MAT 2125 Elementary Real Analysis

Notes

Winter 2021

Theorem 1. (ARCHIMEDEAN PROPERTY) Let $x \in \mathbb{R}$. Then $\exists n_x \in \mathbb{N}^{\times}$ such that $x < n_x$. **Proof.** Suppose that there is no such integer. Then $x \ge n \ \forall n \in \mathbb{N}$.

Consequently, x is an upper bound of \mathbb{N}^{\times} . But \mathbb{N}^{\times} is a non-empty subset of \mathbb{R} . Since \mathbb{R} is complete, $\alpha = \sup \mathbb{N}^{\times}$ exists.

By definition of the supremum (the smallest upper bound), $\alpha - 1$ is not an upper bound of \mathbb{N}^{\times} (otherwise α would not be the smallest upper bound, as $\alpha - 1 < \alpha$ would be a smaller upper bound).

Since $\alpha - 1$ is not an upper bound of \mathbb{N}^{\times} , $\exists m \in \mathbb{N}^{\times}$ such that $\alpha - 1 < m$. Using the properties of \mathbb{R} , we must then have $\alpha < m + 1 \in \mathbb{N}^{\times}$; that is, α is not an upper bound of \mathbb{N}^{\times} .

This contradicts the fact that $\alpha = \sup \mathbb{N}^{\times}$, and so, since $\mathbb{N}^{\times} \neq \emptyset$, x cannot be an upper bound of \mathbb{N}^{\times} . Thus $\exists n_x \in \mathbb{N}^{\times}$ such that $x < n_x$.

Theorem 2. (ARCHIMEDEAN PROPERTY; VARIANTS) Let $x, y \in \mathbb{R}^+$. Then $\exists n_1, n_2, n_3 \geq 1$ such that

- 1. $x < n_1 y$;
- 2. $0 < \frac{1}{n_2} < y$, and
- 3. $n_3 1 \le x < n_3$.

Proof.

- 1. Let $z = \frac{x}{y} > 0$. By the Archimedean property, $\exists n_1 \ge 1$ such that $z = \frac{x}{y} < n_1$. Then $x < n_1 y$.
- 2. If x = 1, then part 1 implies $\exists n_2 \ge 1$ such that $0 < 1 < n_2 y$. Then $0 < \frac{1}{n_2} < y$.
- 3. Let $L = \{m \in \mathbb{N}^{\times} : x < m\}$. By the Archimedean property, $L \neq \emptyset$. Indeed, there is at least one $n \ge 1$ such that x < n. By the well-ordering principle, L has a smallest element, say $m = n_3$. Then $n_3 - 1 \notin L$ (otherwise, $n_3 - 1$ would be the least element of L, which it is not) and so $n_3 - 1 \le x < n_3$.

There are other variants, but these are the ones we'll use the most.

Theorem 3. (BERNOULLI'S INEQUALITY) Let $x \ge -1$. Then $(1+x)^n \ge 1 + nx$, $\forall n \in \mathbb{N}$. **Proof.** We prove the result by induction on n.

- If n = 1, then $(1 + x)^1 = 1 + x \ge 1 + 1x$.
- Suppose that the result is true for n = k, that is $(1 + x)^k \ge 1 + kx$. We have to show that it is also true for n = k + 1. But

$$\begin{array}{l} (1+x)^{k+1} = (1+x)^k (1+x) \\ \hline & \\ \hline & \\ \mbox{Ind. Hyp.} \end{array} \geq (1+kx)(1+x) \\ & = 1+(k+1)x+kx^2 \\ & \\ & \geq 1+(k+1)x. \end{array}$$

(Where does the hypothesis $x \ge -1$ come in to play?)

Theorem 4. (CAUCHY'S INEQUALITY) If a_1, \ldots, a_n and b_1, \ldots, b_n are real numbers, then

$$\left(\sum a_i b_i\right)^2 \le \left(\sum a_i^2\right) \left(\sum b_i^2\right).$$

(The indices are understood to run from 1 to n in what follows.) Furthermore, if $b_j \neq 0$ for one of $1 \leq j \leq n$, then equality holds if and only if $\exists s \in \mathbb{R}$ such that $a_i = sb_i$ for all i = 1, ..., n. **Proof.** For any $t \in \mathbb{R}$,

$$0 \le \sum (a_i + tb_i)^2 = \sum a_i^2 + 2t \sum a_i b_i + t^2 \sum b_i^2.$$

The right-hand side of this inequality is a polynomial of degree 2 in t.

It is always greater than or equal to 0: it has at most 1 real root, i.e. its discriminant

$$\left(2\sum a_i b_i\right)^2 - 4\left(\sum a_i^2\right)\left(\sum b_i^2\right) \le 0,$$

and so

$$\left(\sum a_i b_i\right)^2 \le \left(\sum a_i^2\right) \left(\sum b_i^2\right).$$

If all the b_i are 0, the equality holds trivially, as both the left and right side of the Cauchy inequality are 0.

So suppose $b_i \neq 0$ for at least one of the values j between 1 and n. We have two statements to prove. If $a_i = sb_i$ for all i = 1, ..., n and $s \in \mathbb{R}$ is fixed then

$$\left(\sum a_i b_i\right)^2 = \left(\sum s b_i^2\right)^2 = s^2 \left(\sum b_i^2\right)^2 = s^2 \left(\sum b_i^2\right) \left(\sum b_i^2\right)$$
$$= \left(\sum s^2 b_i^2\right) \left(\sum b_i^2\right) = \left(\sum a_i^2\right) \left(\sum b_i^2\right).$$

On the other hand, if

$$\left(\sum a_i b_i\right)^2 = \left(\sum a_i^2\right) \left(\sum b_i^2\right)$$

then

$$4\left(\sum a_i b_i\right)^2 - 4\left(\sum a_i^2\right)\left(\sum b_i^2\right) = 0.$$

But the left-hand side of this expression is the discriminant of the following polynomial of degree 2 in t:

$$\sum (a_i + tb_i)^2 = \sum a_i^2 + 2t \sum a_i b_i + t^2 \sum b_i^2.$$

Since the discriminant is 0, the polynomial has a unique root, say t = -s,

$$\therefore \sum (a_i - sb_i)^2 = 0.$$

Since $(a_i - sb_i)^2 \ge 0$ for all $i = 1, \ldots, n$, then

$$(a_i - sb_i)^2 = 0$$
 for all $i = 1, ..., n$
 $\therefore a_i - sb_i = 0$ for all $i = 1, ..., n$
 $\therefore a_i = sb_i$ for all $i = 1, ..., n$.

Theorem 5. (TRIANGLE INEQUALITY) If $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}$, then

$$\left(\sum (a_i + b_i)^2\right)^{1/2} \le \left(\sum a_i^2\right)^{1/2} + \left(\sum b_i^2\right)^{1/2}.$$

Furthermore, if $b_j \neq 0$ for one of $1 \leq j \leq n$, then equality holds if and only if $\exists s \in \mathbb{R}$ such that $a_i = sb_i$ for all i = 1, ..., n.

