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MAT 2125 – Elementary Real Analysis Notes

Theorem 1. (Archimedean Property)
Let x ∈ R. Then ∃nx ∈ N× such that x < nx.
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Proof. Suppose that there is no such integer. Then x ≥ n ∀n ∈ N.

Consequently, x is an upper bound of N×. But N× is a non-empty subset
of R. Since R is complete, α = supN× exists.

By definition of the supremum (the smallest upper bound), α− 1 is not an
upper bound of N× (otherwise α would not be the smallest upper bound,
as α− 1 < α would be a smaller upper bound).

Since α− 1 is not an upper bound of N×, ∃m ∈ N× such that α− 1 < m.
Using the properties of R, we must then have α < m+ 1 ∈ N×; that is, α
is not an upper bound of N×.

This contradicts the fact that α = supN×, and so, since N× 6= ∅, x cannot
be an upper bound of N×. Thus ∃nx ∈ N× such that x < nx. �
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Theorem 2. (Archimedean Property; Variants)
Let x, y ∈ R+. Then ∃n1, n2, n3 ≥ 1 such that

1. x < n1y;

2. 0 < 1
n2
< y, and

3. n3 − 1 ≤ x < n3.
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Proof.

1. Let z = x
y > 0. By the Archimedean property, ∃n1 ≥ 1 such that

z = x
y < n1. Then x < n1y.

2. If x = 1, then part 1 implies ∃n2 ≥ 1 such that 0 < 1 < n2y. Then
0 < 1

n2
< y.

3. Let L = {m ∈ N× : x < m}. By the Archimedean property, L 6= ∅.
Indeed, there is at least one n ≥ 1 such that x < n. By the well-ordering
principle, L has a smallest element, say m = n3. Then n3 − 1 6∈ L
(otherwise, n3 − 1 would be the least element of L, which it is not) and
so n3 − 1 ≤ x < n3.

There are other variants, but these are the ones we’ll use the most. �
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Theorem 3. (Bernoulli’s Inequality)
Let x ≥ −1. Then (1 + x)n ≥ 1 + nx, ∀n ∈ N.
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Proof. We prove the result by induction on n.

• If n = 1, then (1 + x)1 = 1 + x ≥ 1 + 1x.

• Suppose that the result is true for n = k, that is (1 + x)k ≥ 1 + kx. We
have to show that it is also true for n = k + 1. But

(1 + x)k+1 = (1 + x)k(1 + x)

Ind. Hyp. ≥ (1 + kx)(1 + x)

= 1 + (k + 1)x+ kx2

≥ 1 + (k + 1)x. �

(Where does the hypothesis x ≥ −1 come in to play?)
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Theorem 4. (Cauchy’s Inequality)
If a1, . . . , an and b1, . . . , bn are real numbers, then

(∑
aibi

)2
≤
(∑

a2i

)(∑
b2i

)
.

(The indices are understood to run from 1 to n in what follows.)
Furthermore, if bj 6= 0 for one of 1 ≤ j ≤ n, then equality holds if
and only if ∃s ∈ R such that ai = sbi for all i = 1, . . . , n.
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Proof. For any t ∈ R,

0 ≤
∑

(ai + tbi)
2 =

∑
a2i + 2t

∑
aibi + t2

∑
b2i .

The right-hand side of this inequality is a polynomial of degree 2 in t.

It is always greater than or equal to 0: it has at most 1 real root,
i.e. its discriminant(

2
∑

aibi

)2
− 4

(∑
a2i

)(∑
b2i

)
≤ 0,

and so (∑
aibi

)2
≤
(∑

a2i

)(∑
b2i

)
.

If all the bi are 0, the equality holds trivially, as both the left and right side
of the Cauchy inequality are 0.
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So suppose bi 6= 0 for at least one of the values j between 1 and n. We
have two statements to prove. If ai = sbi for all i = 1, . . . , n and s ∈ R is
fixed then(∑

aibi

)2
=
(∑

sb2i

)2
= s2

(∑
b2i

)2
= s2

(∑
b2i

)(∑
b2i

)
=
(∑

s2b2i

)(∑
b2i

)
=
(∑

a2i

)(∑
b2i

)
.

On the other hand, if(∑
aibi

)2
=
(∑

a2i

)(∑
b2i

)
then

4
(∑

aibi

)2
− 4

(∑
a2i

)(∑
b2i

)
= 0.
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But the left-hand side of this expression is the discriminant of the following
polynomial of degree 2 in t:∑

(ai + tbi)
2 =

∑
a2i + 2t

∑
aibi + t2

∑
b2i .

Since the discriminant is 0, the polynomial has a unique root, say t = −s,

∴
∑

(ai − sbi)2 = 0.

Since (ai − sbi)2 ≥ 0 for all i = 1, . . . , n, then

(ai − sbi)2 = 0 for all i = 1, . . . , n

∴ ai − sbi = 0 for all i = 1, . . . , n

∴ ai = sbi for all i = 1, . . . , n. �
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Theorem 5. (Triangle Inequality)
If a1, . . . , an, b1, . . . , bn ∈ R, then

(∑
(ai + bi)

2
)1/2

≤
(∑

a2i

)1/2
+
(∑

b2i

)1/2
.

Furthermore, if bj 6= 0 for one of 1 ≤ j ≤ n, then equality holds if and only
if ∃s ∈ R such that ai = sbi for all i = 1, . . . , n.
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Proof. As∑
(ai + bi)

2 =
∑

a2i + 2
∑

aibi +
∑

b2i

Cauchy Ineq. ≤
∑

a2i + 2
(∑

a2i

)1/2 (∑
b2i

)1/2
+
∑

b2i

=

((∑
a2i

)1/2
+
(∑

b2i

)1/2)2

.

