

2. (T +yn) = (x+y),

3. xpYn — Ty and cxr, — cx;

4. Z—Z%% if yn,y = 0 for all n.

Proof. We show each part using the definition of the limit of a sequence.
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1. Let ¢ > 0. As x,, — x, AN/ such that |z,, — x| < € whenever n > N_.
But ||x,| — ||| < |z, — x|, according to theorem 6. Hence, for ¢ > 0,

dN,. = N/ such that
|zn] = |2]] < |zn — 2| <e
whenever n > Ng, i.e. |z,| — |z|.

2. Let e > 0. Then £ > 0. As x,, = 2 and y, — ¥, EIN%’,N%’ such that

E g
[2n —xl <5 and yn -yl <3 (1)

whenever n > Ng and n > N/? respectively. Set N, = max {N%x, Ng}
2 2
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Then, whenever n > N. (so whenever n is strictly larger than N;F/Q and

Ng/z at the same time),

IA

(@ +yn) = (2 +y)| = |(2n —2) + (Yo —y)| 20 — 2| + [yn =yl

E E
by (1) < §—|‘§:€,

e. (Tn+yn) — (T +y).

3. According to theorem 13, (x,) and (y,) are bounded since they are
convergent sequences. Then M, M, € N such that

zn| < M, and  |y,| < M,

for all n.
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€ € x Yy
Let € > 0. Then My 3N, 0. Asz,, —» x, Yo — v, EINM%,NM% e N
such that

E E
d n— Y| < 2
oM, and |y, — v 20 (2)

|z, — x| <

whenever n > N?. and n > NY. respectively. Moreover, |y| < M,

(otherwise |y|_2My > 0. Then, for ¢ = ly';My, we get

|yn_y’ > ||y|— !ynll > \yI—My:25>8

for all n € N, which contradicts the definition of y,, — y).

P. Boily (uOttawa) 31



MAT 2125 — Elementary Real Analysis Notes

Set N, = max {N% NV,

oMz  2My

}. Then, whenever n > NN,

TnYn — Y| = |TnYn — Tuy + Ty — xY| T (Yn — ) + y(Tn — T)|

< |xullyn — yl + |yl|zn — x|
< Mylyn —y| + My|z, — 2|
e e
by | < M,—+ M
YoM, YoM,
= €+6—5
2 2 7

l.e. T,y — TY.

Furthermore, if the sequence (y,,) is given by y,, = c¢ for all n, then the
preceding result yields cx,, — cx, since y,, = ¢ — ¢ (You should show this).
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4. It is enough to show = — L under the hypotheses above: then the result
g " yp

n

will hold by part 3. Since y # 0, vl > 0. Hence, as y, — y, 3N)y2 € N
such that |y, —y| < vl whenever n > Ny . According to theorem 6,

2

Y
\yI — |?/n| < \y — yn\ < %, and so
Y| 1 9
- <lyn| or < (3)
2 ynl Y

whenever n > N|,| /2 (these expressions make sense as neither y, nor y
is O for all n).
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Let ¢ > 0. Then |y|?S > 0. As y,, = y, AN, 2c € N such that
2 Y| 2

E
9 — 9l < Iy (4)

whenever n > N|y|2%. Set N, = max{Ny N|y|2s}. Then, whenever
gl

n > Ng,
i_1|:‘y_yn ‘y_ynl
Yn Y Yny [yny|
2 T Un
Vo < ly 2y |
Y|
2 1 1
by (4) | < |y\28 e, i.e. — — —. |
[y[2 Yn Y
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Theorem 15. (COMPARISON THEOREM FOR SEQUENCES)
Let (x,),(yn) be convergent sequences of real numbers with x, — =,
Yo — Yy, and z,, <y, Vn € N. Then xz < y.
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Proof. Suppose that it is not the case, namely, that x > y. Then x —y > 0.