Proof. As

$$\begin{split} \sum (a_i + b_i)^2 &= \sum a_i^2 + 2 \sum a_i b_i + \sum b_i^2 \\ \hline \text{Cauchy Ineq.} &\leq \sum a_i^2 + 2 \left(\sum a_i^2 \right)^{1/2} \left(\sum b_i^2 \right)^{1/2} + \sum b_i^2 \\ &= \left(\left(\sum a_i^2 \right)^{1/2} + \left(\sum b_i^2 \right)^{1/2} \right)^2. \end{split}$$

Taking the square root on both sides yields the desired result.

If all the b_i are 0, the equality holds trivially, as both the left and right side of the Triangle Inequality are $(\sum a_i^2)^{1/2}$.

So suppose $b_i \neq 0$ for at least one of the values j between 1 and n. We have two statements to prove.

If $a_i = sb_i$ for all $i = 1, \ldots, n$ and $s \in \mathbb{R}$ is fixed then

$$\left(\sum (a_i + b_i)^2\right)^{1/2} = \left(\sum (sb_i + b_i)^2\right)^{1/2} = \left(\sum (s+1)^2 b_i^2\right)^{1/2}$$
$$= \left((s+1)^2 \sum b_i^2\right)^{1/2} = (s+1) \left(\sum b_i^2\right)^{1/2}$$

 $\quad \text{and} \quad$

$$\left(\sum a_i^2\right)^{1/2} + \left(\sum b_i^2\right)^{1/2} = \left(\sum s^2 b_i^2\right)^{1/2} + \left(\sum b_i^2\right)^{1/2}$$
$$= s \left(\sum b_i^2\right)^{1/2} + \left(\sum b_i^2\right)^{1/2} = (s+1) \left(\sum b_i^2\right)^{1/2}$$

and so equality holds.

On the other hand, if

$$\left(\sum (a_i + b_i)^2\right)^{1/2} = \left(\sum a_i^2\right)^{1/2} + \left(\sum b_i^2\right)^{1/2}$$

then

$$\sum (a_i + b_i)^2 = \left(\left(\sum a_i^2 \right)^{1/2} + \left(\sum b_i^2 \right)^{1/2} \right)^2.$$

Developing both sides of this expression yields

$$\sum a_i^2 + 2\sum a_i b_i + \sum b_i^2 = \sum a_i^2 + 2\left(\sum a_i^2\right)^{1/2} \left(\sum b_i^2\right)^{1/2} + \sum b_i^2,$$

or simply

$$\sum a_i b_i = \left(\sum a_i^2\right)^{1/2} \left(\sum b_i^2\right)^{1/2}.$$

Elevating both sides to the second power yields

$$\left(\sum a_i b_i\right)^2 = \left(\sum a_i^2\right) \left(\sum b_i^2\right).$$

By Theorem 4, $\exists s \in \mathbb{R}$ such that $a_i = sb_i$ for all $i = 1, \ldots, n$.

Theorem 6. (ABSOLUTE VALUE; PROPERTIES) If $x, y \in \mathbb{R}$ and $\varepsilon > 0$, then

1.
$$|x| = \sqrt{x^2}$$

2. $-|x| \le x \le |x|$
3. $|xy| = |x||y|$
4. $|x + y| \le |x| + |y|$
5. $|x - y| \le |x| + |y|$
6. $||x| - |y|| \le |x - y|$
7. $|x - y| < \varepsilon \iff y - \varepsilon < x < y + \varepsilon$

Notes

Theorem 7. (DENSITY OF \mathbb{Q}) Let $x, y \in \mathbb{R}$ such that x < y. Then, $\exists r \in \mathbb{Q}$ such that x < r < y. **Proof.** There are three distinct cases.

1. If x < 0 < y, then select r = 0.

2. If $0 \le x < y$, then y - x > 0 and $\frac{1}{y - x} > 0$.

By the Archimedean property, $\exists n \geq 1$ such that

$$n > \frac{1}{y - x} > 0$$

By that same property, $\exists m \geq 1$ such that $m - 1 \leq nx < m$. Since n(y - x) > 1, then ny - 1 > nx and $nx \geq m - 1$.

By transitivity of <, ny - 1 > m - 1, that is ny > m. But m > nx, so ny > m > nx and $y > \frac{m}{n} > x$. Select $r = \frac{m}{n}$.

3. If $x < y \le 0$, then y - x > 0 and $\frac{1}{y-x} > 0$. By the Archimedean property, $\exists n \ge 1$ such that

$$n > \frac{1}{y - x} > 0.$$

Note that -nx > 0. By yet another variant of that property (that we haven't explicitly stated in class, but it's not too much work to show it), $\exists m \ge 0$ such that $m < -nx \le m+1$ or $-m - 1 \le nx < -m$.

Since n(y - x) > 1, then ny - 1 > nx and $nx \ge -m - 1$.

By transitivity of <, ny-1 > -m-1, that is ny > -m. But -m > nx, so ny > -m > nx and $y > -\frac{m}{n} > x$. Select $r = -\frac{m}{n}$. **Theorem 8.** If S is an infinite subset of a countable set A, then S is countable.

Proof. https://youtu.be/MufHda7srwo

Theorem 9. The set \mathbb{Q} is countable.

Proof. https://youtu.be/MufHda7srwo

Theorem 10. The set \mathbb{R} is uncountable.

Proof. https://youtu.be/IJgtq4_JYQE

Theorem 11. (NESTED INTERVALS) For every integer $n \in \mathbb{N}$, let $[a_n, b_n] = I_n$ be such tht

$$I_1 \supseteq I_2 \supseteq \cdots I_n \supseteq I_{n+1} \supseteq \cdots$$

Then there exists $\psi, \eta \in \mathbb{R}$ such that $\psi \leq \eta$ and $\bigcup_{n \in \mathbb{N}} I_n = [\psi, \eta]$. Furthermore, if $\inf\{b_n - a_n \mid n \in \mathbb{N}\} = 0$, then $\psi = \eta$.

Proof. https://youtu.be/D6zHW5L_9L0

Theorem 12. (UNIQUE LIMIT) A convergent sequence (x_n) of real numbers has exactly one limit.

Proof. Suppose that $x_n \to x'$ and $x_n \to x''$.

Let $\varepsilon > 0$. Then there exist 2 integers $N'_{\varepsilon}, N''_{\varepsilon} \in \mathbb{N}$ such that

 $|x_n - x'| < \varepsilon$ whenever $n > N'_{\varepsilon}$ and $|x_n - x''| < \varepsilon$ whenever $n > N''_{\varepsilon}$.

Set $N_{\varepsilon} = \max\{N'_{\varepsilon}, N''_{\varepsilon}\}$. Then whenever $n > N_{\varepsilon}$, we have

$$0 \le |x' - x''| = |x' - x_n + x_n - x''| \le |x_n - x'| + |x_n - x''| < \varepsilon + \varepsilon = 2\varepsilon.$$

Thus $0 \leq \frac{|x'-x''|}{2} < \varepsilon$.

But $\varepsilon > 0$ was arbitrary, so $\frac{|x'-x''|}{2} = 0 \implies x' = x''$.

Theorem 13. Any convergent sequence (x_n) of real numbers is bounded.

Proof. Let $(x_n) \subseteq \mathbb{R}$ converge to $x \in \mathbb{R}$. Then for $\varepsilon = 1$, say, $\exists N \in \mathbb{N}$ such that

$$|x_n - x| < 1$$
 when $n > N$.

