MAT 2377 – Assignment 2 – Solutions Total = 100 marks

Solution 1. [not marked] Let X be the number of light bulbs that fail during the 24-hour test.

(a) $X \sim \mathcal{B}(n, p)$, with n = 10 and p = 0.01.

(b) We are looking for $P(X = 0) = {\binom{10}{0}} (0.01)^0 (0.99)^{10} = (0.99)^{10} \approx 0.904.$

(c) We are looking for

$$P(X \ge 3) = 1 - P(X = 0) - P(X = 1) - P(X = 2)$$

= $1 - {\binom{10}{0}} (0.01)^0 (0.99)^{10} - {\binom{10}{1}} (0.01)^1 (0.99)^9 - {\binom{10}{2}} (0.01)^2 (0.99)^8$
= $1 - (0.99)^{10} - 10(0.01)(0.99)^9 - 45(0.01)^2 (0.99)^8 \approx 0.0001.$

(d) We are looking for

$$P(2 \le X \le 4) = P(X = 2) + P(X = 3) + P(X = 4)$$

= $\binom{10}{2} (0.01)^2 (0.99)^8 + \binom{10}{3} (0.01)^3 (0.99)^7 + \binom{10}{4} (0.01)^4 (0.99)^6 \approx 0.0043.$

Solution 2. [30 marks] Let T_1 and T_2 be the number of samples required to get 1 and 2 positive algae bloom tests, respectively.

- (a) [10 marks] $T_1 \sim \text{Geo}(0.03)$. We are looking for $P(T_1 = 7) = (1 0.03)^6 (0.03) \approx 0.0250$.
- (b) [10 marks] We have $T_2 \sim \text{NegBinom}(2, 0.03)$, with $\text{E}[T_2] = \frac{2}{0.03} \approx 66.7$ and $\text{SD}[T_2] = \sqrt{\frac{2(1-0.03)}{(0.03)^2}} \approx 46.4280$
- (c) [10 marks] We are looking for $P(T_2 = 5) = {\binom{5-1}{2-1}} (0.03)^2 (1 0.03)^3 \approx 0.0033.$

Solution 3. [40 marks] Let N_{100} be the number of defects over a 100m stretch of tape. Since $\lambda = 2$ defects per 100m, $N_{100} \sim \text{Poisson}(2)$.

- (a) [10 marks] We have $P(N_{100} = x) = \frac{2^x e^{-2}}{x!}, x = 0, 1, \dots$
- (b) [10 marks] We have $E[N_{100}] = \lambda = 2$ and $SD[N_{100}] = \sqrt{\lambda} = \sqrt{2}$ defects per 100m.
- (c) [10 marks] Let N_{300} be the number of defects over a 300m stretch of tape. 300m is 3×100 m, so $E[N_{300}] = 3\lambda = 3(2) = 6$ defects per 300m.
- (d) [10 marks] The length of tape between 20 and 75 is 55m. The number of defects over that stretch of tape follows a Poisson distribution with parameter $2 \cdot 0.55 = 1.1$, i.e. $N_{55} \sim \text{Poisson}(1.1)$. Thus

$$P(N_{55} > 2) = 1 - P(N_{55} \le 2) = 1 - \frac{(1.1)^0 e^{-1.1}}{0!} - \frac{(1.1)^1 e^{-1.1}}{1!} - \frac{(1.1)^2 e^{-1.1}}{2!} = 0.0996.$$

Solution 4. [30 marks] Let X be the lifetime of a helicopter part. We have $3.2 = E[X] = \frac{1}{\lambda}$, whence $\lambda = 1/3.2$. The probability distribution of this exponential random variable is

$$f_X(x) = \frac{1}{3.2}e^{-x/3.2}$$
, when $x \ge 0$ and 0 otherwise;

the cumulative distribution function is

$$F_X(x) = 1 - e^{-x/3.2}$$
 when $x \ge 0$ and 0 otherwise.