Taking the square root on both sides yields the desired result.

If all the bi are 0, the equality holds trivially, as both the left and right side

of the Triangle Inequality are
(∑

a2i
)1/2

.

So suppose bi 6= 0 for at least one of the values j between 1 and n. We
have two statements to prove.
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If ai = sbi for all i = 1, . . . , n and s ∈ R is fixed then

(∑
(ai + bi)

2
)1/2

=
(∑

(sbi + bi)
2
)1/2

=
(∑

(s+ 1)2b2i

)1/2
=
(
(s+ 1)2

∑
b2i

)1/2
= (s+ 1)

(∑
b2i

)1/2
and(∑

a2i

)1/2
+
(∑

b2i

)1/2
=
(∑

s2b2i

)1/2
+
(∑

b2i

)1/2
= s

(∑
b2i

)1/2
+
(∑

b2i

)1/2
= (s+ 1)

(∑
b2i

)1/2
and so equality holds.
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On the other hand, if(∑
(ai + bi)

2
)1/2

=
(∑

a2i

)1/2
+
(∑

b2i

)1/2
then ∑

(ai + bi)
2 =

((∑
a2i

)1/2
+
(∑

b2i

)1/2)2

.

Developing both sides of this expression yields

∑
a2i + 2

∑
aibi +

∑
b2i =

∑
a2i + 2

(∑
a2i

)1/2 (∑
b2i

)1/2
+
∑

b2i ,

or simply ∑
aibi =

(∑
a2i

)1/2 (∑
b2i

)1/2
.
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Elevating both sides to the second power yields

(∑
aibi

)2
=
(∑

a2i

)(∑
b2i

)
.

By Theorem 4, ∃s ∈ R such that ai = sbi for all i = 1, . . . , n. �
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Theorem 6. (Absolute Value; Properties)
If x, y ∈ R and ε > 0, then

1. |x| =
√
x2

2. −|x| ≤ x ≤ |x|
3. |xy| = |x||y|
4. |x+ y| ≤ |x|+ |y|
5. |x− y| ≤ |x|+ |y|
6. ||x| − |y|| ≤ |x− y|
7. |x− y| < ε⇐⇒ y − ε < x < y + ε
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Theorem 7. (Density of Q)
Let x, y ∈ R such that x < y. Then, ∃r ∈ Q such that x < r < y.

P. Boily (uOttawa) 17



MAT 2125 – Elementary Real Analysis Notes

Proof. There are three distinct cases.

1. If x < 0 < y, then select r = 0.

2. If 0 ≤ x < y, then y − x > 0 and 1
y−x > 0.

By the Archimedean property, ∃n ≥ 1 such that

n >
1

y − x
> 0.

By that same property, ∃m ≥ 1 such that m − 1 ≤ nx < m. Since
n(y − x) > 1, then ny − 1 > nx and nx ≥ m− 1.

By transitivity of <, ny − 1 > m− 1, that is ny > m. But m > nx, so
ny > m > nx and y > m

n > x. Select r = m
n .

P. Boily (uOttawa) 18



MAT 2125 – Elementary Real Analysis Notes

3. If x < y ≤ 0, then y−x > 0 and 1
y−x > 0. By the Archimedean property,

∃n ≥ 1 such that

n >
1

y − x
> 0.

Note that −nx > 0. By yet another variant of that property (that we
haven’t explicitly stated in class, but it’s not too much work to show it),
∃m ≥ 0 such that m < −nx ≤ m+ 1 or −m− 1 ≤ nx < −m.

Since n(y − x) > 1, then ny − 1 > nx and nx ≥ −m− 1.

By transitivity of <, ny−1 > −m−1, that is ny > −m. But −m > nx,
so ny > −m > nx and y > −mn > x. Select r = −mn . �
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Theorem 8. If S is an infinite subset of a countable set A, then S is
countable.

Proof. https://youtu.be/MufHda7srwo
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Theorem 9. The set Q is countable.

Proof. https://youtu.be/MufHda7srwo
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Theorem 10. The set R is uncountable.

Proof. https://youtu.be/IJgtq4 JYQE
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Theorem 11. (Nested Intervals) For every integer n ∈ N, let
[an, bn] = In be such tht

I1 ⊇ I2 ⊇ · · · In ⊇ In+1 ⊇ · · ·

Then there exists ψ, η ∈ R such that ψ ≤ η and
⋃
n∈N In = [ψ, η].

Furthermore, if inf{bn − an | n ∈ N} = 0, then ψ = η.

Proof. https://youtu.be/D6zHW5L 9L0
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Theorem 12. (Unique Limit) A convergent sequence (xn) of real
numbers has exactly one limit.
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Proof. Suppose that xn → x′ and xn → x′′.

Let ε > 0. Then there exist 2 integers N ′ε, N
′′
ε ∈ N such that

|xn − x′| < ε whenever n > N ′ε and |xn − x′′| < ε whenever n > N ′′ε .

Set Nε = max{N ′ε, N ′′ε }. Then whenever n > Nε, we have

0 ≤ |x′ − x′′| = |x′ − xn + xn − x′′| ≤ |xn − x′|+ |xn − x′′| < ε+ ε = 2ε.

Thus 0 ≤ |x
′−x′′|
2 < ε.