Thanks to the reverse triangle inequality, we also have

$$|x_n| - |x| \le |x_n - x| < 1$$
 when $n > N$,

so that $|x_n| < |x| + 1$ when n > N.

Now, set $M = \max\{|x_1|, \ldots, |x_N|, |x|+1\}$. Then $|x_n| \leq M$ for all n and so (x_n) is bounded.

Theorem 14. (OPERATIONS ON CONVERGENT SEQUENCES) Let $(x_n), (y_n)$ be convergent sequences, with $x_n \to x$ and $y_n \to y$. Let $c \in \mathbb{R}$. Then

- 1. $|x_n| \rightarrow |x|;$
- 2. $(x_n + y_n) \to (x + y);$
- 3. $x_n y_n \rightarrow xy$ and $cx_n \rightarrow cx$;
- 4. $\frac{x_n}{y_n} \rightarrow \frac{x}{y}$, if $y_n, y \neq 0$ for all n.

Proof. We show each part using the definition of the limit of a sequence.

1. Let $\varepsilon > 0$. As $x_n \to x$, $\exists N'_{\varepsilon}$ such that $|x_n - x| < \varepsilon$ whenever $n > N'_{\varepsilon}$. But $||x_n| - |x|| \le |x_n - x|$, according to theorem 6. Hence, for $\varepsilon > 0$, $\exists N_{\varepsilon} = N'_{\varepsilon}$ such that

$$||x_n| - |x|| \le |x_n - x| < \varepsilon$$

whenever $n > N_{\varepsilon}$, i.e. $|x_n| \to |x|$.

2. Let $\varepsilon > 0$. Then $\frac{\varepsilon}{2} > 0$. As $x_n \to x$ and $y_n \to y$, $\exists N_{\frac{\varepsilon}{2}}^x, N_{\frac{\varepsilon}{2}}^y$ such that

$$|x_n - x| < \frac{\varepsilon}{2}$$
 and $|y_n - y| < \frac{\varepsilon}{2}$ (1)

whenever $n > N_{\frac{\varepsilon}{2}}^x$ and $n > N_{\frac{\varepsilon}{2}}^y$ respectively. Set $N_{\varepsilon} = \max\left\{N_{\frac{\varepsilon}{2}}^x, N_{\frac{\varepsilon}{2}}^y\right\}$.

Then, whenever $n > N_{\varepsilon}$ (so whenever n is strictly larger than $N_{\varepsilon/2}^x$ and $N_{\varepsilon/2}^y$ at the same time),

i.e.
$$(x_n + y_n) \to (x + y)$$
.

3. According to theorem 13, (x_n) and (y_n) are bounded since they are convergent sequences. Then $\exists M_x, M_y \in \mathbb{N}$ such that

$$|x_n| < M_x$$
 and $|y_n| < M_y$

for all n.

Let $\varepsilon > 0$. Then $\frac{\varepsilon}{2M_x}, \frac{\varepsilon}{2M_y} > 0$. As $x_n \to x$, $y_n \to y$, $\exists N_{\frac{\varepsilon}{2M_y}}^x, N_{\frac{\varepsilon}{2M_x}}^y \in \mathbb{N}$ such that

$$|x_n - x| < \frac{\varepsilon}{2M_y}$$
 and $|y_n - y| < \frac{\varepsilon}{2M_x}$ (2)

whenever $n > N_{\frac{\varepsilon}{2M_y}}^x$ and $n > N_{\frac{\varepsilon}{2M_x}}^y$ respectively. Moreover, $|y| \le M_y$ (otherwise $\frac{|y| - M_y}{2} > 0$. Then, for $\varepsilon = \frac{|y| - M_y}{2}$, we get

$$|y_n - y| \ge ||y| - |y_n|| \ge |y| - M_y = 2\varepsilon > \varepsilon$$

for all $n \in \mathbb{N}$, which contradicts the definition of $y_n \to y$).

Set
$$N_{\varepsilon} = \max\left\{N_{\frac{\varepsilon}{2M_x}}^x, N_{\frac{\varepsilon}{2M_y}}^y\right\}$$
. Then, whenever $n > N_{\varepsilon}$,
 $|x_n y_n - xy| = |x_n y_n - x_n y + x_n y - xy| = |x_n (y_n - y) + y(x_n - x)|$
 $\leq |x_n||y_n - y| + |y||x_n - x|$
 $< M_x |y_n - y| + M_y |x_n - x|$
 $|by(2)| < M_x \frac{\varepsilon}{2M_x} + M_y \frac{\varepsilon}{2M_y}$
 $= \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$,

i.e. $x_n y_n \to xy$.

Furthermore, if the sequence (y_n) is given by $y_n = c$ for all n, then the preceding result yields $cx_n \to cx$, since $y_n = c \to c$ (You should show this).

4. It is enough to show $\frac{1}{y_n} \to \frac{1}{y}$ under the hypotheses above; then the result will hold by part 3. Since $y \neq 0$, $\frac{|y|}{2} > 0$. Hence, as $y_n \to y$, $\exists N_{|y|/2} \in \mathbb{N}$ such that $|y_n - y| < \frac{|y|}{2}$, whenever $n > N_{\underline{|y|}}$. According to theorem 6,

$$|y| - |y_n| < |y - y_n| < \frac{|y|}{2}$$
, and so

$$\frac{|y|}{2} < |y_n| \quad \text{or} \quad \frac{1}{|y_n|} < \frac{2}{|y|}$$
 (3)

whenever $n > N_{|y|/2}$ (these expressions make sense as neither y_n nor y is 0 for all n).

Let
$$\varepsilon > 0$$
. Then $|y|^{2\frac{\varepsilon}{2}} > 0$. As $y_n \to y$, $\exists N_{|y|^{2\frac{\varepsilon}{2}}} \in \mathbb{N}$ such that
 $|y_n - y| < |y|^{2\frac{\varepsilon}{2}}$

whenever $n > N_{|y|^{2}\frac{\varepsilon}{2}}$. Set $N_{\varepsilon} = \max\left\{N_{\frac{|y|}{2}}, N_{|y|^{2}\frac{\varepsilon}{2}}\right\}$. Then, whenever $n > N_{\varepsilon}$,

$$\begin{split} \left| \frac{1}{y_n} - \frac{1}{y} \right| &= \left| \frac{y - y_n}{y_n y} \right| &= \left| \frac{|y - y_n|}{|y_n y|} \right| \\ & \boxed{\text{by (3)}} &< \left| \frac{2|y - y_n|}{|y|^2} \right| \\ & \boxed{\text{by (4)}} &< \left| \frac{2}{|y|^2} \cdot |y|^2 \frac{\varepsilon}{2} = \varepsilon, \quad \text{i.e. } \frac{1}{y_n} \to \frac{1}{y}. \end{split}$$

(4)

Theorem 15. (COMPARISON THEOREM FOR SEQUENCES)

Let $(x_n), (y_n)$ be convergent sequences of real numbers with $x_n \to x$, $y_n \to y$, and $x_n \leq y_n \ \forall n \in \mathbb{N}$. Then $x \leq y$.