Set ¢ = 5% > 0. Since z, = x and y, — y, IN?, NY € N s.t.
|z, — x| < € whenever n > N and |y, — y| < e whenever n > NY.

Let N, = max{NZ N¥Y}. Then, if n > N, we have

<y+ it i
E = _— = = X —

But this contradicts the assumption that x,, < vy, for all n.

Consequently, = < y. |
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Theorem 16. (SQUEEZE THEOREM FOR SEQUENCES)
Let (x,), (Yn),(2n) € R be such that x,,z, — « and x, < y, < zn,

Vn € N. Then vy, — «.
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Proof. Let € > 0. By convergence of (z,,), (25,) to o, ANF, NZ € N s.t.
|z, — a| < € whenever n > N? and |z, — a| < € whenever n. > N’Z.
Let N, = max{NZ NZ}. Then, if n > N, we have
A—€< Ty <Yy < zp<a+te,

which is to say, that |y, —a < €.

Consequently, y,, — . |
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Theorem 17. Let x, — x. If x,, > 0VYn € N, then \/z, — /.
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Proof. Since y,, > 0 for all n € N, Theorem 15 implies that y > 0. There
are 2 cases: y =0 or y > 0.

(a) If y =0, lete > 0. Then €2 > 0. Since y,, — 0, IM_> € N s.t. whenever
n > M_2, we must have |y, — 0| = y,, < °. Now, set N, = M_o.

\/yn_0| :\/yn<\/?:€.

Then whenever n > V.,

(b) f y >0, let € >0. Then ¢,/y > 0. Since y, — y, IM, 5 € N s.t.
whenever n > M, Yn — y| < e,/y. Now, set N, = M s.

Then whenever n > V.,

_ _ _lyn—yl lyn—yl _ VY _
ViV =mr st < T E

In both cases, this yields /vy, — /v. |
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Theorem 18. (BOUNDED MONOTONE CONVERGENCE)
Let (x,,) be an increasing sequence, bounded above. Then (x,) converges
to sup{z, | n € N}.

Proof. https://youtu.be/ZMCp9GzDmD8
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Theorem 32. If f : [a,b] — R is continuous on [a,b], then f is bounded
on |a, b.
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Proof. Suppose f is not bounded on [a, b]. Hence, for alln € N, 3z, € [a, D]
such that |f(z,)| > n. However, (z,) C |a, b] so that (x,,) is bounded.

By the BW Theorem, 3(x,,, ) C (z,) such that x,,, — & € [a,b], since
a<x, <b forallk.

Since f is continuous, we have

f(@) = lim f(z) = lim f(zn,),

rT—I k— o0

so (f(xp,)) is bounded, being a convergent sequence. But this contradicts
the assumption that |f(x,, )| > ni > k for all k.

Hence f is bounded on [a, b]. H
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Theorem 33. (MAX/MIN THEOREM)
If f:|a,b] — R is continuous, then f reaches a global maximum and a

global minimum of [a, b).

P. Boily (uOttawa) 44



MAT 2125 — Elementary Real Analysis Notes

Proof. Let f([a,b]) = {f(x) | € [a,b]}. According to Theorem 32,
f(la,b]) is bounded as f is continous, and so, by completeness of R,

s*=sup{f(x) |z €la,b]} and s,=inf{f(z)|x € [a,b]}

both exist.

We need only show Jx*, x, € |a,b] such that f(x*) = s* and f(x.) = s..

Since s* — < is not an upper bound of f([a,b]) for every n € N, 3x,, € [a, b]
with |
s*——< f(x,) <s*, forallneN.
n

According to the Squeeze Theorem, we must have f(x,) — s* (this says
nothing about whether x,, converges or not, however).
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But (z,) C |a,b] is bounded, so applying the BW Theorem, we find that
3(xn,) C (z,) such that z,, — x* € [a,].