But ε > 0 was arbitrary, so |x
′−x′′|
2 = 0 =⇒ x′ = x′′. �
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Theorem 13. Any convergent sequence (xn) of real numbers is bounded.
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Proof. Let (xn) ⊆ R converge to x ∈ R. Then for ε = 1, say, ∃N ∈ N
such that

|xn − x| < 1 when n > N.

Thanks to the reverse triangle inequality, we also have

|xn| − |x| ≤ |xn − x| < 1 when n > N,

so that |xn| < |x|+ 1 when n > N .

Now, set M = max{|x1|, . . . , |xN |, |x| + 1}. Then |xn| ≤ M for all n
and so (xn) is bounded. �
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Theorem 14. (Operations on Convergent Sequences)
Let (xn), (yn) be convergent sequences, with xn → x and yn → y. Let
c ∈ R. Then

1. |xn| → |x|;

2. (xn + yn)→ (x+ y);

3. xnyn → xy and cxn → cx;

4. xn
yn
→ x

y , if yn, y 6= 0 for all n.

Proof. We show each part using the definition of the limit of a sequence.
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1. Let ε > 0. As xn → x, ∃N ′ε such that |xn − x| < ε whenever n > N ′ε.
But ||xn| − |x|| ≤ |xn − x|, according to theorem 6. Hence, for ε > 0,
∃Nε = N ′ε such that

||xn| − |x|| ≤ |xn − x| < ε

whenever n > Nε, i.e. |xn| → |x|.

2. Let ε > 0. Then ε
2 > 0. As xn → x and yn → y, ∃Nx

ε
2
, Ny

ε
2

such that

|xn − x| <
ε

2
and |yn − y| <

ε

2
(1)

whenever n > Nx
ε
2

and n > Ny
ε
2

respectively. Set Nε = max
{
Nx
ε
2
, Ny

ε
2

}
.
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Then, whenever n > Nε (so whenever n is strictly larger than Nx
ε/2 and

Ny
ε/2 at the same time),

|(xn + yn)− (x+ y)| = |(xn − x) + (yn − y)| ≤ |xn − x|+ |yn − y|

by (1) <
ε

2
+
ε

2
= ε,

i.e. (xn + yn)→ (x+ y).

3. According to theorem 13, (xn) and (yn) are bounded since they are
convergent sequences. Then ∃Mx,My ∈ N such that

|xn| < Mx and |yn| < My

for all n.
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Let ε > 0. Then ε
2Mx

, ε
2My

> 0. As xn → x, yn → y, ∃Nx
ε

2My
, Ny

ε
2Mx
∈ N

such that

|xn − x| <
ε

2My
and |yn − y| <

ε

2Mx
(2)

whenever n > Nx
ε

2My
and n > Ny

ε
2Mx

respectively. Moreover, |y| ≤ My

(otherwise
|y|−My

2 > 0. Then, for ε =
|y|−My

2 , we get

|yn − y| ≥ ||y| − |yn|| ≥ |y| −My = 2ε > ε

for all n ∈ N, which contradicts the definition of yn → y).
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Set Nε = max

{
Nx

ε
2Mx

, Ny
ε

2My

}
. Then, whenever n > Nε,

|xnyn − xy| = |xnyn − xny + xny − xy| = |xn(yn − y) + y(xn − x)|
≤ |xn||yn − y|+ |y||xn − x|
< Mx|yn − y|+My|xn − x|

by (2) < Mx
ε

2Mx
+My

ε

2My

=
ε

2
+
ε

2
= ε,

i.e. xnyn → xy.

Furthermore, if the sequence (yn) is given by yn = c for all n, then the
preceding result yields cxn → cx, since yn = c→ c (You should show this).
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4. It is enough to show 1
yn
→ 1

y under the hypotheses above; then the result

will hold by part 3. Since y 6= 0, |y|2 > 0. Hence, as yn → y, ∃N|y|/2 ∈ N
such that |yn − y| < |y|2 , whenever n > N|y|

2
. According to theorem 6,

|y| − |yn| < |y − yn| <
|y|
2
, and so

|y|
2
< |yn| or

1

|yn|
<

2

|y|
(3)

whenever n > N|y|/2 (these expressions make sense as neither yn nor y
is 0 for all n).
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Let ε > 0. Then |y|2ε2 > 0. As yn → y, ∃N|y|2ε2 ∈ N such that

|yn − y| < |y|2
ε

2
(4)

whenever n > N|y|2ε2. Set Nε = max
{
N|y|

2
, N|y|2ε2

}
. Then, whenever

n > Nε,∣∣∣∣ 1yn − 1

y

∣∣∣∣ = ∣∣∣∣y − ynyny

∣∣∣∣ =
|y − yn|
|yny|

by (3) <
2|y − yn|
|y|2

by (4) <
2

|y|2
· |y|2ε

2
= ε, i.e.

1

yn
→ 1

y
. �
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Theorem 15. (Comparison Theorem for Sequences)
Let (xn), (yn) be convergent sequences of real numbers with xn → x,
yn → y, and xn ≤ yn ∀n ∈ N. Then x ≤ y.
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Proof. Suppose that it is not the case, namely, that x > y. Then x−y > 0.

Set ε = x−y
2 > 0. Since xn → x and yn → y, ∃Nx

ε , N
y
ε ∈ N s.t.

|xn − x| < ε whenever n > Nx
ε and |yn − y| < ε whenever n > Ny

ε .

Let Nε = max{Nx
ε , N

y
ε }. Then, if n > Nε, we have

yn < y + ε = y +
x− y
2

=
x+ y

2
= x− x− y

2
= x− ε < xn.