Proof. Suppose that it is not the case, namely, that x > y. Then x - y > 0. Set $\varepsilon = \frac{x-y}{2} > 0$. Since $x_n \to x$ and $y_n \to y$, $\exists N_{\varepsilon}^x, N_{\varepsilon}^y \in \mathbb{N}$ s.t. $|x_n - x| < \varepsilon$ whenever $n > N_{\varepsilon}^x$ and $|y_n - y| < \varepsilon$ whenever $n > N_{\varepsilon}^y$. Let $N_{\varepsilon} = \max\{N_{\varepsilon}^x, N_{\varepsilon}^y\}$. Then, if $n > N_{\varepsilon}$, we have

$$y_n < y + \varepsilon = y + \frac{x - y}{2} = \frac{x + y}{2} = x - \frac{x - y}{2} = x - \varepsilon < x_n.$$

But this contradicts the assumption that $x_n \leq y_n$ for all n.

Consequently, $x \leq y$.

Theorem 16. (SQUEEZE THEOREM FOR SEQUENCES) Let $(x_n), (y_n), (z_n) \subseteq \mathbb{R}$ be such that $x_n, z_n \to \alpha$ and $x_n \leq y_n \leq z_n$, $\forall n \in \mathbb{N}$. Then $y_n \to \alpha$. **Proof.** Let $\varepsilon > 0$. By convergence of $(x_n), (z_n)$ to $\alpha, \exists N_{\varepsilon}^x, N_{\varepsilon}^z \in \mathbb{N}$ s.t.

 $|x_n - \alpha| < \varepsilon$ whenever $n > N_{\varepsilon}^x$ and $|z_n - \alpha| < \varepsilon$ whenever $n > N_{\varepsilon}^z$.

Let $N_{\varepsilon} = \max\{N_{\varepsilon}^x, N_{\varepsilon}^z\}$. Then, if $n > N_{\varepsilon}$, we have

$$\alpha - \varepsilon < x_n \le y_n \le z_n < \alpha + \varepsilon,$$

which is to say, that $|y_n - \alpha < \varepsilon$.

Consequently, $y_n \rightarrow \alpha$.

Theorem 17. Let $x_n \to x$. If $x_n \ge 0 \ \forall n \in \mathbb{N}$, then $\sqrt{x_n} \to \sqrt{x}$.

Proof. Since $y_n \ge 0$ for all $n \in \mathbb{N}$, Theorem 15 implies that $y \ge 0$. There are 2 cases: y = 0 or y > 0.

(a) If y = 0, let $\varepsilon > 0$. Then $\varepsilon^2 > 0$. Since $y_n \to 0$, $\exists M_{\varepsilon^2} \in \mathbb{N}$ s.t. whenever $n > M_{\varepsilon^2}$, we must have $|y_n - 0| = y_n < \varepsilon^2$. Now, set $N_{\varepsilon} = M_{\varepsilon^2}$.

Then whenever $n > N_{\varepsilon}$, $|\sqrt{y_n} - 0| = \sqrt{y_n} < \sqrt{\varepsilon^2} = \varepsilon$.

(b) If y > 0, let $\varepsilon > 0$. Then $\varepsilon \sqrt{y} > 0$. Since $y_n \to y$, $\exists M_{\varepsilon \sqrt{y}} \in \mathbb{N}$ s.t. whenever $n > M_{\varepsilon \sqrt{y}}$, $|y_n - y| < \varepsilon \sqrt{y}$. Now, set $N_{\varepsilon} = M_{\varepsilon \sqrt{y}}$.

Then whenever $n > N_{\varepsilon}$, $|\sqrt{y_n} - \sqrt{y}| = \frac{|y_n - y|}{\sqrt{y_n} + \sqrt{y}} \le \frac{|y_n - y|}{\sqrt{y}} < \frac{\varepsilon\sqrt{y}}{\sqrt{y}} = \varepsilon$.

In both cases, this yields $\sqrt{y_n} \rightarrow \sqrt{y}$.

Theorem 18. (BOUNDED MONOTONE CONVERGENCE) Let (x_n) be an increasing sequence, bounded above. Then (x_n) converges to $\sup\{x_n \mid n \in \mathbb{N}\}$.

Proof. https://youtu.be/ZMCp9GzDmD8

Theorem 32. If $f : [a, b] \to \mathbb{R}$ is continuous on [a, b], then f is bounded on [a, b].

Proof. Suppose f is not bounded on [a, b]. Hence, for all $n \in \mathbb{N}$, $\exists x_n \in [a, b]$ such that $|f(x_n)| > n$. However, $(x_n) \subseteq [a, b]$ so that (x_n) is bounded.

By the BW Theorem, $\exists (x_{n_k}) \subseteq (x_n)$ such that $x_{n_k} \to \hat{x} \in [a, b]$, since

$$a \le x_{n_k} \le b$$
 for all k .

Since f is continuous, we have

$$f(\hat{x}) = \lim_{x \to \hat{x}} f(x) = \lim_{k \to \infty} f(x_{n_k}),$$

so $(f(x_{n_k}))$ is bounded, being a convergent sequence. But this contradicts the assumption that $|f(x_{n_k})| > n_k \ge k$ for all k.

Hence f is bounded on [a, b].

Theorem 33. (MAX/MIN THEOREM) If $f : [a, b] \to \mathbb{R}$ is continuous, then f reaches a global maximum and a global minimum of [a, b]. **Proof.** Let $f([a,b]) = \{f(x) \mid x \in [a,b]\}$. According to Theorem 32, f([a,b]) is bounded as f is continous, and so, by completeness of \mathbb{R} ,

$$s^* = \sup\{f(x) \mid x \in [a, b]\}$$
 and $s_* = \inf\{f(x) \mid x \in [a, b]\}$

both exist.

We need only show $\exists x^*, x_* \in [a, b]$ such that $f(x^*) = s^*$ and $f(x_*) = s_*$.

Since $s^* - \frac{1}{n}$ is not an upper bound of f([a, b]) for every $n \in \mathbb{N}$, $\exists x_n \in [a, b]$ with

$$s^* - \frac{1}{n} < f(x_n) \le s^*$$
, for all $n \in \mathbb{N}$.

According to the Squeeze Theorem, we must have $f(x_n) \rightarrow s^*$ (this says nothing about whether x_n converges or not, however).

But $(x_n) \subseteq [a, b]$ is bounded, so applying the BW Theorem, we find that $\exists (x_{n_k}) \subseteq (x_n)$ such that $x_{n_k} \to x^* \in [a, b]$.

As f is continuous,

$$s^* = \lim_{k \to \infty} f(x_{n_k}) = f\left(\lim_{k \to \infty} x_{n_k}\right) = f(x^*).$$

The existence of $x_* \in [a, b]$ such that $f(x_*) = s_*$ is shown similarly.

Theorem 34. Let $f : [a, b] \to \mathbb{R}$ be continuous. If $\exists \alpha, \beta \in [a, b]$ such that $f(\alpha)f(\beta) < 0$, then $\exists \gamma \in (a, b)$ such that $f(\gamma) = 0$.

Proof. We prove that the results holds for $f(\alpha) < 0 < f(\beta)$; the other case having a similar proof.