As f is continuous,

s" = lim f(x, )= f(

k— o0

lingO a:nk) = f(z").

k—

The existence of x, € [a,b] such that f(x.) = s. is shown similarly. H
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Theorem 34. Let f : |a,b] — R be continuous. If o, 5 € |a, b] such that
f(a)f(B) <0, then 3y € (a,b) such that f(y) = 0.
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Proof. We prove that the results holds for f(a) < 0 < f(53); the other case
having a similar proof.

Write a1 = (@, 61 = 6, Il = [051,61], and Y1 = %ﬁl. There are 3
possibilities:

i. if f(71) =0, set v = vy; then v € (1, 51) and the theorem is proven;
. if f(’)/l) > O, set as = (1, 52 = Y1,

. if f(”)/l) < 0, set as = 7, 52 = 51.

In the last two cases, set Is = |asg, B2]. Then I7 D I, length(l1) = Bl;)al
and

flaz) <0< f(B2)
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This is the base case n = 1 of an induction process, which can be extended
for all n € N. One of two things can occur: either

1. In € N such that f(v,) = 0, with v, € (ay, 8n) C (o, 3), in which case
the theorem is proven, or

2. there is a chain of nested intervals
Lo DIy DIy 2 -
where I,, = [au,, By, length(l,) = Bgn 1=, flan) <0< f(Br) Vn € N.

According to the Nested Intervals Theorem, since

ing{length( n)t = lim P = Qi = 0,
ne

n— 00 2n—1
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Je € |, B] C |a,b] such that (), . In = {c}.
It remains to show that f(c¢) = 0.

Note that the sequences («,), (8,) both converge to c. Indeed, let ¢ > 0.
By the Archimedean Property, 3N, € N such that N, > log,(2=%) + 1.

Since ¢ € I,, for all n € N, then

b —«
— 2n—1

|, — ¢| < length(1,,) <e€

whenever n > N.. The proof that 5,, — c is identical.
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Since f is continuous on [a, b], it is also continuous at ¢. Thus,

lim f(an) = nh_{ilo f(Bn) = f(c).

n—oo

But f(a,) < 0 for all n, so

flc)= lim f(an) <0,

n—oo

by Theorem 15. Using the same Theorem, we have f(c) > 0. Then
fle) =0.

Lastly, note that ¢ # «, 3; otherwise, f(a)f(B) = 0.

This concludes the proof, with v = c. |
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Theorem 35. (INTERMEDIATE VALUE THEOREM)
Let f : [a,b] — R be continuous. If da < B € [a,b] s.t. f(a) < k < f(B)
or f(a) >k > f(B), then 3y € (a,b) such that f(v) = k.
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Proof. Assume that f(a) < k < f(f3); the proof for the other case is similar.

Consider the function g : [a,b] — R defined by g(x) = f(x) — k. Theorem
30 shows that g is continuous on |[a, b].

Furthermore,

g(a) = f(@) —k <k—k=0< f(8) — k= g(B).

According to Theorem 34, 3v € («, 3) such that g(v) = f(y) — k = 0.
Thus f(v) = k. H
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Theorem 36. /f f : |[a,b] — R is continuous, then f(|a,b]) is a closed
and bounded interval.
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Proof. Let m = inf{ f|a,b]} and M = sup{fla,b]}.

According to the Max/Min Theorem, da, 8 € [a,b] such that f(a) = m
and f(5) = M.

If m = M, then f is constant and f(|a,b]) = [m,m| = [M, M].

If m < M, then a # 3. Furthermore, m < f(x) < M for all = € [a,b], so
that f([a,8]) C [m, M]

Now, let & € [m,M]. According to the Intermediate Value Theorem,
1y between o and (8 such that f(v) = k. Hence k € f(|a,b]) and so
[m, M] € f(la, b]).