But this contradicts the assumption that xn ≤ yn for all n.

Consequently, x ≤ y. �
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Theorem 16. (Squeeze Theorem for Sequences)
Let (xn), (yn), (zn) ⊆ R be such that xn, zn → α and xn ≤ yn ≤ zn,
∀n ∈ N. Then yn → α.
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Proof. Let ε > 0. By convergence of (xn), (zn) to α, ∃Nx
ε , N

z
ε ∈ N s.t.

|xn − α| < ε whenever n > Nx
ε and |zn − α| < ε whenever n > Nz

ε .

Let Nε = max{Nx
ε , N

z
ε }. Then, if n > Nε, we have

α− ε < xn ≤ yn ≤ zn < α+ ε,

which is to say, that |yn − α < ε.

Consequently, yn → α. �
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Theorem 17. Let xn → x. If xn ≥ 0 ∀n ∈ N, then
√
xn →

√
x.
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Proof. Since yn ≥ 0 for all n ∈ N, Theorem 15 implies that y ≥ 0. There
are 2 cases: y = 0 or y > 0.

(a) If y = 0, let ε > 0. Then ε2 > 0. Since yn → 0, ∃Mε2 ∈ N s.t. whenever
n > Mε2, we must have |yn − 0| = yn < ε2. Now, set Nε =Mε2.

Then whenever n > Nε, |
√
yn − 0| = √yn <

√
ε2 = ε.

(b) If y > 0, let ε > 0. Then ε
√
y > 0. Since yn → y, ∃Mε

√
y ∈ N s.t.

whenever n > Mε
√
y, |yn − y| < ε

√
y. Now, set Nε =Mε

√
y.

Then whenever n > Nε, |
√
yn −

√
y| = |yn−y|√

yn+
√
y ≤

|yn−y|√
y <

ε
√
y√
y = ε.

In both cases, this yields
√
yn →

√
y. �
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Theorem 18. (Bounded Monotone Convergence)
Let (xn) be an increasing sequence, bounded above. Then (xn) converges
to sup{xn | n ∈ N}.

Proof. https://youtu.be/ZMCp9GzDmD8
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Theorem 32. If f : [a, b] → R is continuous on [a, b], then f is bounded
on [a, b].
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Proof. Suppose f is not bounded on [a, b]. Hence, for all n ∈ N, ∃xn ∈ [a, b]
such that |f(xn)| > n. However, (xn) ⊆ [a, b] so that (xn) is bounded.

By the BW Theorem, ∃(xnk) ⊆ (xn) such that xnk → x̂ ∈ [a, b], since

a ≤ xnk ≤ b for all k.

Since f is continuous, we have

f(x̂) = lim
x→x̂

f(x) = lim
k→∞

f(xnk),

so (f(xnk)) is bounded, being a convergent sequence. But this contradicts
the assumption that |f(xnk)| > nk ≥ k for all k.

Hence f is bounded on [a, b]. �
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Theorem 33. (Max/Min Theorem)
If f : [a, b] → R is continuous, then f reaches a global maximum and a
global minimum of [a, b].
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Proof. Let f([a, b]) = {f(x) | x ∈ [a, b]}. According to Theorem 32,
f([a, b]) is bounded as f is continous, and so, by completeness of R,

s∗ = sup{f(x) | x ∈ [a, b]} and s∗ = inf{f(x) | x ∈ [a, b]}

both exist.

We need only show ∃x∗, x∗ ∈ [a, b] such that f(x∗) = s∗ and f(x∗) = s∗.

Since s∗− 1
n is not an upper bound of f([a, b]) for every n ∈ N, ∃xn ∈ [a, b]

with

s∗ − 1

n
< f(xn) ≤ s∗, for all n ∈ N.

According to the Squeeze Theorem, we must have f(xn) → s∗ (this says
nothing about whether xn converges or not, however).
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But (xn) ⊆ [a, b] is bounded, so applying the BW Theorem, we find that
∃(xnk) ⊆ (xn) such that xnk → x∗ ∈ [a, b].

As f is continuous,

s∗ = lim
k→∞

f(xnk) = f
(

lim
k→∞

xnk

)
= f(x∗).

The existence of x∗ ∈ [a, b] such that f(x∗) = s∗ is shown similarly. �
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Theorem 34. Let f : [a, b]→ R be continuous. If ∃α, β ∈ [a, b] such that
f(α)f(β) < 0, then ∃γ ∈ (a, b) such that f(γ) = 0.
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Proof. We prove that the results holds for f(α) < 0 < f(β); the other case
having a similar proof.

Write α1 = α, β1 = β, I1 = [α1, β1], and γ1 = α1+β1
2 . There are 3

possibilities:

i. if f(γ1) = 0, set γ = γ1; then γ ∈ (α1, β1) and the theorem is proven;

ii. if f(γ1) > 0, set α2 = α1, β2 = γ1;

iii. if f(γ1) < 0, set α2 = γ1, β2 = β1.

In the last two cases, set I2 = [α2, β2]. Then I1 ⊇ I2, length(I1) =
β1−α1

20

and
f(α2) < 0 < f(β2).
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This is the base case n = 1 of an induction process, which can be extended
for all n ∈ N. One of two things can occur: either

1. ∃n ∈ N such that f(γn) = 0, with γn ∈ (αn, βn) ⊆ (α, β), in which case
the theorem is proven, or

2. there is a chain of nested intervals

I1 ⊇ I2 ⊇ · · · Ik ⊇ Ik+1 ⊇ · · ·

where In = [αn, βn], length(In) =
βn−αn
2n−1 , f(αn) < 0 < f(βn) ∀n ∈ N.