Write $\alpha_1 = \alpha$, $\beta_1 = \beta$, $I_1 = [\alpha_1, \beta_1]$, and $\gamma_1 = \frac{\alpha_1 + \beta_1}{2}$. There are 3 possibilities:

i. if $f(\gamma_1) = 0$, set $\gamma = \gamma_1$; then $\gamma \in (\alpha_1, \beta_1)$ and the theorem is proven;

ii. if
$$f(\gamma_1) > 0$$
, set $\alpha_2 = \alpha_1$, $\beta_2 = \gamma_1$;

iii. if $f(\gamma_1) < 0$, set $\alpha_2 = \gamma_1$, $\beta_2 = \beta_1$.

In the last two cases, set $I_2 = [\alpha_2, \beta_2]$. Then $I_1 \supseteq I_2$, $\text{length}(I_1) = \frac{\beta_1 - \alpha_1}{2^0}$ and

$$f(\alpha_2) < 0 < f(\beta_2).$$

This is the base case n = 1 of an induction process, which can be extended for all $n \in \mathbb{N}$. One of two things can occur: either

- 1. $\exists n \in \mathbb{N}$ such that $f(\gamma_n) = 0$, with $\gamma_n \in (\alpha_n, \beta_n) \subseteq (\alpha, \beta)$, in which case the theorem is proven, or
- 2. there is a chain of nested intervals

$$I_1 \supseteq I_2 \supseteq \cdots I_k \supseteq I_{k+1} \supseteq \cdots$$

here $I_n = [\alpha_n, \beta_n]$, $\text{length}(I_n) = \frac{\beta_n - \alpha_n}{2^{n-1}}$, $f(\alpha_n) < 0 < f(\beta_n) \ \forall n \in \mathbb{N}$.

According to the Nested Intervals Theorem, since

$$\inf_{n \in \mathbb{N}} \{ \mathsf{length}(I_n) \} = \lim_{n \to \infty} \frac{\beta_n - \alpha_n}{2^{n-1}} = 0,$$

W

 $\exists c \in [\alpha, \beta] \subseteq [a, b]$ such that $\bigcap_{n \in \mathbb{N}} I_n = \{c\}.$

It remains to show that f(c) = 0.

Note that the sequences $(\alpha_n), (\beta_n)$ both converge to c. Indeed, let $\varepsilon > 0$. By the Archimedean Property, $\exists N_{\varepsilon} \in \mathbb{N}$ such that $N_{\varepsilon} > \log_2(\frac{\beta - \alpha}{\varepsilon}) + 1$.

Since $c \in I_n$ for all $n \in \mathbb{N}$, then

$$|\alpha_n - c| < \text{length}(I_n) = \frac{\beta - \alpha}{2^{n-1}} < \varepsilon$$

whenever $n > N_{\varepsilon}$. The proof that $\beta_n \to c$ is identical.

Since f is continuous on [a, b], it is also continuous at c. Thus,

$$\lim_{n \to \infty} f(\alpha_n) = \lim_{n \to \infty} f(\beta_n) = f(c).$$

But $f(\alpha_n) < 0$ for all n, so

$$f(c) = \lim_{n \to \infty} f(\alpha_n) \le 0,$$

by Theorem 15. Using the same Theorem, we have $f(c) \ge 0$. Then f(c) = 0.

Lastly, note that $c \neq \alpha, \beta$; otherwise, $f(\alpha)f(\beta) = 0$.

This concludes the proof, with $\gamma = c$.

Theorem 35. (INTERMEDIATE VALUE THEOREM)

Let $f : [a, b] \to \mathbb{R}$ be continuous. If $\exists \alpha < \beta \in [a, b]$ s.t. $f(\alpha) < k < f(\beta)$ or $f(\alpha) > k > f(\beta)$, then $\exists \gamma \in (a, b)$ such that $f(\gamma) = k$. **Proof.** Assume that $f(\alpha) < k < f(\beta)$; the proof for the other case is similar.

Consider the function $g: [a, b] \to \mathbb{R}$ defined by g(x) = f(x) - k. Theorem 30 shows that g is continuous on [a, b].

Furthermore,

$$g(\alpha) = f(\alpha) - k < k - k = 0 < f(\beta) - k = g(\beta).$$

According to Theorem 34, $\exists \gamma \in (\alpha, \beta)$ such that $g(\gamma) = f(\gamma) - k = 0$. Thus $f(\gamma) = k$. **Theorem 36.** If $f : [a,b] \to \mathbb{R}$ is continuous, then f([a,b]) is a closed and bounded interval.

Proof. Let $m = \inf\{f[a, b]\}$ and $M = \sup\{f[a, b]\}$.

According to the Max/Min Theorem, $\exists \alpha, \beta \in [a, b]$ such that $f(\alpha) = m$ and $f(\beta) = M$.

If m = M, then f is constant and f([a, b]) = [m, m] = [M, M].

If m < M, then $\alpha \neq \beta$. Furthermore, $m \leq f(x) \leq M$ for all $x \in [a, b]$, so that $f([a, b]) \subseteq [m, M]$.

Now, let $k \in [m, M]$. According to the Intermediate Value Theorem, $\exists \gamma$ between α and β such that $f(\gamma) = k$. Hence $k \in f([a, b])$ and so $[m, M] \subseteq f([a, b])$.

Consequently, f([a, b]) = [m, M].

Theorem 37. If $f : A \to \mathbb{R}$ is uniformly continuous on A, then f is continuous on A.

Proof. Let $c \in A$ and $\varepsilon > 0$. As f is uniformly continuous on A, $\exists \delta_{\varepsilon} > 0$ such that

$$|f(x) - f(y)| < \varepsilon$$
 whenever $|x - y| < \delta_{\varepsilon}$ and $x, y \in A$.

In particular, if y = c then

$$|f(x) - f(c)| < \varepsilon$$
 whenever $|x - c| < \delta_{\varepsilon}$ and $x \in A$.

As c is arbitrary, f is continuous on A.

Theorem 38. Let $f : [a, b] \to \mathbb{R}$. Then f is uniformly continuous on [a, b] if and only if f is continuous on [a, b].

Proof. Theorem 38 shows that if f is uniformly continuous on [a, b], it is continuous on [a, b].

Now, assume f is continuous on [a, b]. If f is not uniformly continuous, then $\exists \varepsilon_0 > 0$ such that $\forall \delta > 0$, $\exists x_{\delta}, y_{\delta} \in [a, b]$ with

$$|f(x_{\delta}) - f(y_{\delta})| \ge \varepsilon_0 \text{ and } |x_{\delta} - y_{\delta}| < \delta.$$

For $n \in \mathbb{N}$, let $\delta_n = \frac{1}{n}$. The corresponding sequences $(x_{\delta_n}), (y_{\delta_n})$ lie in [a, b], with

$$|x_{\delta_n} - y_{\delta_n}| < \delta_n = \frac{1}{n}$$
 and $|f(x_{\delta_n}) - f(y_{\delta_n})| \ge \varepsilon_0, \quad \forall n \in \mathbb{N}.$

As (x_{δ_n}) is bounded, $\exists (x_{\delta_{n_k}}) \subseteq (x_{\delta_n})$ such that $x_{\delta_{n_k}} \to z$ with $k \to \infty$, according to the Bolazano-Weierstrass Theorem.

Furthermore, $z \in [a, b]$ according to Theorem 15.