Consequently, f([a,b]) = [m, M]. H
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Theorem 37. If f : A — R is uniformly continuous on A, then f is
continuous on A.
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Proof. Let c€ A and € > 0. As f is uniformly continuous on A, 36, > 0
such that

If(x) — f(y)| <e whenever |z —y| < 0. and z,y € A.
In particular, if y = ¢ then
|f(x) — f(c)] <& whenever |z —c| < 6. and x € A.

As c is arbitrary, f is continuous on A. |
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Theorem 38. Let f: |a,b] — R. Then f is uniformly continuous on |a, b]
if and only if f is continuous on |a, b|.
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Proof. Theorem 38 shows that if f is uniformly continuous on [a,b], it is
continuous on |a, b].

Now, assume f is continuous on [a,b]. If f is not uniformly continuous,
then Jeg > 0 such that Vé > 0, Jzs,ys € |a, b] with

|f(zs) — f(ys)| > &0 and |zs — ys| < 6.

For n € N, let 6, = =. The corresponding sequences (zs,), (ys,) lie in
la, b], with

1
s, — Ys,| <0n=— and |f(zs,) — f(ys,)| = €0, VneN.
n

As (zs,) is bounded, 3(zs, ) C (xs,) such that x5, — z with k& — oo,
according to the Bolazano-Weierstrass Theorem.
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Furthermore, z € |a, b] according to Theorem 15.

The corresponding sequence (y(gnk) also converges to 2z subce

1
0 <|ys,, — 2| < |¥sn, — Ts,, | + |Ts,, — 2] < T s, — 2|

according to the Squeeze Theorem, as both nik, |:1:5nk —z| = 0 with £ — oc.

But f is continuous, both (f(zs, )),(f(ys, )) — f(2). But that is
impossible as |f(xs5,) — f(ys,)| > €0, Vn € N.

Thus f must be uniformly continuous. |
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Theorem 51. Let I = [a,b] and f be bounded on I. Then the lower
integral and upper integral of f on I satisfy L(f) < U(f).

P. Boily (uOttawa) 61



MAT 2125 — Elementary Real Analysis Notes

Proof. Let P, P, be partitions of I. Then L(Py; f) < U(Ps; f).

If we fix Py, U(Ps; f) is an upper bound for {L(P; f) | P a partition of I}.
As this set is bounded, its supremum L(f) exists.

But P, was chosen arbitrarily, so L(f) is a lower bound of
{U(P; f) | P a partition of I}.
Consequently,
L(f) <inf{U(P; f) | P a partition of I} = U(f).

This completes the proof. |
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Theorem 52. (RIEMANN’S CRITERION)

Let I = |a,b] and f : I — R be a bounded function. Then f is Riemann-
integrable if and only if Ve > 0, dP. a partition of I such that the lower sum
and the upper sum of f corresponding to P. satisfy U(P.; f)—L(P:; f) < €.
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Proof. If f is Riemann-integrable, then L(f) = f /-

Let ¢ > 0. Since f;f — 5 is not an upper bound of {L(P;f) |
P a partition of |a,b]}, there exists a partition P; such that

/abf——<LP1 /f

Using a similar argument, there exists a partition P> such that

/f+ > U(Py; f /f

Set P. = P U P,. Then P. is a refinement of P; and Ps.
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Consequently,

/f——<L(P1 §) < L(Ps ) <U(Ps f) < U(P: f) /f+—

which implies that

U(Fe; f) — L(Pe; f) <e.
Conversely, let ¢ > 0 and P. be such that U(P;; f) — L(P-; f) < e. Since
U(f) < U(P-: f) and L(f) > L(P-; f), then

0<Uf)—L(f) U f) - L(Ps f) <e

But € > 0 was arbitrary, so U(f) — L(f) = 0, which in turns implies that
U(f) = L(f) and that f is Riemann-integrable on [a, b]. H
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Theorem 53. Let I = |a,b] and f : I — R be a monotone function on I.
Then f is Riemann-integrable on 1.
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Proof. We show that the result holds for increasing functions. A similar
proof holds for decreasing functions.