According to the Nested Intervals Theorem, since

inf
n∈N
{length(In)} = lim

n→∞

βn − αn
2n−1

= 0,
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∃c ∈ [α, β] ⊆ [a, b] such that
⋂
n∈N In = {c}.

It remains to show that f(c) = 0.

Note that the sequences (αn), (βn) both converge to c. Indeed, let ε > 0.
By the Archimedean Property, ∃Nε ∈ N such that Nε > log2(

β−α
ε ) + 1.

Since c ∈ In for all n ∈ N, then

|αn − c| < length(In) =
β − α
2n−1

< ε

whenever n > Nε. The proof that βn → c is identical.
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Since f is continuous on [a, b], it is also continuous at c. Thus,

lim
n→∞

f(αn) = lim
n→∞

f(βn) = f(c).

But f(αn) < 0 for all n, so

f(c) = lim
n→∞

f(αn) ≤ 0,

by Theorem 15. Using the same Theorem, we have f(c) ≥ 0. Then
f(c) = 0.

Lastly, note that c 6= α, β; otherwise, f(α)f(β) = 0.

This concludes the proof, with γ = c. �
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Theorem 35. (Intermediate Value Theorem)
Let f : [a, b] → R be continuous. If ∃α < β ∈ [a, b] s.t. f(α) < k < f(β)
or f(α) > k > f(β), then ∃γ ∈ (a, b) such that f(γ) = k.
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Proof. Assume that f(α) < k < f(β); the proof for the other case is similar.

Consider the function g : [a, b]→ R defined by g(x) = f(x)− k. Theorem
30 shows that g is continuous on [a, b].

Furthermore,

g(α) = f(α)− k < k − k = 0 < f(β)− k = g(β).

According to Theorem 34, ∃γ ∈ (α, β) such that g(γ) = f(γ) − k = 0.
Thus f(γ) = k. �
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Theorem 36. If f : [a, b] → R is continuous, then f([a, b]) is a closed
and bounded interval.
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Proof. Let m = inf{f [a, b]} and M = sup{f [a, b]}.

According to the Max/Min Theorem, ∃α, β ∈ [a, b] such that f(α) = m
and f(β) =M .

If m =M , then f is constant and f([a, b]) = [m,m] = [M,M ].

If m < M , then α 6= β. Furthermore, m ≤ f(x) ≤ M for all x ∈ [a, b], so
that f([a, b]) ⊆ [m,M ].

Now, let k ∈ [m,M ]. According to the Intermediate Value Theorem,
∃γ between α and β such that f(γ) = k. Hence k ∈ f([a, b]) and so
[m,M ] ⊆ f([a, b]).

Consequently, f([a, b]) = [m,M ]. �
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Theorem 37. If f : A → R is uniformly continuous on A, then f is
continuous on A.

P. Boily (uOttawa) 56



MAT 2125 – Elementary Real Analysis Notes

Proof. Let c ∈ A and ε > 0. As f is uniformly continuous on A, ∃δε > 0
such that

|f(x)− f(y)| < ε whenever |x− y| < δε and x, y ∈ A.

In particular, if y = c then

|f(x)− f(c)| < ε whenever |x− c| < δε and x ∈ A.

As c is arbitrary, f is continuous on A. �
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Theorem 38. Let f : [a, b]→ R. Then f is uniformly continuous on [a, b]
if and only if f is continuous on [a, b].

P. Boily (uOttawa) 58



MAT 2125 – Elementary Real Analysis Notes

Proof. Theorem 38 shows that if f is uniformly continuous on [a, b], it is
continuous on [a, b].

Now, assume f is continuous on [a, b]. If f is not uniformly continuous,
then ∃ε0 > 0 such that ∀δ > 0, ∃xδ, yδ ∈ [a, b] with

|f(xδ)− f(yδ)| ≥ ε0 and |xδ − yδ| < δ.

For n ∈ N, let δn = 1
n. The corresponding sequences (xδn), (yδn) lie in

[a, b], with

|xδn − yδn| < δn =
1

n
and |f(xδn)− f(yδn)| ≥ ε0, ∀n ∈ N.

As (xδn) is bounded, ∃(xδnk) ⊆ (xδn) such that xδnk → z with k → ∞,
according to the Bolazano-Weierstrass Theorem.
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Furthermore, z ∈ [a, b] according to Theorem 15.

The corresponding sequence (yδnk) also converges to z subce

0 ≤ |yδnk − z| ≤ |yδnk − xδnk |+ |xδnk − z| <
1

nk
+ |xδnk − z|

according to the Squeeze Theorem, as both 1
nk
, |xδnk−z| → 0 with k →∞.

But f is continuous, both (f(xδnk)), (f(yδnk)) → f(z). But that is
impossible as |f(xδn)− f(yδn)| ≥ ε0, ∀n ∈ N.

Thus f must be uniformly continuous. �
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Theorem 51. Let I = [a, b] and f be bounded on I. Then the lower
integral and upper integral of f on I satisfy L(f) ≤ U(f).
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Proof. Let P1, P2 be partitions of I. Then L(P1; f) ≤ U(P2; f).

If we fix P2, U(P2; f) is an upper bound for {L(P ; f) | P a partition of I}.
As this set is bounded, its supremum L(f) exists.

But P2 was chosen arbitrarily, so L(f) is a lower bound of

{U(P ; f) | P a partition of I}.

Consequently,

L(f) ≤ inf{U(P ; f) | P a partition of I} = U(f).