The corresponding sequence $(y_{\delta_{n_k}})$ also converges to z subce

$$0 \le |y_{\delta_{n_k}} - z| \le |y_{\delta_{n_k}} - x_{\delta_{n_k}}| + |x_{\delta_{n_k}} - z| < \frac{1}{n_k} + |x_{\delta_{n_k}} - z|$$

according to the Squeeze Theorem, as both $\frac{1}{n_k}$, $|x_{\delta_{n_k}} - z| \to 0$ with $k \to \infty$.

But f is continuous, both $(f(x_{\delta_{n_k}})), (f(y_{\delta_{n_k}})) \to f(z)$. But that is impossible as $|f(x_{\delta_n}) - f(y_{\delta_n})| \ge \varepsilon_0, \quad \forall n \in \mathbb{N}$.

Thus f must be uniformly continuous.

Theorem 51. Let I = [a, b] and f be bounded on I. Then the lower integral and upper integral of f on I satisfy $L(f) \leq U(f)$.

Proof. Let P_1, P_2 be partitions of *I*. Then $L(P_1; f) \leq U(P_2; f)$.

If we fix P_2 , $U(P_2; f)$ is an upper bound for $\{L(P; f) \mid P \text{ a partition of } I\}$. As this set is bounded, its supremum L(f) exists.

But P_2 was chosen arbitrarily, so L(f) is a lower bound of

 $\{U(P; f) \mid P \text{ a partition of } I\}.$

Consequently,

 $L(f) \leq \inf\{U(P; f) \mid P \text{ a partition of } I\} = U(f).$

This completes the proof.

Theorem 52. (RIEMANN'S CRITERION)

Let I = [a, b] and $f : I \to \mathbb{R}$ be a bounded function. Then f is Riemannintegrable if and only if $\forall \varepsilon > 0$, $\exists P_{\varepsilon}$ a partition of I such that the lower sum and the upper sum of f corresponding to P_{ε} satisfy $U(P_{\varepsilon}; f) - L(P_{\varepsilon}; f) < \varepsilon$. **Proof.** If f is Riemann-integrable, then $L(f) = U(f) = \int_a^b f$.

Let $\varepsilon > 0$. Since $\int_a^b f - \frac{\varepsilon}{2}$ is not an upper bound of $\{L(P; f) \mid P \text{ a partition of } [a, b]\}$, there exists a partition P_1 such that

$$\int_{a}^{b} f - \frac{\varepsilon}{2} < L(P_1; f) \le \int_{a}^{b} f.$$

Using a similar argument, there exists a partition P_2 such that

$$\int_{a}^{b} f + \frac{\varepsilon}{2} \ge U(P_2; f) > \int_{a}^{b} f.$$

Set $P_{\varepsilon} = P_1 \cup P_2$. Then P_{ε} is a refinement of P_1 and P_2 .

Consequently,

$$\int_{a}^{b} f - \frac{\varepsilon}{2} < L(P_{1}; f) \le L(P_{\varepsilon}; f) \le U(P_{\varepsilon}; f) \le U(P_{2}; f) < \int_{a}^{b} f + \frac{\varepsilon}{2}$$

which implies that

$$U(P_{\varepsilon};f) - L(P_{\varepsilon};f) < \varepsilon.$$

Conversely, let $\varepsilon > 0$ and P_{ε} be such that $U(P_{\varepsilon}; f) - L(P_{\varepsilon}; f) < \varepsilon$. Since $U(f) \leq U(P_{\varepsilon}; f)$ and $L(f) \geq L(P_{\varepsilon}; f)$, then

$$0 \le U(f) - L(f) \le U(P_{\varepsilon}; f) - L(P_{\varepsilon}; f) < \varepsilon.$$

But $\varepsilon > 0$ was arbitrary, so U(f) - L(f) = 0, which in turns implies that U(f) = L(f) and that f is Riemann-integrable on [a, b].

Theorem 53. Let I = [a, b] and $f : I \to \mathbb{R}$ be a monotone function on I. Then f is Riemann-integrable on I. **Proof.** We show that the result holds for increasing functions. A similar proof holds for decreasing functions.

Assume f is increasing. Let

$$P_n = \{x_i = a + i\left(\frac{b-a}{n}\right) : i = 0, \dots, n\}$$

be the partition of [a, b] into n equal sub-intervals. Since f is increasing on [a, b], we have

$$m_{i} = \inf\{f(x) \mid x \in [x_{i-1}, x_{i}]\} = f(x_{i-1}),$$
$$M_{i} = \sup\{f(x) \mid x \in [x_{i-1}, x_{i}]\} = f(x_{i}),$$

for $1 \leq i \leq n$.

Hence,

$$U(P_n; f) - L(P_n; f) = \sum_{i=1}^n M_i (x_i - x_{i-1}) - \sum_{i=1}^n m_i (x_i - x_{i-1})$$

= $\sum_{i=1}^n (M_i - m_i)(x_i - x_{i-1})$
= $\frac{b-a}{n} \sum_{i=1}^n (f(x_i) - f(x_{i-1}))$
= $\frac{b-a}{n} \Big[f(x_1) - f(x_0) + \dots + f(x_n) - f(x_{n-1}) \Big]$
= $\frac{b-a}{n} (f(b) - f(a)) \ge 0.$

Let $\varepsilon > 0$. By the Archimedean Property, $\exists N_{\varepsilon} \in \mathbb{N}$ such that

$$\frac{(b-a)(f(b) - f(a))}{\varepsilon} < n.$$

Set $P_{\varepsilon} = P_n$. Then

$$U(P_{\varepsilon};f) - L(P_{\varepsilon};f) < \frac{b-a}{N_{\varepsilon}}(f(b) - f(a)) < \varepsilon,$$

and f is Riemann-integrable on [a, b] according to Riemann's Criterion.

Theorem 54. Let $f : [a, b] \to \mathbb{R}$ be continuous, with a < b. Then f is Riemann-integrable on [a, b].

Proof. Let $\varepsilon > 0$.

According to Theorem 38, f is uniformly continuous on [a, b]. Hence $\exists \delta_{\varepsilon} > 0 \text{ s.t. } |f(x) - f(y)| < \frac{\varepsilon}{b-a} \text{ whenever } |x - y| < \delta_{\varepsilon} \text{ and } x, y \in [a, b].$

Pick $n \in \mathbb{N}$ such that $\frac{b-a}{n} < \delta_{\varepsilon}$ and let

$$P_{\varepsilon} = \{x_i = a + i\left(\frac{b-a}{n}\right) : i = 0, \dots, n\}$$

be the partition of [a, b] into n equal sub-intervals.

As f is continuous on $[x_{i-1}, x_i]$, $\exists u_i, v_i \in [x_{i-1}, x_i]$ such that

$$m_{i} = \inf\{f(x) \mid x \in [x_{i-1}, x_{i}]\} = f(u_{i}),$$
$$M_{i} = \sup\{f(x) \mid x \in [x_{i-1}, x_{i}]\} = f(v_{i}),$$

for all $1 \leq i \leq n$, according to the Max/Min Theorem. (Note that $|u_i - v_i| \leq \frac{b-a}{n} < \delta_{\varepsilon}$ for all *i*.)

Hence,

$$U(P_{\varepsilon};f) - L(P_{\varepsilon};f) = \sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1}) = \frac{b-a}{n} \sum_{i=1}^{n} (f(v_i) - f(u_i))$$
$$< \frac{b-a}{n} \sum_{i=1}^{n} \frac{\varepsilon}{b-a} = \varepsilon,$$

by uniform continuity of f.