Assume f is increasing. Let
Pn:{:cz-:aJri(b_Ta) :1=0,...,n}

be the partition of |a, b] into n equal sub-intervals. Since f is increasing on
la, b], we have

m; = inf{f(z) | v € [xi—1, m5]} = f(wi—1),
M; =sup{f(x) | x € |zi—1, x|} = f(z),

forl <1 <n.
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Hence,

(Pnaf Pnaf
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Let € > 0. By the Archimedean Property, 3N, € N such that

(b —a)(f(0) — f(a))

E

< n.

Set P. = P,,. Then

b—a
N

U(P; f) = L(P:; f) < (f(b) = f(a)) <&,

and f is Riemann-integrable on [a, b] according to Riemann’s Criterion. W
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Theorem 54. Let f : [a,b] — R be continuous, with a < b. Then f is
Riemann-integrable on |a, b.
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Proof. Let £ > 0.

According to Theorem 38, f is uniformly continuous on [a,b].

Hence

36 > 0s.t. |f(z) — f(y)| < 3= whenever |x —y| < J. and z,y € [a,b].

Pick n € N such that I’_Ta < 0. and let

Psz{:ci:aJri(b_—a):i:O,...,n}

n

be the partition of [a, b] into n equal sub-intervals.
As f is continuous on [z;_1,x;], Ju;, v; € [x;_1,x;] such that

m; = inf{f(x) | x € |z;—1, 25|} = f(uw;),
M; =sup{f(x) | x € [z;_1,2;]} = f(v;),
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for all 1 < ¢ < n, according to the Max/Min Theorem. (Note that
u; — v;| <=2 <6, for all 4.)

Hence,
n b L n
U(Pei f) = L(Ps f) = DO (M; = mi) (i = wima) = —— 3 (f(05) = f(u:))
1=1 1=1
- b—a zn: e
n “~b-a - o

by uniform continuity of f.

According to Riemann’s Criterion, f is thus Riemann-integrable. |
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Theorem 55. (PROPERTIES OF THE RIEMANN INTEGRAL)
Let I =a,b] and f,g : I — R be Riemann-integrable on I. Then

(a) [+ g is Riemann-integrable on I, with f:(f +g) = f: f+ f; g;
(b) ifk € R, k- f is Riemann-integrable on I, with f;k - f = kf; f;
(c) if f(x) < g(x) Vo el, then f;f < f;g and

(d) if|f(z)] < K Va € I, then ‘fjf) < K(b—a)

Proof. We use a variety of pre-existing results.
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(a) Let € > 0. Since f,g are Riemann-integrable, 3P;, P, partitions of [
such that U(Py; f) — L(Py; f) < § and U(Py; g9) — L(P2;9) < 5.

Set P = P; UP,. Then P is a refinement of P; and P, and

UP; f+g) UWP; f)+U(P;g)
<L(P;f)+L(P;g)+e<L(P;f+g)+e, (D)

since, over non-empty subsets of I, we have

inf{f(x)+ g(x)} > inf{f(x)} + inf{g(x)}
sup{f(z) + g(z)} <sup{f(z)} + sup{g(x)}.

Hence f + ¢ is Riemann-integrable according to Riemann’s Criterion.
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Furthermore, we see from (5) that

b

b b
/(f+g)SU(P;f+g)<L(P;f)+L(P;g)+€§/ f+/ g+ e

and

b

[+ [9<u@n+UPg <LPisrg)+es [ (g e

a

Since € > 0 is arbitrary, f;f + f;g < f;(f +g) < fff + f;g from
which we conclude that f;(f +g) = fff + f;g.