This completes the proof. �
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Theorem 52. (Riemann’s Criterion)
Let I = [a, b] and f : I → R be a bounded function. Then f is Riemann-
integrable if and only if ∀ε > 0, ∃Pε a partition of I such that the lower sum
and the upper sum of f corresponding to Pε satisfy U(Pε; f)−L(Pε; f) < ε.
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Proof. If f is Riemann-integrable, then L(f) = U(f) =
∫ b
a
f .

Let ε > 0. Since
∫ b
a
f − ε

2 is not an upper bound of {L(P ; f) |
P a partition of [a, b]}, there exists a partition P1 such that

∫ b

a

f − ε

2
< L(P1; f) ≤

∫ b

a

f.

Using a similar argument, there exists a partition P2 such that

∫ b

a

f +
ε

2
≥ U(P2; f) >

∫ b

a

f.

Set Pε = P1 ∪ P2. Then Pε is a refinement of P1 and P2.
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Consequently,

∫ b

a

f − ε

2
< L(P1; f) ≤ L(Pε; f) ≤ U(Pε; f) ≤ U(P2; f) <

∫ b

a

f +
ε

2

which implies that
U(Pε; f)− L(Pε; f) < ε.

Conversely, let ε > 0 and Pε be such that U(Pε; f) − L(Pε; f) < ε. Since
U(f) ≤ U(Pε; f) and L(f) ≥ L(Pε; f), then

0 ≤ U(f)− L(f) ≤ U(Pε; f)− L(Pε; f) < ε.

But ε > 0 was arbitrary, so U(f) − L(f) = 0, which in turns implies that
U(f) = L(f) and that f is Riemann-integrable on [a, b]. �
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Theorem 53. Let I = [a, b] and f : I → R be a monotone function on I.
Then f is Riemann-integrable on I.
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Proof. We show that the result holds for increasing functions. A similar
proof holds for decreasing functions.

Assume f is increasing. Let

Pn = {xi = a+ i
(
b−a
n

)
: i = 0, . . . , n}

be the partition of [a, b] into n equal sub-intervals. Since f is increasing on
[a, b], we have

mi = inf{f(x) | x ∈ [xi−1, xi]} = f(xi−1),

Mi = sup{f(x) | x ∈ [xi−1, xi]} = f(xi),

for 1 ≤ i ≤ n.
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Hence,

U(Pn; f)− L(Pn; f) =
n∑
i=1

Mi(xi − xi−1)−
n∑
i=1

mi(xi − xi−1)

=

n∑
i=1

(Mi −mi)(xi − xi−1)

=
b− a
n

n∑
i=1

(f(xi)− f(xi−1))

=
b− a
n

[
f(x1)− f(x0) + · · ·+ f(xn)− f(xn−1)

]
=
b− a
n

(f(b)− f(a)) ≥ 0.
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Let ε > 0. By the Archimedean Property, ∃Nε ∈ N such that

(b− a)(f(b)− f(a))
ε

< n.

Set Pε = Pn. Then

U(Pε; f)− L(Pε; f) <
b− a
Nε

(f(b)− f(a)) < ε,

and f is Riemann-integrable on [a, b] according to Riemann’s Criterion. �
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Theorem 54. Let f : [a, b] → R be continuous, with a < b. Then f is
Riemann-integrable on [a, b].
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Proof. Let ε > 0.

According to Theorem 38, f is uniformly continuous on [a, b]. Hence
∃δε > 0 s.t. |f(x)− f(y)| < ε

b−a whenever |x− y| < δε and x, y ∈ [a, b].

Pick n ∈ N such that b−a
n < δε and let

Pε = {xi = a+ i
(
b−a
n

)
: i = 0, . . . , n}

be the partition of [a, b] into n equal sub-intervals.

As f is continuous on [xi−1, xi], ∃ui, vi ∈ [xi−1, xi] such that

mi = inf{f(x) | x ∈ [xi−1, xi]} = f(ui),

Mi = sup{f(x) | x ∈ [xi−1, xi]} = f(vi),
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for all 1 ≤ i ≤ n, according to the Max/Min Theorem. (Note that
|ui − vi| ≤ b−a

n < δε for all i.)

Hence,

U(Pε; f)− L(Pε; f) =
n∑
i=1

(Mi −mi)(xi − xi−1) =
b− a
n

n∑
i=1

(f(vi)− f(ui))

<
b− a
n

n∑
i=1

ε

b− a
= ε,

by uniform continuity of f .

According to Riemann’s Criterion, f is thus Riemann-integrable. �
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Theorem 55. (Properties of the Riemann Integral)
Let I = [a, b] and f, g : I → R be Riemann-integrable on I. Then

(a) f + g is Riemann-integrable on I, with
∫ b
a
(f + g) =

∫ b
a
f +

∫ b
a
g;

(b) if k ∈ R, k · f is Riemann-integrable on I, with
∫ b
a
k · f = k

∫ b
a
f ;

(c) if f(x) ≤ g(x) ∀x ∈ I, then
∫ b
a
f ≤

∫ b
a
g, and

(d) if |f(x)| ≤ K ∀x ∈ I, then
∣∣∣∫ ba f ∣∣∣ ≤ K(b− a).

Proof. We use a variety of pre-existing results.
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(a) Let ε > 0. Since f, g are Riemann-integrable, ∃P1, P2 partitions of I
such that U(P1; f)− L(P1; f) <

ε
2 and U(P2; g)− L(P2; g) <

ε
2.