According to Riemann's Criterion, f is thus Riemann-integrable.

Theorem 55. (PROPERTIES OF THE RIEMANN INTEGRAL) Let I = [a, b] and $f, g : I \to \mathbb{R}$ be Riemann-integrable on I. Then

(a) f + g is Riemann-integrable on I, with $\int_{a}^{b} (f + g) = \int_{a}^{b} f + \int_{a}^{b} g$; (b) if $k \in \mathbb{R}$, $k \cdot f$ is Riemann-integrable on I, with $\int_{a}^{b} k \cdot f = k \int_{a}^{b} f$; (c) if $f(x) \leq g(x) \ \forall x \in I$, then $\int_{a}^{b} f \leq \int_{a}^{b} g$, and (d) if $|f(x)| \leq K \ \forall x \in I$, then $\left|\int_{a}^{b} f\right| \leq K(b-a)$.

Proof. We use a variety of pre-existing results.

(a) Let $\varepsilon > 0$. Since f, g are Riemann-integrable, $\exists P_1, P_2$ partitions of I such that $U(P_1; f) - L(P_1; f) < \frac{\varepsilon}{2}$ and $U(P_2; g) - L(P_2; g) < \frac{\varepsilon}{2}$.

Set $P = P_1 \cup P_2$. Then P is a refinement of P_1 and P_2 , and

$$U(P; f + g) \le U(P; f) + U(P; g)$$

$$< L(P; f) + L(P; g) + \varepsilon \le L(P; f + g) + \varepsilon, \quad (5)$$

since, over non-empty subsets of I, we have

$$\inf\{f(x) + g(x)\} \ge \inf\{f(x)\} + \inf\{g(x)\}$$
$$\sup\{f(x) + g(x)\} \le \sup\{f(x)\} + \sup\{g(x)\}.$$

Hence f + g is Riemann-integrable according to Riemann's Criterion.

Furthermore, we see from (5) that

$$\int_a^b (f+g) \le U(P;f+g) < L(P;f) + L(P;g) + \varepsilon \le \int_a^b f + \int_a^b g + \varepsilon$$

and

$$\int_{a}^{b} f + \int_{a}^{b} g \leq U(P; f) + U(P; g) < L(P; f + g) + \varepsilon \leq \int_{a}^{b} (f + g) + \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, $\int_a^b f + \int_a^b g \leq \int_a^b (f+g) \leq \int_a^b f + \int_a^b g$, from which we conclude that $\int_a^b (f+g) = \int_a^b f + \int_a^b g$.

(b) The proof for k = 0 is trivial. We show that the result holds for k < 0 (the proof for k > 0 is similar).

Let $P = \{x_0, \ldots, x_n\}$ be a partition of I. Since k < 0, we have $\inf\{kf(x)\} = k \sup\{f(x)\}$ over non-empty subsets of I, and so we have L(P; kf) = kU(P; f). In particular,

$$\begin{split} L(kf) &= \sup\{L(P;kf) \mid P \text{ a partition of } I\} \\ &= \sup\{kU(P;f) \mid P \text{ a partition of } I\} \\ &= k\inf\{U(P;f) \mid P \text{ a partition of } I\} = kU(f) \end{split}$$

Similarly, U(P; kf) = kL(P; f) and U(fk) = kL(f), so

$$L(fk) = \underbrace{kU(f) = kL(f)}_{\text{since } f \text{ is R-int.}} = U(kf)$$

Thus kf is Riemann-integrable on I and $\int_a^b kf = L(k) = kU(f) = \int_a^b f$.

(c) We start by showing that if $h: I \to \mathbb{R}$ is integrable on I and $h(x) \ge 0$ for all $x \in I$, then $\int_a^b h(x) \ge 0$.

Let $P_0 = \{a, b\} = \{x_0, x_1\}$ and $m_1 = \inf\{h(x) \mid x \in [a, b]\} \ge 0$. Then,

$$0 \le m_1(b-a) = L(P_0;h) \le L(P;h)$$

for any partition P of I, as $P \supseteq P_0$. But h is Riemann-integrable by assumption, thus

$$\int_{a}^{b} h = \sup\{L(P;h) \mid P \text{ a partition of } I\} \ge L(P_{0};h) \ge 0.$$

Then, set h = g - f. By hypothesis, $h(x) = g(x) - f(x) \ge 0$. Then

$$\int_{a}^{b} h = \int_{a}^{b} (g - f) = \int_{a}^{b} g - \int_{a}^{b} f \ge 0,$$

which implies that $\int_a^b g \ge \int_a^b f$.

(d) Let $P_0 = \{a, b\} = \{x_0, x_1\}$. As always, set $m_1 = \inf\{f(x) \mid x \in [a, b]\}$, and $M_1 = \sup\{f(x) \mid x \in [a, b]\}$. Then for any parition P of I, we have

$$m_1(b-a) = L(P_0; f) \le L(P; f) \le L(f) = \int_a^b f$$

= $U(f) \le U(P; f) \le U(P_0; f) = M_1(b-a)$

In particular,

$$m_1(b-a) \le \int_a^b f \le M_1(b-a).$$

Now, if $|f(x)| \leq K$ for all $x \in I$, then $-K \leq m_1$ and $M_1 \leq K$ so that

$$-K(b-a) \le m_1(b-a) \le \int_a^b f \le M_1(b-a) \le K(b-a),$$

so that $\left|\int_{a}^{b} f\right| \leq K(b-a)$.

Theorem 56. (ADDITIVITY THE RIEMANN INTEGRAL) Let I = [a, b], $c \in (a, b)$, and $f : I \to \mathbb{R}$ be bounded on I. Then f is Riemann-integrable on I if and only if it is Riemann-integrable on $I_1 = [a, c]$ and on $I_2 = [c, b]$. When that is the case, $\int_a^b f = \int_a^c f + \int_c^b f$. **Proof.** We start by assuming that f is Riemann-integrable on I.

Let $\varepsilon > 0$. According to the Riemann Criterion, $\exists P_{\varepsilon}$ a partition of I such that $U(P_{\varepsilon}; f) - L(P_{\varepsilon}; f) < \varepsilon$. Now, set $P = P_{\varepsilon} \cup \{c\}$. Then P is a refinement of P_{ε} so that

$$U(P;f) - L(P;f) \le U(P_{\varepsilon};f) - L(P_{\varepsilon};f) < \varepsilon.$$

Set $P_1 = P \cap I_1$ and $P_2 = P \cap I_2$. Then P_i is a partition of I_i , and

$$\varepsilon > U(P;f) - L(P;f) \ge U(P_1;f) + U(P_2;f) - L(P_1;f) - L(P_2;f)$$
$$= \left[U(P_1;f) - L(P_1;f) \right] + \left[U(P_2;f) - L(P_2;f) \right]$$

Consequently, $U(P_i; f) - L(P_i; f) < \varepsilon$ for i = 1, 2 and f is Riemannintegrable on I_1 and I_2 , according to the Riemann Criterion.

Now assume that f is Riemann-integrable on I_1 and I_2 .