(b) The proof for k = 0 is trivial. We show that the result holds for k£ < 0
(the proof for & > 0 is similar).
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Let P = {xg,...,2,} be a partition of I. Since k£ < 0, we have

inf{kf(x)} = ksup{f(x)} over non-empty subsets of I, and so we have
L(P;kf) =kU(P; f). In particular,

L(kf) =sup{L(P;kf) | P a partition of I}
= sup{kU(P; f) | P a partition of I}
= kinf{U(P; f) | P a partition of I} = kU(f)

Similarly, U(P; kf) = kL(P; f) and U(fk) = kL(f), so

L(fk) = kU(f) = kL(f) = U(kf).

since f is R-int.

Thus kf is Riemann-integrable on I and f; kf=L(k)=kU(f) = fb f.

a
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(c) We start by showing that if A : I — R is integrable on I and h(z) > 0
for all z € I, then [ h(z) > 0.

Let Py = {a,b} = {xp,z1} and my = inf{h(x) | = € [a,b]} > 0.
Then,
0 <mi(b—a)= L(FPy;h) < L(P;h)

for any partition P of I, as P O F,. But h is Riemann-integrable by
assumption, thus

b
/ h = sup{L(P;h) | P a partition of I} > L(FPy;h) > 0.

P. Boily (uOttawa) 7



MAT 2125 — Elementary Real Analysis Notes

Then, set h = g — f. By hypothesis, h(z) = g(x) — f(x) > 0. Then

/abhzfab(g—f):/abg—/abfzﬂ,

which implies that f;g > f;f

(d) Let Py = {a,b} = {xo,z1}. As always, set m; = inf{f(z) | = € [a, b]},
and M7 = sup{f(z) | x € |a,b]}. Then for any parition P of I, we have

ma(b— a) = L(Po; f) < L(P; f) < L(f /f
—U(f) <U(P; ) < U(Po; f) _a).
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In particular,
b
my(b — a) g/ £ < My(b—a)
Now, if |f(x)| < K for all z € I, then —K < mj and M; < K so that

b
—K(b—a)gml(b—a)g/ F < My(b—a) < K(b—a),

sothat|f;f|§K(b—a). |
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Theorem 56. (ADDITIVITY THE RIEMANN INTEGRAL)
Let I = [a,b], ¢ € (a,b), and f : I — R be bounded on I. Then f is
Riemann-integrable on I if and only if it is Riemann-integrable on I; = |a, ]|

and on Iy = [c,b]. When that is the case, f;f = ["f+ fcbf.
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Proof. We start by assuming that f is Riemann-integrable on I.
Let ¢ > 0. According to the Riemann Criterion, dP. a partition of [

such that U(P.; f) — L(P-; f) < e. Now, set P = P.U{c}. Then P is a
refinement of P. so that

U(P; f)— L(P; f) SU(P; f) — L(P:; f) <e.
Set P, = PNI; and P, = PN 1. Then P; is a partition of I;, and

e>U(P; f) = L(P; f) > U(Py; f) + U(Po; f) — L(P1; f) — L(Po; f)
= [U(P1; f) — L(Py; f)] + [U(Po; f) — L(Pa; )]

Consequently, U(P;; f) — L(P;; f) < € for i = 1,2 and f is Riemann-
integrable on I; and Iy, according to the Riemann Criterion.
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Now assume that f is Riemann-integrable on I; and Is.

Let ¢ > 0. According to the Riemann Criterion, for ¢+ = 1,2, dP; a
partition of I; such that

U(P; f)+ L(P; f) <

DO ™

Set P= P, UP,. Then P is a partition of I. Furthermore,

U(P; f)—L(P; f) =U(Py; f) +U(Pe; f) — L(P1; f) — L(P; f)

= U(Py; f) = L(Pi; ) + U(Poi f) = L(Poi ) < 5 + 5 = &

€
2

thus f is Riemann-integrable on I according the Riemann Criterion.
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Finally, let's assume that f is Riemann-integrable on I (and so on I3, I5),

or vice-versa.

Let P;, P, be partitions of Iy, I5, respectively, such that

U(P;; f) — L(P; f) < 1 =1,2.