Set P = P1 ∪ P2. Then P is a refinement of P1 and P2, and

U(P ; f + g) ≤ U(P ; f) + U(P ; g)

< L(P ; f) + L(P ; g) + ε ≤ L(P ; f + g) + ε, (5)

since, over non-empty subsets of I, we have

inf{f(x) + g(x)} ≥ inf{f(x)}+ inf{g(x)}
sup{f(x) + g(x)} ≤ sup{f(x)}+ sup{g(x)}.

Hence f + g is Riemann-integrable according to Riemann’s Criterion.
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Furthermore, we see from (5) that∫ b

a

(f + g) ≤ U(P ; f + g) < L(P ; f) + L(P ; g) + ε ≤
∫ b

a

f +

∫ b

a

g + ε

and∫ b

a

f +

∫ b

a

g ≤ U(P ; f) + U(P ; g) < L(P ; f + g) + ε ≤
∫ b

a

(f + g) + ε.

Since ε > 0 is arbitrary,
∫ b
a
f +

∫ b
a
g ≤

∫ b
a
(f + g) ≤

∫ b
a
f +

∫ b
a
g, from

which we conclude that
∫ b
a
(f + g) =

∫ b
a
f +

∫ b
a
g.

(b) The proof for k = 0 is trivial. We show that the result holds for k < 0
(the proof for k > 0 is similar).
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Let P = {x0, . . . , xn} be a partition of I. Since k < 0, we have
inf{kf(x)} = k sup{f(x)} over non-empty subsets of I, and so we have
L(P ; kf) = kU(P ; f). In particular,

L(kf) = sup{L(P ; kf) | P a partition of I}
= sup{kU(P ; f) | P a partition of I}
= k inf{U(P ; f) | P a partition of I} = kU(f)

Similarly, U(P ; kf) = kL(P ; f) and U(fk) = kL(f), so

L(fk) = kU(f) = kL(f)︸ ︷︷ ︸
since f is R-int.

= U(kf).

Thus kf is Riemann-integrable on I and
∫ b
a
kf = L(k) = kU(f) =

∫ b
a
f.

P. Boily (uOttawa) 76



MAT 2125 – Elementary Real Analysis Notes

(c) We start by showing that if h : I → R is integrable on I and h(x) ≥ 0

for all x ∈ I, then
∫ b
a
h(x) ≥ 0.

Let P0 = {a, b} = {x0, x1} and m1 = inf{h(x) | x ∈ [a, b]} ≥ 0.
Then,

0 ≤ m1(b− a) = L(P0;h) ≤ L(P ;h)
for any partition P of I, as P ⊇ P0. But h is Riemann-integrable by
assumption, thus

∫ b

a

h = sup{L(P ;h) | P a partition of I} ≥ L(P0;h) ≥ 0.
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Then, set h = g − f . By hypothesis, h(x) = g(x)− f(x) ≥ 0. Then

∫ b

a

h =

∫ b

a

(g − f) =
∫ b

a

g −
∫ b

a

f ≥ 0,

which implies that
∫ b
a
g ≥

∫ b
a
f .

(d) Let P0 = {a, b} = {x0, x1}. As always, set m1 = inf{f(x) | x ∈ [a, b]},
and M1 = sup{f(x) | x ∈ [a, b]}. Then for any parition P of I, we have

m1(b− a) = L(P0; f) ≤ L(P ; f) ≤ L(f) =
∫ b

a

f

= U(f) ≤ U(P ; f) ≤ U(P0; f) =M1(b− a).
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In particular,

m1(b− a) ≤
∫ b

a

f ≤M1(b− a).

Now, if |f(x)| ≤ K for all x ∈ I, then −K ≤ m1 and M1 ≤ K so that

−K(b− a) ≤ m1(b− a) ≤
∫ b

a

f ≤M1(b− a) ≤ K(b− a),

so that |
∫ b
a
f | ≤ K(b− a). �
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Theorem 56. (Additivity the Riemann Integral)
Let I = [a, b], c ∈ (a, b), and f : I → R be bounded on I. Then f is
Riemann-integrable on I if and only if it is Riemann-integrable on I1 = [a, c]

and on I2 = [c, b]. When that is the case,
∫ b
a
f =

∫ c
a
f +

∫ b
c
f .
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Proof. We start by assuming that f is Riemann-integrable on I.

Let ε > 0. According to the Riemann Criterion, ∃Pε a partition of I
such that U(Pε; f) − L(Pε; f) < ε. Now, set P = Pε ∪ {c}. Then P is a
refinement of Pε so that

U(P ; f)− L(P ; f) ≤ U(Pε; f)− L(Pε; f) < ε.

Set P1 = P ∩ I1 and P2 = P ∩ I2. Then Pi is a partition of Ii, and

ε > U(P ; f)− L(P ; f) ≥ U(P1; f) + U(P2; f)− L(P1; f)− L(P2; f)

=
[
U(P1; f)− L(P1; f)

]
+
[
U(P2; f)− L(P2; f)

]
Consequently, U(Pi; f) − L(Pi; f) < ε for i = 1, 2 and f is Riemann-
integrable on I1 and I2, according to the Riemann Criterion.
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Now assume that f is Riemann-integrable on I1 and I2.

Let ε > 0. According to the Riemann Criterion, for i = 1, 2, ∃Pi a
partition of Ii such that

U(Pi; f) + L(Pi; f) <
ε

2
.