Let $\varepsilon > 0$. According to the Riemann Criterion, for i = 1, 2, $\exists P_i$ a partition of I_i such that

$$U(P_i; f) + L(P_i; f) < \frac{\varepsilon}{2}$$

Set $P = P_1 \cup P_2$. Then P is a partition of I. Furthermore,

$$U(P;f) - L(P;f) = U(P_1;f) + U(P_2;f) - L(P_1;f) - L(P_2;f)$$

= $U(P_1;f) - L(P_1;f) + U(P_2;f) - L(P_2;f) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$

thus f is Riemann-integrable on I according the Riemann Criterion.

Finally, let's assume that f is Riemann-integrable on I (and so on I_1, I_2), or vice-versa.

Let P_1, P_2 be partitions of I_1, I_2 , respectively, such that

$$U(P_i; f) - L(P_i; f) < \frac{\varepsilon}{2}, \quad i = 1, 2.$$

Set $P = P_1 \cup P_2$. Then P is a partition of I and

$$\int_{a}^{b} f \leq U(P;f) = U(P_{1};f) + U(P_{2};f)$$
$$< L(P_{1};f) + L(P_{2};f) + \varepsilon = \int_{a}^{c} f + \int_{c}^{b} f + \varepsilon.$$

Similarly,

$$\int_{a}^{b} f \ge L(P;f) = L(P_{1};f) + L(P_{2};f)$$
$$> U(P_{1};f) + U(P_{2};f) - \varepsilon \ge \int_{a}^{c} f + \int_{c}^{b} f - \varepsilon$$

Since
$$\varepsilon > 0$$
 is arbitrary, $\int_a^b f = \int_a^c f + \int_c^b f$.

Theorem 57. (COMPOSITION THEOREM FOR INTEGRALS) Let I = [a, b] and $J = [\alpha, \beta]$, $f : I \to \mathbb{R}$ Riemann-integrable on I, $\varphi : J \to \mathbb{R}$ continuous on J and $f(I) \subseteq J$. Then $\varphi \circ f : I \to \mathbb{R}$ is Riemann-integrable on I.

Proof. Let $\varepsilon > 0$, $K = \sup\{|\varphi(x)| \mid x \in J\}$ (guaranteed to exist by the Max/Min theorem) and $\varepsilon' = \frac{\varepsilon}{b-a+2K}$.

Since φ is uniformly continuous on J (being continuous on a closed, bounded interval), $\exists \delta_{\varepsilon} > 0$ s.t.

$$|x-y| < \delta_{\varepsilon}, \ x, y, \in J \implies |\varphi(x) - \varphi(y)| < \varepsilon'.$$

Without loss of generality, pick $\delta_{\varepsilon} < \varepsilon'$.

Since f is Riemann-integrable on $I, \ \exists P = \{x_0, \ldots, x_n\}$ a partition of I = [a, b] s.t.

$$U(P;f) - L(P;f) < \delta_{\varepsilon}^2$$

(according to Riemann's criterion).

We show that $U(P; \varphi \circ f) - L(P; \varphi \circ f) < \varepsilon$, and so that $\varphi \circ f$ is Riemann-integrable according to Riemann's criterion.

Over $[x_{i-1}, x_i]$ for $i = 1, \ldots, n$, set

 $m_i = \inf\{f(x)\}, \ M_i = \sup\{f(x)\}, \ \tilde{m}_i = \inf\{\varphi(f(x))\}, \ \tilde{M}_i = \sup\{\varphi(f(x))\}.$

With those, set $A = \{i \mid M_i - m_i < \delta_{\varepsilon}\}, B = \{i \mid M_i - m_i \ge \delta_{\varepsilon}\}.$

• If $i \in A$, then

$$x, y \in [x_{i-1}, x_i] \implies |f(x) - f(y)| \le M_i - m_i < \delta_{\varepsilon},$$

so $|\varphi(f(x)) - \varphi(f(y))| < \varepsilon' \, \forall x, y \in [x_{i-1}, x_i].$ In particular, $\tilde{M}_i - \tilde{m}_i \le \varepsilon'.$

• If $i \in B$, then

$$x, y \in [x_{i-1}, x_i] \implies |\varphi(f(x)) - \varphi(f(y))| \le |\varphi(f(x))| + |\varphi(f(y))| \le 2K.$$

In particular, $\tilde{M}_i - \tilde{m}_i \leq 2K$, since $-K \leq \tilde{m}_i \leq \varphi(z) \leq \tilde{M}_i \leq K$ for all $z \in [x_{i-1}, x_i]$.

Then

$$U(P; \varphi \circ f) - L(P; \varphi \circ f) = \sum_{i=1}^{n} (\tilde{M}_{i} - \tilde{m}_{i})(x_{i} - x_{i-1})$$

$$= \sum_{i \in A} (\tilde{M}_{i} - \tilde{m}_{i})(x_{i} - x_{i-1}) + \sum_{i \in B} (\tilde{M}_{i} - \tilde{m}_{i})(x_{i} - x_{i-1})$$

$$\leq \varepsilon' \sum_{i \in A} (x_{i} - x_{i-1}) + 2K \sum_{i \in B} (x_{i} - x_{i-1})$$

$$\leq \varepsilon'(b - a) + 2K \sum_{i \in B} \frac{(M_{i} - m_{i})}{\delta_{\varepsilon}} (x_{i} - x_{i-1})$$

$$\varepsilon'(b - a) + \frac{2K}{\delta_{\varepsilon}} \sum_{i=1}^{n} (M_{i} - m_{i})(x_{i} - x_{i-1}).$$

By earlier work in the proof, we have

$$\sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1}) \le U(P; f) - L(P; f) < \delta_{\varepsilon}^2,$$

so that

$$U(P; \varphi \circ f) - L(P; \varphi \circ f) < \varepsilon'(b-a) + \frac{2K}{\delta_{\varepsilon}} \cdot \delta_{\varepsilon}^{2}$$
$$= \varepsilon'(b-a) + 2K\delta_{\varepsilon} < \varepsilon'(b-a) + 2K\varepsilon'$$
$$= \varepsilon'(b-a+2K) = \varepsilon,$$

which completes the proof.

Notes

Theorem 58. Let I = [a, b] and $f, g : I \to \mathbb{R}$ be Riemann-integrable on I. Then fg and |f| are Riemann-integrable on I, and $\left|\int_{a}^{b} f\right| \leq \int_{a}^{b} |f|$. **Proof.** The function defined by $\varphi(t) = t^2$ is continuous. By the Composition Theorem, $\varphi \circ (f + g) = (f + g)^2$ and $\varphi \circ (f - g) = (f - g)^2$ are both Riemann-integrable on I.

But the product fg can be re-written as

$$fg = \frac{1}{4} \big[(f+g)^2 - (f-g)^2 \big].$$

According to Theorem 55, fg is Riemann-integrable on I (note that there is no general form for $\int_a^b fg$).

Now, consider the function defined by $\varphi(t) = |t|$. It is continuous, so $\varphi \circ f = |f|$ is R-integrable on I according to the Composition Theorem.

Pick $c \in \{\pm 1\}$ such that $c \int_a^b f \ge 0$. Hence

$$\left| \int_{a}^{b} f \right| = c \int_{a}^{b} f = \int_{a}^{b} cf \leq \int_{a}^{b} |f|,$$

since $cf(x) \leq |f(x)|$ for all $x \in I$.