€
27

Set P = Py UP,. Then P is a partition of I and

/ F<UP; f) = U(Py; f) + U(P: f)

c b
<LPuf)+LPaf) +e= [ 1+ [ e

P. Boily (uOttawa)

83



MAT 2125 — Elementary Real Analysis

Notes

Similarly,

b
/ > L(P;f) = L(Py f) + L(Ps f)
c b
>U(P1;f)+U(P2;f)—sZ/ f+/ foe

Since € > 0 is arbitrary, f;f = ["f+ fcbf.
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Theorem 57. (COMPOSITION THEOREM FOR INTEGRALS)

Let I = |a,b] and J = |a,B], f : I — R Riemann-integrable on I,
¢ : J — R continuous on J and f(I) C J. Then oo f : I — R is
Riemann-integrable on 1.

Proof. Let ¢ > 0, K = sup{|¢(x)| | x € J} (guaranteed to exist by the

. ,
Max/Min theorem) and &' = ;—=——.

Since ¢ is uniformly continuous on J (being continuous on a closed,
bounded interval), 5. > 0 s.t.

|CC _y‘ < 567 T,Y, € J — |90(x) o Sp(y)| < 8/’

Without loss of generality, pick 6. < &’
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Since f is Riemann-integrable on I, 4P = {xg,...,x,} a partition of
I =|a,b] s.t.
U(P; f) = L(P; f) < 62

(according to Riemann'’s criterion).

We show that U(P;po f) — L(P;po f) < e, and so that po f is
Riemann-integrable according to Riemann’s criterion.

Over [x;_1,x;| fori=1,...,n, set
m; = inf{f(x)}, M; = sup{f(x)}, m; = inf{p(f(x))}, M; = sup{p(f(2))}.

With those, set A = {i | M; —m; <.}, B={i| M; —m; > J.}.
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o If i € A, then

T,y € |[Ti—,x] = [f(z) = f(y)] < M;—m; <0,

~

so |p(f(x))—e(f(y)| < &' Va,y € [x;_1,x;]. In particular, M;—m,; <€’

o If 2 € B, then

2,y € i1, ] = [o(f(2)=e(f ()] < le(f(@)|+le(f(y))] < 2K.

In particular, M; —m; < 2K, since —K < m; < p(z) < M; < K for all
z € [xi1,xi].
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Then

UP;pof)—L(P;po f)= Z(Mz — ) (25 — @i1)
1=1
i€cA icB
SS/Z( $11—|—2KZ —gjzl
€A i€B
e'(b—a) —I—QKZ (M: — 5 mz)(xi—xi_l)
i€B €
2K
e'(b—a)+ 5 ;(Mz —m;)(T; — Ti-1).
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By earlier work in the proof, we have

n

> (M; —mg) (s — 1) SU(P; f) = L(P; f) < 62,
i=1
so that
U(P:po f)— L(Pigpo ) <(b—a) + 55

=¢c'(b—a)+2K6. <e'(b—a)+2K¢'
e'(b—a+2K) =c¢,

which completes the proof. |
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Theorem 58. Let ] = |[a,b| and f,g: I — R be Riemann-integrable on I.
b b
[ < A

Then fg and |f| are Riemann-integrable on I, and
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Proof. The function defined by ((¢) = t? is continuous. By the Composition

Theorem, o (f +g) = (f +g)? and o (f —g) = (f — g)? are both
Riemann-integrable on 1.

But the product fg can be re-written as

fo==[(f+9)°—(f—9)°]

N

According to Theorem 55, fg is Riemann-integrable on I (note that there
is no general form for f; fq).

Now, consider the function defined by ¢(t) = |t|. It is continuous, so
@ o f =|f| is R-integrable on I according to the Composition Theorem.
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Pick ¢ € {£1} such that cf;f > 0. Hence

/abf|=c/abf=/abcf§/abf,

since cf(x) < |f(x)| for all z € 1. H
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