Set P = P1 ∪ P2. Then P is a partition of I. Furthermore,

U(P ; f)− L(P ; f) = U(P1; f) + U(P2; f)− L(P1; f)− L(P2; f)

= U(P1; f)− L(P1; f) + U(P2; f)− L(P2; f) <
ε

2
+
ε

2
= ε,

thus f is Riemann-integrable on I according the Riemann Criterion.
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Finally, let’s assume that f is Riemann-integrable on I (and so on I1, I2),
or vice-versa.

Let P1, P2 be partitions of I1, I2, respectively, such that

U(Pi; f)− L(Pi; f) <
ε

2
, i = 1, 2.

Set P = P1 ∪ P2. Then P is a partition of I and∫ b

a

f ≤ U(P ; f) = U(P1; f) + U(P2; f)

< L(P1; f) + L(P2; f) + ε =

∫ c

a

f +

∫ b

c

f + ε.
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Similarly,

∫ b

a

f ≥ L(P ; f) = L(P1; f) + L(P2; f)

> U(P1; f) + U(P2; f)− ε ≥
∫ c

a

f +

∫ b

c

f − ε

Since ε > 0 is arbitrary,
∫ b
a
f =

∫ c
a
f +

∫ b
c
f . �
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Theorem 57. (Composition Theorem for Integrals)
Let I = [a, b] and J = [α, β], f : I → R Riemann-integrable on I,
ϕ : J → R continuous on J and f(I) ⊆ J . Then ϕ ◦ f : I → R is
Riemann-integrable on I.

Proof. Let ε > 0, K = sup{|ϕ(x)| | x ∈ J} (guaranteed to exist by the
Max/Min theorem) and ε′ = ε

b−a+2K .

Since ϕ is uniformly continuous on J (being continuous on a closed,
bounded interval), ∃δε > 0 s.t.

|x− y| < δε, x, y,∈ J =⇒ |ϕ(x)− ϕ(y)| < ε′.

Without loss of generality, pick δε < ε′.
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Since f is Riemann-integrable on I, ∃P = {x0, . . . , xn} a partition of
I = [a, b] s.t.

U(P ; f)− L(P ; f) < δ2ε

(according to Riemann’s criterion).

We show that U(P ;ϕ ◦ f) − L(P ;ϕ ◦ f) < ε, and so that ϕ ◦ f is
Riemann-integrable according to Riemann’s criterion.

Over [xi−1, xi] for i = 1, . . . , n, set

mi = inf{f(x)}, Mi = sup{f(x)}, m̃i = inf{ϕ(f(x))}, M̃i = sup{ϕ(f(x))}.

With those, set A = {i |Mi −mi < δε}, B = {i |Mi −mi ≥ δε}.
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• If i ∈ A, then

x, y ∈ [xi−1, xi] =⇒ |f(x)− f(y)| ≤Mi −mi < δε,

so |ϕ(f(x))−ϕ(f(y)| < ε′ ∀x, y ∈ [xi−1, xi]. In particular, M̃i−m̃i ≤ ε′.

• If i ∈ B, then

x, y ∈ [xi−1, xi] =⇒ |ϕ(f(x))−ϕ(f(y))| ≤ |ϕ(f(x))|+|ϕ(f(y))| ≤ 2K.

In particular, M̃i − m̃i ≤ 2K, since −K ≤ m̃i ≤ ϕ(z) ≤ M̃i ≤ K for all
z ∈ [xi−1, xi].
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Then

U(P ;ϕ ◦ f)− L(P ;ϕ ◦ f) =
n∑
i=1

(M̃i − m̃i)(xi − xi−1)

=
∑
i∈A

(M̃i − m̃i)(xi − xi−1) +
∑
i∈B

(M̃i − m̃i)(xi − xi−1)

≤ ε′
∑
i∈A

(xi − xi−1) + 2K
∑
i∈B

(xi − xi−1)

≤ ε′(b− a) + 2K
∑
i∈B

(Mi −mi)

δε
(xi − xi−1)

ε′(b− a) + 2K

δε

n∑
i=1

(Mi −mi)(xi − xi−1).
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By earlier work in the proof, we have

n∑
i=1

(Mi −mi)(xi − xi−1) ≤ U(P ; f)− L(P ; f) < δ2ε,

so that

U(P ;ϕ ◦ f)− L(P ;ϕ ◦ f) < ε′(b− a) + 2K

δε
· δ2ε

= ε′(b− a) + 2Kδε < ε′(b− a) + 2Kε′

= ε′(b− a+ 2K) = ε,

which completes the proof. �
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Theorem 58. Let I = [a, b] and f, g : I → R be Riemann-integrable on I.

Then fg and |f | are Riemann-integrable on I, and
∣∣∣∫ ba f ∣∣∣ ≤ ∫ ba |f |.
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Proof. The function defined by ϕ(t) = t2 is continuous. By the Composition
Theorem, ϕ ◦ (f + g) = (f + g)2 and ϕ ◦ (f − g) = (f − g)2 are both
Riemann-integrable on I.

But the product fg can be re-written as

fg =
1

4

[
(f + g)2 − (f − g)2

]
.

According to Theorem 55, fg is Riemann-integrable on I (note that there

is no general form for
∫ b
a
fg).

Now, consider the function defined by ϕ(t) = |t|. It is continuous, so
ϕ ◦ f = |f | is R-integrable on I according to the Composition Theorem.
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Pick c ∈ {±1} such that c
∫ b
a
f ≥ 0. Hence∣∣∣∣∣

∫ b

a

f

∣∣∣∣∣ = c

∫ b

a

f =

∫ b

a

cf ≤
∫ b

a

|f |,

since cf(x) ≤ |f(x)| for all x ∈ I. �
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