(a) [10 marks] We are looking for

$$P(X > 4.4) = 1 - P(X < 4.4) = 1 - F_X(4.4) = 1 - (1 - e^{-4.4/3.2}) \approx 0.2528.$$

(b) [10 marks] 3 months is 0.25 year, and 9 months is 0.75 year, so we are looking for

$$P(0.25 < X < 0.75) = F_X(0.75) - F_X(0.25)$$

= $(1 - e^{-0.75/3.2}) - (1 - e^{-0.25/3.2}) \approx 0.1338$

(c) [10 marks] Since the exponential distribution is memory-less, we are looking for

$$P(X \ge 5|X > 3) = P(X > 5 - 3) = P(X > 2) = e^{-2/3.2} \approx 0.5353.$$

Solution 5. [not marked] Let W_1 the time between two successive cars passing the location, with the number of cars passing the location each minute being a Poisson process with parameter $\lambda = 5$.

- (a) Then $W_1 \sim \text{Exp}(5)$, and $\text{E}[W_1] = \frac{1}{5}$ and $\text{Var}[W_1] = \frac{1}{5^2} = \frac{1}{25}$.
- (b) We are looking for $P(W_1 > 1) = 1 P(W_1 < 1) = 1 F_{W_1}(1) = e^{-5} = 0.0067.$
- (c) Let W_2 be the wait time for 2 cars to pass by the location. Then $W_2 \sim \Gamma(5,2)$ and

$$P(W_2 > 1) = \int_1^\infty \frac{w^{2-1}}{(2-1)!} 5^2 e^{-5w} \, dw = \int_1^\infty 25w e^{-5w} \approx 0.0404$$

Solution 6. [not marked] By assumptions, $X \sim N(10, 0.02^2)$.

(a) We are looking for

$$P(X \le 9.97) = P\left(\frac{X - 10}{0.02} \le \frac{9.97 - 10}{0.02}\right) = \Phi\left(\frac{9.97 - 10}{0.02}\right) = \Phi(-1.5) \approx 0.0668,$$

so about 6.7%.

(b) We are looking for

$$P(X \ge 10.05) = 1 - P(X \ge 10.05) = 1 - P\left(\frac{X - 10}{0.02} \le \frac{10.05 - 10}{0.02}\right)$$
$$= 1 - \Phi\left(\frac{10.05 - 10}{0.02}\right) = 1 - \Phi(2.5) \approx 1 - 0.9938 = 0.0062,$$

so about 0.6%.

(c) We are looking for $P(X \ge 9.97 \text{ or } X \le 10.03)$. But

$$P(9.97 \le X \le 10.03) = P\left(\frac{9.97 - 10}{0.02} \le \frac{X - 10}{0.02} \le \frac{10.03 - 10}{0.02}\right)$$
$$= \Phi\left(\frac{10.03 - 10}{0.02}\right) - \Phi\left(\frac{9.97 - 10}{0.02}\right) = \Phi(1.5) - \Phi(-1.5) \approx 0.8664,$$

so $P(X \ge 9.97 \text{ or } X \le 10.03) = 1 - P(9.97 \le X \le 10.03) \approx 0.1336 \text{ or about } 13.3\%.$

(d) We are looking for a c such that $1 - P(10 - c \le X \le 10 + c) = 0.05$; this is equivalent to

$$P(10 - c \le X \le 10 + c) = 0.95 \iff P\left(\frac{10 - c - 10}{0.02} \le \frac{X - 10}{0.02} \le \frac{10 - c - 10}{0.02}\right) = 0.95$$
$$\iff P(-50c \le Z \le 50c) = 0.95$$
$$\iff \Phi(50c) - \Phi(-50c) = 0.95$$
$$\iff 2\Phi(50c) - 1 = 0.95$$
$$\iff \Phi(50c) = 0.975$$
$$\iff 50c = 1.96 \iff c = 1.96/50 \approx 0.039.$$

Thus $P(9.961 \le X \le 10.039) \approx 0.95$ and $P(X \le 9.961 \text{ or } X \le 10.039) \approx 0.05$.

(e) If $X \sim N(10.01, 0.02^2)$, then

$$P(9.961 \le X \le 10.039) = P\left(\frac{9.961 - 10.01}{0.02} \le \frac{X - 10.01}{0.02} \le \frac{10.039 - 10.01}{0.02}\right)$$
$$= \Phi\left(\frac{10.039 - 10.01}{0.02}\right) - \Phi\left(\frac{9.961 - 10.01}{0.02}\right)$$
$$= \Phi(1.45) - \Phi(-2.45) \approx 0.9265 - 0.0071 = 0.9194,$$

or about 92%.